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Prediction of deoxynivalenol
contamination in spring oats in Sweden
using explainable artificial intelligence

Check for updates

X. Wang 1,2 , T. Borjesson3, J. Wetterlind4 & H. J. van der Fels-Klerx 1,2

Weather conditions and agronomical factors are known to affect Fusarium spp. growth and ultimately
deoxynivalenol (DON) contamination in oat. This study aimed to develop predictive models for the
contamination of spring oat at harvestwithDONona regional basis in Swedenusingmachine-learning
algorithms. Three models were developed as regional risk-assessment tools for farmers, crop
collectors, and food safety inspectors, respectively. Data included: weather data from different oat
growing periods, agronomical data, site-specific data, andDONcontamination data from the previous
year. Results showed that: (1) RF models were able to predict DON contamination at harvest with a
total classification accuracy of minimal 0.72; (2) good predictions could already be made in June; (3)
rainfall, relative humidity, andwind speed in different oat growing stages, followed by crop variety and
elevationwere themost important features for predictingDONcontamination in spring oats at harvest.

Oats canbe susceptible to fungal infectionof Fusariumspp. and subsequent
deoxynivalenol (DON)contamination during the cultivation season1,2. The
presence of DON in oats-derived feed and food can affect human and
animal health3. In Europe, the European Commission has set maximum
legal limits (1750 μg/kg) for the presence of DON in unprocessed durum
wheat and oats4, and has defined maximum recommendation thresholds
(8000 μg/kg) for the presence of DON for cereals and cereal products (with
the exception ofmaize by-products) used for feed (Commission, 2006b). In
Sweden, DON concentrations were too high to be fit for human con-
sumption in half of all oats in 2011 and, since then, DONcontamination of
oats has gained significant attention (Hartman et al., 2021). After 2011,
almost all oat products are monitored for DON contamination, which
generates a high cost to stakeholders such as farmers, crop collectors, and
food safety authorities. Early forecasting of the high-contamination regions
of DON in oats at the regional (grid) level could provide timely advice on
the need for crop protection and for risk-based monitoring to reduce the
chance of contaminated oats entering the food chain and reduce the
monitoring costs.

Weather conditions, such as temperature, relative humidity, and pre-
cipitation, have a significant effect on the presence of DON contamination
in oats5. This is because weather conditions affect the life cycle of toxigenic
fungi, influence the interaction between the pathogen and host, and the
pathogen’s ability to produce DON6,7. Apart from weather conditions,
agronomical factors could directly or indirectly promote the infection of
Fusarium spp. in grains. These factors may include crop variety, crop

rotation (pre-crop andpre-pre-crop), soil type, elevation, and geolocationof
the fields8–11.

Previous studies aimed at developing prediction models for DON in
oats have used weather data5,12–14. Only considering weather data may limit
the model’s application in different regions or farms with different oat
agronomic practices. One study concluded that DON prediction in oats
could be improved using agronomic factors with weather-based risk index
outputs5. To date, only a few studies have used weather variables combined
with agronomic and site-specific variables for early forecasting of DON
contamination in oats. Also, for the prediction ofDON inwheat, it has been
reported that not considering agronomic and site-specific factors may
restrict the model’s application across different regions with varying wheat
cultivation methods15.

