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Abstract: Red clover (Trifolium pratense) is a perennial forage legume wildly used in temperate re-
gions, including northern Europe. Its breeders are under increasing pressure to obtain rapid genetic 
gains to meet the high demand for improved forage yield and quality. One solution to increase 
genetic gain by reducing time and increasing accuracy is genomic selection. Thus, efficient genomic 
prediction (GP) models need to be developed, which are unbiased to traits and harvest time points. 
This study aimed to develop and evaluate single-trait (ST) and multi-trait (MT) models that simul-
taneously target more than one trait or cut. The target traits were dry matter yield, crude protein 
content, net energy for lactation, and neutral detergent fiber. The MT models either combined dry 
matter yield with one forage quality trait, all traits at one cut, or one trait across all cuts. The results 
show an increase with MT models where the traits had a genetic correlation of 0.5 or above. This 
study indicates that non-additive genetic effects have significant but varying effects on the predic-
tive ability and reliability of the models. The key conclusion of this study was that these non-addi-
tive genetic effects could be better described by incorporating genetically correlated traits or cuts. 

Keywords: GBLUP; genomic prediction; genomic selection; longitudinal genomic prediction 
model; multi-trait genomic prediction model; pool-seq; red clover 
 

1. Introduction 
Forages are among the main crops grown in the Nordic Region of Europe and are 

commonly grown as a mixture of grasses and legumes. One of the major forage legumes 
is red clover (Trifolium pratense), which is highly valued because of its high protein content 
and multiple ecological services [1,2]. (Red clover is a diploid species (2n = 14 chromo-
somes) with a genome size of 420 Mbp [3]. However, tetraploid genotypes have been de-
veloped via chemical treatment, which later were developed into tetraploid cultivars 
through further breeding [4]. Crossing between diploids and tetraploids is possible but 
with a low success rate [5]. Tetraploids have a higher biomass yield and higher persistence 
and resilience than diploids, but their seed yield is lower [6,7]. Because of differences in 
genetics and target traits for breeding, tetraploids and diploids are bred under different 
breeding programs. Additionally, red clover populations that significantly differ in their 
rate of maturity are usually bred under different breeding programs, as red clover is 
highly affected by growing conditions such as temperature variations across and between 
seasons [8]. However, population genetics research shows that there was a lack of popu-
lation structure within the separate breeding programs [9,10]. 

Despite the crop’s significance, new red clover cultivars with improved forage yield 
and nutritional quality have not been adequately developed to meet increasing demands. 
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Current breeding programs largely rely on solely phenotypic data to select desirable par-
ents for breeding. This approach is time-consuming, as red clover is a perennial crop and 
complete phenotypic evaluation takes several years. Hence, the process of developing a 
new cultivar from the first crossing to market introduction can take over 20 years [11]. By 
introducing genomic selection, generation time can be reduced significantly compared 
with the progeny testing-based method. This increases genetic gain per given time [12]. 

Implementing genomic selection in forage crops is not without challenges [13]. One 
major hurdle in red clover is its outcrossing nature. Hence, developing inbred lines is im-
possible because of strong self-incompatibility [14]. Thus, the genetic makeup of popula-
tions is of higher interest than that of individuals. 

Futschik and Schlötterer [15] showed that sampling a number of individuals from a 
population and sequencing them as one sample, a method referred to as “pool-seq”, gave 
a better estimate of population-wide allele frequency than individual sequencing carried 
out at the same price point. Each pool consists of an equal amount of leaf tissue that is 
treated as one sample through DNA extraction, sequencing, and variant calling. The ra-
tion between reads is proportional to the allele frequency in the pooled individuals and is 
used as an estimate of population-wide allele frequencies. 

Generating genomic data can therefore be performed at the population level, and the 
allele frequency can be used to model additive genetic variance. Genomic predictions on 
single traits have been successfully performed using additive models with allele frequen-
cies as genetic input data for both red clover [16,17] and ryegrass [18]. 