Apart from the data available for model development, the model
algorithm used also affects themodel performance. A study from Lindblad,
et al.16 who aimed to predict DON in oats, stated that very little of the
variation in DON could be explained by weather conditions using a sta-
tistical model. In addition to statistical models, machine learning has been
proven to be of added value in the prediction of mycotoxins in grains17–20.
One of these cited studies has applied a deep neural network to predict
mycotoxin contamination in maize and concluded that the machine
learning approach has added value to classical statistical approaches (i.e.,
simple or multiple linear regression models)20. One study applied the ran-
dom forest algorithm to predict multi-mycotoxin occurrence in wheat in
Europewith >90% accuracy17. Another study applied gradient boosting and
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Bayesian network modeling to predict mycotoxin contamination in maize
in the USA with an overall accuracy of 94%18. These studies showed high
prediction accuracy using machine learning, however, these studies mainly
focused on the prediction of the presence of different mycotoxins in maize
andwheat, not in oats. In addition, only a few studies provided explanations
ofmodel prediction results (i.e. the impact of input variables on the different
mycotoxin contamination levels). Machine learning approaches are often
seen as black boxes that provide recommendations without sufficient
explanation of “which and how input variables generated the result”21. This
is not a functional practice when themodel results are to be used as support
for decision-making. Furthermore, effects of single management practices
(such as cultivar, tillage, and longitude and latitude) onDONcontamination
inwheat have been investigated formycotoxin prevention and control22, but
collective effects of multi-management practices (such as a combination of
regional characteristics) on DON contamination have not been explored
yet. Such a collective effect is essential to provide advises for reducing DON
contamination in oats.

The aim of this study was to (1) develop predictive models for the
contamination of DON in spring oats on a regional basis in Sweden using
machine-learning algorithms, (2) explore the impacts of weather features,
agronomical features, and site-specific features on the DON contamination
levels, (3) explore the collective effect of multi management practices
(combination of cultivar, crop rotation, and regional characteristics) on
DON contamination and provide advice to reduce DON contamination
in oats.

Results
Describe analysis of data
Figure 1 shows the grids with oats used in the investigation in 2012–2019,
which were drawn using geo-referenced grid points using QGIS. Large
variations inDONcontamination levels can be seen inTable 1. The changes
in weather variables from year 2012 to 2019 were displayed in Supple-
mentary Fig. S1. It shows the variation of monthly and weekly rainfall and
temperature. From year 2012 to 2019, the summer of 2012 was colder and
wetter than normal whereas 2014was warm but extremely wet in August in
the Southwest part of Sweden. In 2018, the summer was exceptionally dry

and warmwith large negative effects on crop yields. Also, 2019 was a warm
year, especially in the very south of Sweden, with normal amounts of rain.

Model result on Dataset 1
Following the model development procedure, the predictive model for
DONcontamination level (low,medium,high) in spring oats in Swedenwas
trained using training data from dataset 1 (80% of 2012–2019, except for
2016). The five-fold cross-validation result (mean prediction accuracies) for
the SS model, MS model, and the FS model were 0.73, 0.72, and 0.72,
respectively, i.e., five-fold cross-validation results for the SS-model were
0.72, 0.70, 0.72, 0.72, 0.72with ameanof 0.72; for theMS-model, valueswere
0.72, 0.71, 0.74, 0.72, 0.72 with a mean of 0.72; for the FS-model, values
were 0.71, 0.70, 0.73, 0.72, 0.73 with a mean of 0.72.

Then, models were tested on the “new” data (20% of all records of
2012 – 2019 except for the year 2016). Themodel results showed consistent
performance with cross-validation results. The total prediction accuracies
for the SS models, MS models, and FS models were 0.73, 0.72, and 0.73,
respectively. Figure 2 displays the prediction results for each DON con-
tamination levels (low, medium, high) of the internal validation (20% of
2012–2019 except 2016) in detail. The confusion matrix (upper figures in
Fig. 2) visualized the internal model validation results by comparing the
actual and predicted DON contamination levels. It shows the counts of
actual versus predicted classifications. The normalizedmatrix (lowerfigures
in Fig. 2) scales these counts to reflect proportions and shows the prediction
accuracies for the high, medium, and low contamination levels1.

The result of usingweatherdataonly (remove cropvariety fromdataset
1) for model training and validation refers to Supplementary Fig. S3. The
external validation result for the prediction of DON contamination levels
(low, medium, high) in oats in Sweden in 2016 using the model trained on
weather data and crop variety from 2012 to 2019 except 2016 refer to
Supplementary Fig. S5).

Model result on dataset 2
To analyze the feature impact on DON contamination levels taking into
account the weather, agronomical, and site-specific features, a predictive
model was developed using dataset 2 (2016 and 2017) following the same

Fig. 1 | Maps of grids with oats in Sweden. The maps show the grids used for oats investigation in the period of 2012 to 2019. Scale: 1:17936700 (1 cm on the map equals
17,936,700 cm). Source: OpenStreetMap.

Table 1 | The number of grid cells categorized by monitored DON (deoxynivalenol) contamination levels—low (<500 µg/kg),
medium (≥500 µg/kg and <1000 µg/kg), and high (≥1000 µg/kg) — recorded over various years

Contamination levels Year

2012 2013 2014 2015 2016 2017 2018 2019

Low 292 374 663 571 535 449 519 755

Medium 139 163 86 9 39 5 19 3

High 154 123 68 12 55 5 12 3
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model development procedure as described in section 3.1. Note that agro-
nomical and site-specific features (except cropvariety)wereonly available in
the years 2016 and 2017, which is the reason a separate model has been
developed using data from those two years. The total accuracy for the SS-
model, MS-model, and FS-model was 0.94, 0.95, and 0.96, respectively
(Fig. 3). If using weather data only, the total accuracy for each model was,
0.82, 0.81, and 0.88, respectively (Supplementary Fig. S4). The result shows
that (1) weather features are the most important variables for DON con-
tamination model development, (2) adding crop variety, and agronomical
variables could improve the overall DON contamination classification
accuracy, as well as the accuracy of each class.

Feature impact analysis
SHAP (SHapley Additive exPlanations) values were used to explain how
mucheach independent variable contributes to thefinal prediction onDON
in oats in Sweden. Features were ranked based on their importance in
predicting DON contamination levels.

Figure 4a shows theoverall average impact andvariables are orderedby
importance (in terms of the absolute value of their contribution). Variables
used for SHAP analysis in supplementary (Table S1). The key predictors for
forecastingDONcontamination levels in oats encompassed rainfall, relative
humidity, and wind speed across various growth stages, alongside crop
variety and elevation. For example, from Fig. 4a it can be seen that themost
important variable in determining DON contamination levels was the
average rainfall in December (“NED_MAVE,12”). Figure 4b–d show the
directionality of the impact on the low contamination level (4b), the med-
ium contamination level (4c), and the high contamination level (4d),
respectively. Positive SHAP values represent the positive impact on the
contamination level, negative SHAPvalues represent thenegative impact on
the contamination level. For example, the results in Fig. 4b indicate that
lower average rainfall in December (“NED_MAVE,12”) contributes to low

levels of DON contamination. Conversely, the results in Fig. 4c and d
indicate that higher average rainfall in December contributes to both
medium and high levels of DON contamination.

Feature impact analysis on weather features
Figure 5 presents in detail the feature impact on the model outcomes for
several weather features based on feature dependency analysis. The two
variables average rainfall in December (“NED_MAVE,12”) and weekly
average maximum temperature in the beginning of August (‘HTEM-
P_AVE’, 32) were selected since these were the input weather features that
had the highest impact on themodel output. For example, in Fig. 5, the three
figures on the top show that a low precipitation inDecember contributed to
a low DON contamination level (positive contribution). This was the other
way around for medium and high levels of DON contamination (negative
contribution). The three figures at the bottom show that the lower average
maximum temperature in the beginning of August contributed to a high
frequency of medium and high levels of DON contamination (positive
contribution), whereas this was the other way around for low levels of DON
contamination (negative contribution).

Feature impact analysis on agronomical features
Figure 6 presents a detailed explanation of agronomical features for feature
impact on the model outputs using feature dependency analysis. The three
variables of crop varieties BELINDA, GALANT, and KERSTIN, were
selected because they were the non-weather feature that gave the highest
impact on the model output. Low levels of DON contamination were seen
for the crop variety GALANT and BELINDA (1.0 in X-axis), and medium
and high levels of Con contamination were seen for the crop variety
KERSTIN. Crop rotation did not explain much of the variations in DON
contamination levels and were therefore not displayed here (see Supple-
mentary Fig. S6).