To the best of our knowledge, genomic prediction (GP) models in red clover have 
only been used to predict traits independently or as a summary across one or multiple 
years [17,19] (Nay et al., 2023, Skøt et al., 2024). Though total forage yield is the overall 
goal, the difference in forage yield between cuts is important as red clover is grown to-
gether with other crops and there is an interest in having equal ratios of crops within the 
forage silage. The difference in cuts across seasons is a measurement of persistence, a key 
trait for northern cultivars. Additionally, developing red clover cultivars with high forage 
quality traits is critical because forage quality has significant impacts on livestock health 
and performance. However, forage quality traits are often negatively correlated with bio-
mass yield [20]. Hence, a better understanding of the correlation between desirable traits 
is crucial in forage improvement programs. However, studies of this nature are often 
deprioritized because of high analysis costs, lack of agreement on more significant attrib-
utes, and multiple competing goals. In this study, forage yield was measured as dry matter 
yield per plot, which is the main target trait in red clover breeding. 

The forage quality traits targeted in this study were crude protein content, net energy 
for lactation (NEL), and neutral detergent fiber (NDF). NEL is an estimation of how much 
of the absorbed energy from the feed goes to lactation. NDF is an estimate of the fiber 
content of the feed, primarily cellulose, hemicellulose, and lignin, compounds that are 
only partially digested. Hence, a higher level of NDF lowers the level of available calories, 
NEL, in the feed. High NDF may suggest more stems than leaves [21]. This is because 
leaves usually contain higher protein concentrations. Agriculturally beneficial traits, such 
as yield and quality, are often multi-genic traits. They are controlled by many genes and 
DNA motifs located at various independent loci throughout the genome. These are called 
quantitative trait loci (QTL). Quantitative genetics aims to map and describe the effects of 
QTL within and between populations. This is accomplished by describing the observed 
variance in the phenotype as a sum of the genetic variance, the environmental variance, 
and the variance due to genotype-by-environment interactions at a trial site or in the na-
tive environment. 

𝑃𝑃 =  𝐺𝐺 +  𝐸𝐸 + 𝐺𝐺 × 𝐸𝐸  

This simple formula by Falconer and Mackay [22] lays the ground for breeding. The 
goal here is to estimate the genotype parameter (G) using phenotype data (P), an environ-
mental effect (E), and any interactions between the genotype and environment (G × E) so 
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that new phenotypes can be estimated using only G and E information. In genomic selec-
tion (GS), kinship information, which is often based on marker information, is used to 
estimate G. Thus, fewer experiments, such as replicated field trials, are needed to estimate 
the relationship between G and E. Furthermore, the introduction of GS can significantly 
reduce the time needed to develop a cultivar by substituting decisions based on pheno-
typic information with decisions based on genomic information. This significantly short-
ens evaluation times. GS can be performed using either a few markers associated with a 
specific trait (marker-assisted selection, MAS) or many markers across the genome to pre-
dict genetic breeding values (genomic prediction, GP). GP is built on models that utilize 
DNA marker information to predict genotypic values via best linear unbiased prediction 
models (BLUP). Mixed linear models can account for both fixed and random effects. 
Hence, it corrects for variation across trials and variation in residuals for within-trial spa-
tial effects in addition to estimating genotypic effects. 

Prediction models that add genetic marker data in the form of a kinship or genetic 
relationship matrix (GRM) are referred to as GBLUP. These models can be univariate (one 
response) or multivariate (two or more responses). Multivariate models, also called multi-
trait models (MT), have the advantage of enhancing prediction accuracy as they “borrow” 
information on genetic relationships between individuals using genetic correlations be-
tween traits. Nonetheless, this depends on estimates of the genetic correlation between 
the traits. MT models have been successfully implemented in a variety of crops, such as 
wheat and potato [23,24], in which the increase in accuracy was attributed to the correla-
tion between traits. Models based on the measurement of a single trait across different 
time points are referred to as longitudinal models. As with MT models, the correlation 
between time points is utilized for increased predictive ability in longitudinal models. 

This study aimed to compare ST and MT models to examine the potential of MT 
models for increasing the prediction accuracy of key traits in red clover breeding. 