Fig. 2 | Prediction results using weather data and crop variety. The confusion
matrix (upper) presents internal model validation results using the internal vali-
dation dataset 1 (20% of 2012–2019 except 2016) to predict the contamination levels

(low contamination, medium contamination, and high contamination) of DON in
oats in Sweden between 2012 and 2019 except 2016.
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Feature impact analysis on site-specific features
Figure 7 shows the feature dependency analysis of mean value and range
value of elevation and mean value of soil type (percentage of sand or lay)
variables on DON contamination levels. These variables were site-specific
features that gave the highest impact on the model output. For example,
larger variations in elevation within fields contributed to higher DON levels
(elevation range <25m negative contribution, and elevation range >25m
positive contribution to highDON levels). On high-elevation fields (>60m)
soils with high sand content and low clay content contributed to highDON
levels, and the reason could be stress (due to draught in the high-elevation
field) makes the crop more vulnerable to fungi infection.

Discussion
In the current study, three different predictive models (SS, MS, and FS
model) forDONcontamination levels at the regional scale in oats in Sweden
were developed. Model classification accuracy showed to be high, ranging
from 0.7 to 0.9 depending on different years and models. The developed
models can provide valuable information to three different stakeholder
groups in the oat supply chain; farmers, crop collectors, and food safety
authorities, as a tool that can help in the management of mycotoxins in the
oats supply chain and risk-based testing. Results showed that (1) weather
variables are themost important for predictingDONcontamination inoats,
(2) adding relevant agronomical and site-specific factors, such as crop
variety, crop rotation, soil type and DON contamination condition in the
previous year could improve the performance of the models, (3) good
predictions could be made already in June by using the SS-model, as based
on internal validation, and 4) rainfall, relative humidity, and wind speed in
different growing stages as well as crop variety and elevation were the most
important features for predicting DON contamination levels in oats.
However, predicting individual years not included in the training of the
models proved to be difficult.

To date, few studies have incorporatedweather, agronomical, and site-
specific data to predict the regional DON contamination in oats using

machine learning. However many studies have paved the way for using
these data for DON contamination prediction. One study modeling the
effects of weather features onDONcontamination in oats indicated that the
model accuracy could be improved if more factors (such as field tillage and
the soil type) were included, in addition to the weather data12. One study
investigated the association of several agronomic factors (including harvest
date, crop season, county, farming system, moisture, test weight, oats
variety, and previous crop) to the occurrence of Fusarium mycotoxins in
Irish oats23. This study concluded that the level ofDONwasmodeled best by
the variables of the previous crop and oat variety, and indicated the
importance of exploring crop rotation in future studies. Another study
investigated the prevention and control of mycotoxins in grains, and
emphasized the importance of matching crop varieties to a specific agro-
ecological zonewith specificweather conditions24, indicating thenecessity of
linking weather data to the crop variety for model development. In our
study, we used weather factors and relevant agronomical and site-specific
factors asmodel inputs. Similarly to the previous studies, oat variety was the
non-weather feature that had the highest impact on the model output. The
comparison of model performance using weather data, with and without
agronomical and site-specific factors confirmed that, in improving the
performance of the DON predictive models, weather variables are the most
important factors, and adding agronomical and site-specific factors could
further improve the overall classification accuracy (from 0.72 to 0.73 using
dataset 1, from 0.81 to 0.95 using dataset 2). This was in line with the
expectation of a previous study which suggested that DON prediction in
oats could potentially be improved by combining weather-based risk index
outputs with agronomic factors5.

The feature impact analysis indicated that rainfall, relative humidity,
and wind speed in different oat growing stages as well as oat variety and
elevation were the most important features for predicting DON con-
tamination levels in oats. In general, weather variables (e.g., temperature,
rainfall) in December of the previous year, weather variables (e.g., relative
humidity, wind speed) around end of June (close to flowering season), and

Fig. 3 | Prediction results using the combined data of weather, crop variety,
agronomical, and site-specific features. The confusion matrix (upper) presents
internal model validation results using the test dataset (2016–2017) to predict the

contamination levels (low contamination, medium contamination, high con-
tamination) of DON in oats in Sweden during 2016 and 2017.
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Fig. 4 | Feature average impact ranking (top 20) using the dataset 2 for FS-model.
Figure shows the overall average impact (a), the directionality (positive or negative)
of impact on the low contamination level (b), the directionality of impact on the
medium contamination level (c), and the directionality of impact on the high

contamination level (d). The feature is indicated on the y-axis and the SHAP value of
it is shown on the x-axis. Positive SHAP values represent the positive impact on the
contamination level, negative SHAP values represent the negative impact on the
contamination level.
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weather variables (e.g., relative humidity, temperature) around August
(week 31, 32 and 33 close to harvest season) were the most important
features (Fig. 3). These results are in line with Hjelkrem et al.,1 who showed
that dry periods during germination (March to April) contribute to high
DON contamination of oats, and warm, rainy and humid weather around
flowering contributed to high DON accumulation in oat. Marzec-Schmidt,
et al.12 also confirmed that high relative humidity and precipitation around
flowering correlated with high DON contamination levels in oat. Interest-
ingly, the site-specific characteristics associated with high DON con-
tamination levels in our study, high elevation and sandy soils, is related to
dry conditions which may indicate that draught stress might have been
important in the data set from 2016–2017.

A previous study applied differentmodels, including statistical analysis
and machine learning techniques, for DON prediction in oats, resulting in
different model performances16. Their results showed that very little of the
variation in DON levels could be explained by agronomical or weather
factors, and it was not possible to predict DON levels based on these vari-
ables. This low model performance could have been caused by the unba-
lanceddata related toDONcontamination,meaningonly a few recordswere
related to high DON values, and most of the records were related to low
DON values. Poor model performance for predicting high mycotoxin
contamination levels due to unbalanced datasets has also been encountered
in other studies19,25. Their results showed that the developed models have
higherperformance forpredicting the sampleswith low-level contamination
than for the samples with high-level contamination. Our study applied a
machine learning technique (the random forest algorithm) to handle
unbalanced data, resulting in a relatively balanced classification accuracy in
each DON contamination level (high, medium, low). Detailed model per-
formancediscussion refer to supplementary:Modelperformancediscussion.

Our study had several limitations as we were not able to include all
biologically relevant factors for predicting deoxynivalenol (DON) due to

insufficient data on those factors. These factors include crop management
practices, such as fertilization, irrigation, and pest control2, the use of fun-
gicides against Fusarium spp. around flowering25–27 and the harvest condi-
tions (such as timely harvest). Future studies could explore data collection
on these factors, followed by including these variables to enhance model
performance, alongwith leveraging open-sourcedata like satellite imagery28.
Additionally, our study focused solely on DON contamination in oats,
omitting consideration of other mycotoxins; future research could expand
to predict multi-mycotoxin contamination if more data on the presence of
other mycotoxins in oats becomes available.

It can be concluded that the use of machine learning algorithms for
DON prediction in oats, using contamination levels at the regional level in
Sweden provides good prediction results when considering several years.
Unfortunately, the models were not general enough to manage to predict
DON-levels from individual years not included in the training of themodel,
i.e., model performance did not as high as internal validation when do
external validation using leave one year out approach. One reason for this
discrepancy could be the variability in DON contamination levels observed
across the years studied. Given these fluctuations, it might be advantageous
to adopt a simplified approach using two risk levels—above or below a
specified threshold..Moreover, the diverse fungiwithin the Fusaria complex
underscores the complexity of predicting mycotoxin levels in oats. Such
models could be used as regional risk-assessment tools for farmers, crop
collectors, and food safety inspectors for logistics in the oats supply chain,
improved mycotoxin control, and risk-based testing. Given EC regulation
2017/625, food safety authorities need to apply risk-based control. Pre-
dictive models can assist in this process by guiding authorities to allocate
more intensive sampling and testing efforts to regions withmedium to high
levels of DON contamination. This targeted approach ensures that
resources are effectively prioritized where contamination risks are higher.
Collectors and food safety authorities of oats can also use the model