2. Materials and Methods 
2.1. Plant Material 

This study used 488 red clover breeding accessions from the Swedish agricultural 
company Lantmännen (Sweden) and 44 accessions from NordGen (Nordic Genetic Re-
sources Center, Alnarp, Sweden). Lantmännen accessions consisted of cultivars, and full 
or half-sib F2 families as well as synthetic populations. NordGen accessions were com-
posed of wild populations, landraces, and cultivars. In total, 532 accessions were used for 
genotyping and field trial-based phenotyping. 

2.2. Planting, Sampling, and DNA Extraction 
Seeds of each accession were planted in a greenhouse at the Swedish University of 

Agricultural Sciences (SLU), Department of Plant Breeding, Alnarp, for DNA extraction. 
For planting, 50-cell (5 × 10) plastic seedling trays filled with soil were used. Leaf tissue 
was sampled from the first true leaf of a two-week-old seedling. The leaf tissue samples 
were collected using a BioArk leaf collection kit from LGC Biosearch Technologies. Two 
leaf discs were sampled with a 2 mm punch from 200 individuals per accession and pooled 
into a well in a 96-well sampling plate. Hence, each accession was represented by a single 
pool of 400 leaf discs from 200 seedlings. Following leaf collection, DNA was extracted 
from each pool and genotyped at LGC Biosearch Technologies (Berlin, Germany). A 
Sbeadex plant kit was used to extract high-quality genomic DNA for genotyping. 
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2.3. Genotyping-by-Sequencing (GBS) and Read Pre-Processing 
A GBS library was constructed using PstI (5′-CTGCA/G-3′, a six-base cutter) and MseI 

(5′-T/TAA-3′, a four-base cutter) restriction enzymes as recommended by LGC Biosearch 
Technologies. By combining PstI-MseI, it was possible to obtain a fragment size distribu-
tion suitable for sequencing on Illumina platforms with a mean insert size of about 180 
bp. A 150 bp paired-end GBS was performed on Illumina NextSeq 500/550 v2 and No-
vaSeq 6000 NGS platforms to generate the reads. After sequencing, multi-step read pre-
processing was performed. The base calls were demultiplexed into FASTQ files according 
to their barcodes using Illumina’s bcl2fastq 2.17.1.14 software, and their enzyme re-
striction sites were verified. A subsequent step involved clipping sequencing adapter rem-
nants from all reads and discarding reads with a final length below 20 bases and those 
that contained mismatching restriction enzyme sites. Then, reads were trimmed to achieve 
a minimum Phred quality score of 20 for a window of ten bases. Following this, FastQC 
reports of all FASTQ files were developed and read counts of all samples were generated. 

2.4. Read Alignment and SNP Discovery 
A combined alignment of high-quality reads of all samples against the red clover 

reference genome [25]in coordinate-sorted BAM format was performed with BWA-MEM 
version 0.7.12 [26]. Following this, variant discovery and genotyping of samples was per-
formed with Freebayes v1.0.2-16 [27]. The specific parameters for variant discovery and 
genotyping included a base quality of at least 10, a read mismatch limit of 3, coverage of 
at least 5, an allele count of at least 4, and a ploidy of 2 or 4. The variants, SNPs, were then 
filtered for a read count of at least 50, a minimum allele frequency of 5%, and observations 
in at least 50% of the accessions. 

2.5. Field Trials and Phenotyping 
The 532 accessions were established in an augmented design-based field trial across 

three locations in Sweden, of which 528 accessions (352 diploids and 176 tetraploids) were 
non-replicated and 4 were used as checks. The checks included two diploid cultivars (SW 
Ares and SW Yngve) and two tetraploid cultivars (Vicky and Peggy). The 528 accessions 
were split into three subsets based on their ploidy level and maturity time. Diploid acces-
sions were grouped into late-maturing type and middle-late-maturing type depending on 
their flowering time points. Because of differences in growing conditions, such as differ-
ences in temperature and daylength within and across seasons, late-maturing and middle-
late-maturing diploids needed to be separated into two data sets. The late-maturing dip-
loids (176 accessions) were sown at two locations in northern Sweden: Ås (63°14′51.7″ N 
14°33′45.9″ E) and Lännäs (63°09′46.3″ N 17°39′31.0″ E). The middle-late-maturing dip-
loids (176 accessions) were sown at the following locations in southern Sweden: Rådde 
(57°36′20.628″ N, 13°15′8.532″ E) and Svalöv (55°55′20.2″ N 13°07′16.4″ E). The tetraploids 
(176 accessions) were sown at three locations covering northern and southern Sweden 
(Lännäs, Rådde, and Svalöv). For simplicity, the three subsets are hereafter called late dip-
loids, middle-late diploids, and tetraploids. 