Fig. 5 | Feature dependency analysis for weather features (dataset 2) for the FS-
model. Feature dependency of average rainfall in December (“NED_MAVE”, 12)
and average maximum temperature in the beginning of August (“HTEMP_AVE”,
32) on the impact of the low, medium, and high contamination levels. The value of

the feature is shown on the x-axis and the SHAP value is shown on the y-axis.
Positive SHAP values represent the positive impact on the contamination level,
negative SHAP values represent the negative impact on the contamination level.
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predictions for deciding on testing frequencies, and they can use the pre-
dictions for routing and logistics in their oats supply chain.

Materials and Methods
Three models were developed as regional risk-assessment tools to be used
by, farmers, crop collectors, and food safety inspectors, respectively. To
provide a timely forecast of DON contamination for the different user
groups, the three models aimed to provide the regional DONpredictions at
three different times during the oats vegetation period: i) SS-model: Start of
SeasonmodelNov 1 to June 1), whichwould allow for recommendations on
crop protection activities, such as using fungicides29, for farmers, ii) MS-
model: Mid-Season model (Nov 1 to July 1), which would allow for
recommendations on sampling strategies and as an early warning con-
cerning regional differences for crop collectors and food safety inspectors,
and iii) FS-model: Full Seasonmodel (Nov1 toAug15), as compared toMS-
model, the FS-model includes full season data to allow for a more reliable
indication on how to plan for sampling strategies. In each of the three
models, the predictions of DON contamination levels were provided into

one out of three levels of: low (<500 μg/kg), medium (≥500 μg/kg, and
<1000 μg/kg), and high (≥1000 μg/kg). The thresholds was set lower than
the EU regulation (1750 μg/kg) to provide amore conservative and cautious
approach to managing DON contamination.

Weather factors and relevant agronomical and site-specific factors
were used as model inputs. The weather features were selected as the
monthly average from November to April and the weekly average from
May to August. The reason for using more detailed information from
May to August is that this is the period from oats stem elongation to
harvest, when oats are known to be more sensitive to fungal infection1,2.
The other input factors were selected since they are known to be relevant
to the DON contamination of crops, including the oats variety, crop
rotation, and other agronomical features30–32; and site-specific factors
such as soil type and elevation16,27. For example, crop variety influences
the susceptibility of crops to abiotic factors, such as drought stress, that
favor fungal growth and ultimately mycotoxin contamination23. Crop
rotation has an impact on DON contamination in grain due to the fact
that Fusarium spp. contaminated debris from the earlier crop can

Fig. 6 | Feature dependency analysis for agronomic features (dataset 2) for the FS-model.The feature dependency of the oats variety BELINDA,GALANT, andKERSTIN
on the impact of the low, medium, and high DON contamination levels.
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survive on the soil surface for a long period and act as a reservoir for
contamination30–33.

Data
This study used DON contamination data, weather data, agronomical data
and site-specific data, in Sweden. These data were selected for the period
Nov 1 of the previous year to August 15 of the current oat growing year, to

include all relevant stages of fungal infection and DON contamination of
spring oat. Data were firstly pre-processed (see section related to each
dataset below) and then linked together into one dataset based on the grid
(11 × 11 km), year, and crop variety (Fig. 8). Data from the period Nov 1 to
June 1 were used for developing the Start of Season (SS) model; the period
Nov 1 to July 1 for developing the Mid-Season (MS) model; and data from
the period Nov 1 to Aug 15 for the Full Season (FS) model. Then, two types

Fig. 7 | Feature dependency analysis for site-specific features (dataset 2) for the FS-model. Figure shows examples of the feature dependency of the elevation and soil type
on the impact of the low, medium, and high DON contamination levels.
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of datasets were composed using different input variables separately for
modeling. Dataset 1: weather and crop variety variables from the years
2012–2019. Dataset 2: weather, crop variety, agronomical and site-specific
variables from the years 2016–2017. Agronomical and site-specific variables
were only available for the years 2016–2017.

DON contamination data
Data related to DON concentration in spring oats include 8 years (2012-
2019) of monitoring results from oats grown in Sweden (54350 records in
total) at the grid level (11 km × 11 km). These data were derived from
analyses of oats delivered to Lantmännen elevators in Sweden. Three
contamination levels were set: low (82% records) (<500 μg/kg), medium
(9% records) (≥500 μg/kg and <1000 μg/kg), and high (8% records)
(≥1000 μg/kg). These settings were chosen from a practical farming point
of view; with a DON concentration below 500 un/kg, there is no need for
farmers to take any actions, whereas with DON concentrations above
1000 ug/kg, farmers are recommended to always consider spraying or to
check the level by taking out a reference sample. The variety was known
for most of the samples, and the following varieties were occurring and
used as input group variables: Belinda, Ingeborg, Galant, Guld, Symph-
ony, Fatima, Kerstin and Matilda. Furthermore, one group called Feed
oats (that could be different varieties) was also recorded as well as one
group for which the variety had not been specified. Whether the oats was
grown for feed or food use; if it was organically cultivated (EKO) or not;
and mean DON value of the previous year in the same grid were used as
model input variables. Mean DON values represented the average values
of DON concentrations of each oats variety group in the particular grid in
each year, provided the number of oat deliveries of that variety group was
more than 10 in that particular grid in that year. DON contamination
levels were used as a model output variable and were defined based on the
mean values ofDONconcentrationper regionper year. 31%of the records
referred to DON concentrations that were below limits of quantification
(LOQ = 100 μg/kg) of analytical methods used (Ridascreen ELISA or
Charm Later Flow Devices had been used for analyzing DON contents);
4% of the records referred to DON concentrations that were above
maximum legal limits in foodstuffs (1750 μg/kg), and; 0.2% of the records
were above maximum legal limits in feed (8000 μg/kg).

Weather data
Weather data include 8 years (2012–2019) of weather features in Sweden at
grid level (11 km × 11 km). These data were derived from the Swedish
Meteorological and Hydrological Institute (SMHI). Selected variables
included the maximum air temperature (°C) (HTEMP), minimum air
temperature (°C) (LTEMP), mean air temperature (°C) (XTEMP), rainfall
(mm) (NED), mean relative humidity (%) (XHUM), minimum relative
humidity (%) (LHUM), maximum relative humidity (%) (HHUM), wind

speed (km/h) (XVH), wind direction (XVR), and global radiation (kWh/
m²) (XM). Weekly mean values and weekly sum values per grid of the
above-mentioned weather features were calculated in different oat growing
periods for the development of three prediction models: SS-model (week
18–21), MS-model (week 18–26), and FS-model (week 18–33). In addition,
monthly mean values and monthly sum values per grid of the above-
mentioned weather features from Nov 1 of the previous year to April 30 of
the current year were calculated and added to the three models.

Agronomical and site-specific data
Agronomical and site-specific data include 2 years (2016–2017) of agro-
nomical features in Sweden at oat field level aggregated to the grid level
(11 km×11 km).These datawere derivedby linking the oatsdeliveries from
one producer to the fields at which oats had been grown by that producer
that year, and that geographical information. Data were extracted from
several sources, and then linkedwithDONcontamination levels per gridper
year (11 km× 11 km). The derived variables included: oats variety; year; the
value range and mean value of clay, sand, and elevation; the percentage of
oat, ley, other cereals except for oat; andother crops grown in thefields in the
previous year (pre-crop); and two years before (pre-pre crop). Information
on pre-crops was extracted from the Land Parcel Identification System
Maps provided by the Swedish Board of Agriculture. Elevation data were
extracted froma2×2mdigital elevationmodel in raster format providedby
Lantmäteriet (Swedish National Survey, Gävle, Sweden) and soil texture
information was extracted from a digital soil mapping of arable land in
Sweden34.