The augmented design-based trial for each subset at each location was composed of 
four blocks of 52 plots each. In each block, 44 accessions (non-replicated) and two of the 
four checks (according to their ploidy level), each replicated four times (44 + (2 × 4) = 52), 
were sown. Sowing was performed at a seeding rate of 800 seeds/m2 for diploids and 740 
seeds/m2 for tetraploids, which is a standard rate for red clover in this area. The trials were 
established in the spring of 2020 at all locations. The field trials were managed with stand-
ard methods for sowing, harvesting, fertilizing, and pest management according to the 
protocols of the trial sites. The trial was fertilized in spring after each harvest. The fertilizer 
applied contained phosphorus and potassium but not nitrogen. Weed management was 
performed as standard with spray application using the appropriate active substance and 
timing for the specific weed, which was specific to each trial site. The first biomass harvests 
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were conducted in mid-June in Svalöv, mid-to-late June in Rådde and Lännäs, and late 
June in Ås in 2021. These were according to the regular forage harvesting time and 
weather conditions for that year at each location determined by growth rate and weather 
conditions (Figure 1). The second biomass harvests were conducted in early August in 
Svalöv and Ås and in late July in Rådde and Lännäs in 2021. The third harvests were con-
ducted in late September to early October in Svalöv, in early September in Rådde, and in 
late August in Lännäs in 2021. The fourth, fifth, and sixth harvests were performed in 2022 
during the same period as the first, second, and third harvests, respectively. Harvests at 
Ås were only conducted twice per season because of the short growing season. The dry 
matter (DM) yield of each plot was estimated by collecting freshly cut samples, weighing 
them, drying them, and weighing them again. The first three harvests from all sites were 
analyzed for forage quality. Crude protein (CP) and NDF were analyzed using the NIR 
System 6500 (Foss, Hillerod, Denmark) with fg2019.eqa calibrations [28] (Association of 
German Agricultural Analytic and Research Institutes, VDLUFA, Germany). The refer-
ence method for NDF was according to Van Soest, Robertson, and Lewis [29] omitting 
amylase and sodium sulfite. 

 
Figure 1. A timeline of the cuts, where each time point is the harvest date of a cut. The points are 
colored based on the trial sites. Multiple points close together indicate that the harvest was con-
ducted per block and spanned multiple days. 

Net energy for lactation (NEL, MJ) was calculated as follows, according to GFE (2001): 

𝑁𝑁𝐸𝐸𝑁𝑁 �
𝑀𝑀𝑀𝑀
𝑘𝑘𝑘𝑘
� = 0.6[1 + 0.004(𝑞𝑞 − 57)] × 𝑀𝑀𝐸𝐸  

where 

𝑞𝑞 =
𝑀𝑀𝐸𝐸
𝐺𝐺𝐸𝐸

× 100  

where 

𝑀𝑀𝐸𝐸 �
𝑀𝑀𝑀𝑀
𝑘𝑘𝑘𝑘
� = 0.021503 × 𝐶𝐶𝑃𝑃 + 0.032497 × 𝐸𝐸𝐸𝐸 − 0.021071 × 𝐶𝐶𝐶𝐶

+ 0.016309 × 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ + 0.014701 × 𝑜𝑜𝑠𝑠𝑘𝑘𝑠𝑠𝑜𝑜𝑜𝑜𝑠𝑠 𝑠𝑠𝑟𝑟𝑠𝑠𝑜𝑜𝑟𝑟𝑟𝑟𝑟𝑟 
 

and 

𝐺𝐺 �
𝑀𝑀𝑀𝑀
𝑘𝑘𝑘𝑘

� × 0.0239 × 𝐶𝐶𝑃𝑃 + 0.0398 × 𝐸𝐸𝐸𝐸 + 0.0201 × 𝐶𝐶𝐶𝐶 + 0.0175 × 𝑁𝑁𝐶𝐶𝐸𝐸.  