Data split for model training and validation
Figure 9 shows the model development steps using dataset 1 and dataset 2.

For dataset 1, records from the years 2012–2019 (except 2016) were
split randomly into a training set (80%) for model learning, and a test set
(20%) for internal model validation. Data from the year 2016 were used for
external model validation only. The reason is that the distribution of DON
contamination levels in the year 2016 was close to the average of the year
2012–2019. The predicted model results for the test set were graphically
compared with the measured (observed) mycotoxin data to visualize the
model prediction ability.

For dataset 2, records were split randomly into a training set (80%) for
model learning, and a testing set (20%) for internal model validation.
Because agronomical and site-specific data were only available in the year
2016 and 2017, no external validation was conducted here.

In addition, to test the importance of adding other features to weather
data in promoting the model’s predictive accuracy, for each dataset, the
model performance was compared when using weather features only and
whenusingweatherwith agronomical and site-specific features (the result of
this comparison is added in the supplementary).

Fig. 8 | Data linking from three datasets. Three datasets, related to DON con-
tamination, agronomical and site-specific features, and weather features in three
different periods (SS-model (Nov 1–June 1), MS-model (Nov 1–July 1), and FS-

model (Nov 1–Aug 15)) were linked per grid cell in Sweden (11 km× 11 km grid) for
each year and each crop variety.Note that the site-specific data are not collected grid-
wise, but field-wise.
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Predictive model
Amachine learning module was developed to predict the contamination of
DON in oats at the grid level in Sweden, in three levels for the likelihood of
contamination (low, medium, high) using above-mentioned variables as
input. A random forest (RF) algorithm was applied because RF can auto-
matically handle missing values, can efficiently handle non-linear para-
meters, is comparatively little impacted by noise, is robust to outliers and
new data, avoids overfitting, is able to deal with unbalanced data, and is
widely used to deal with spatial data35. Python (version 3.9) programming

language and data analysis library Scikit-learn (version 1.0) were used.
Confusion metrics, classification accuracy, and generalization ability were
used as evaluation criteria to evaluate the performance of the predictive
model36 (Fig. 10). Confusionmetrics reflected actual values on one axis and
predicted values on another. Classification accuracy for each level and total
classification accuracy reflected themodel performance on each level and all
levels. Generalization ability reflects the model’s capability to adapt and
react properly to previously unseen, new data. In this study, we performed
five-fold cross-validation for model training (hyperparameter tuning)37.

Fig. 9 |Data splitting formodel training and validation.Dataset 1 contains records from the years 2012-2019 linking weather data and crop variety data. Dataset 2 contains
records from the years 2016–2017 because agronomical and site-specific data were only available in the year 2016 and 2017.

Fig. 10 | Model performance evaluation. Confusion metrics, classification accuracy, and generalization ability were used to assess the predictive model’s performance.
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A predictive model was first trained on dataset 1, and model perfor-
mances were evaluated based on the above-mentioned aspects. Then, fol-
lowing the same model development procedure, we trained the predictive
model on dataset 2 to analyze the importance of weather features, agro-
nomical features and site-specific features.

The feature impact of the input variables of the developed models was
analyzed and sorted. Tree SHAP (SHapley Additive exPlanations) algo-
rithm was used to perform the feature impact analysis38. Tree SHAP allows
interpreting predictionsmade by often complex black boxmachine learning
algorithms. Feature impact provides (often desirable) interpretation of the
model input variables’ contribution towards the model prediction and
highlights the positive and negative impact of such variables for identifying
different contamination levels of DON contamination.

Data availability
The data presented in this study are not available due to DON con-
tamination data are highly sensitive for the individual farmers.

Code availability
The code used in this study is available upon request.
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