The units for CP, ether extract (EE), crude fiber (CF), nitrogen free extract (NFE), 
starch, and organic residue are g/kg. An organic residue is dry matter that does not include 
crude ash, crude protein, crude fiber, or crude starch. It consists primarily of non-starch 
carbohydrates. 

2.6. Population Structure and Phenotypic Data Evaluation 
Allelic frequency data were used to calculate Nei’s standard genetic distance between 

the accessions as in Osterman et al. [10]but separately for diploids and tetraploids using 
R software v. 4.3.1 [30]. The genetic distance data were then used to construct neighbor-
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joining (NJ) trees to assess the population structure in the data using the nj() function in 
the R package adegenet [31], which was visualized using ggtree [32]. 

The phenotypic data were first corrected for environmental effects using a linear 
mixed model (more details in the next section) and then evaluated for each trait at each 
cut using principal component analysis (PCA). Any correlations between traits were illus-
trated using Pearson correlations on a heatmap with the Complex Heatmap package [33]. 

2.7. The Different Models 
All models were based on the additive linear mixed model 

𝒚𝒚 = 𝑿𝑿𝑿𝑿 + 𝒁𝒁𝒁𝒁 + 𝜀𝜀  

where y is a n × 1 vector of responses, where n is the number of observations in the model. 
For the single-trait model, n corresponds to the number of accessions, while for the multi-
trait and longitudinal models, n is the number of accessions times the number of traits/cuts 
tested. On the right-hand side are the fixed effects β and random effects u as well as a 
residual Ɛ, for which 

�𝑟𝑟𝜀𝜀�~𝑁𝑁��00� , �
𝑮𝑮(𝝈𝝈𝑔𝑔𝟐𝟐) 0

0 𝑹𝑹𝑣𝑣(𝝈𝝈𝑟𝑟𝟐𝟐)
��  

Hence, u and Ɛ are normally distributed with a mean of 0 and a variance of G, as a 
function of genetic variance (𝝈𝝈𝑔𝑔𝟐𝟐) and R as a function of residual variance (𝝈𝝈𝑟𝑟). X and Z 
are index matrices connecting fixed and random effects to each observation. They contain 
the same number of rows as there are records and the same number of columns as there 
are effects minus one (since the first effect is treated as the intercept). The LMM’s system 
of equations is then solved using Henderson’s MME as 

�𝑿𝑿′𝑿𝑿 𝑿𝑿′𝒁𝒁
𝒁𝒁′𝑿𝑿 𝒁𝒁′𝒁𝒁 + 𝑮𝑮−1𝑘𝑘� �

𝑿𝑿
𝒁𝒁� =  �𝑿𝑿′𝒚𝒚𝒁𝒁′𝒚𝒚�  

where X and Z are the index matrices above, G is the genetic relationship matrix as the 
realized additive genetic relationship matrix, and 𝑘𝑘 = 𝜎𝜎𝑒𝑒2

𝜎𝜎𝑔𝑔2
 is estimated from REML when 

fitting the LMM. The system of equations can be solved for Best Unbiased Linear Estimate 
(BLUE) for the fixed effects or Best Linear Unbiased Predictor (BLUP) for the random ef-
fects as 

𝑿𝑿 = (𝑿𝑿′𝑽𝑽−1𝑿𝑿) − 𝑿𝑿′𝑽𝑽−1𝒚𝒚  

and 

𝒁𝒁 = 𝜎𝜎𝑔𝑔2𝑮𝑮𝒁𝒁′𝑽𝑽−1(𝒚𝒚 − 𝑿𝑿𝑿𝑿)  

where 

𝑽𝑽 = 𝜎𝜎𝑔𝑔2𝒁𝒁𝑮𝑮𝒁𝒁′ + 𝜎𝜎𝑒𝑒2𝑰𝑰  

This study used five different models, one to correct the phenotypic values based on 
environments and local spatial effects and one to determine Genomic Estimated Breeding 
Values (GEBVs). Step 1 adjusted the phenotypic values for any environmental variance 
and G × E variance to obtain the genotypic values. This was performed by setting the gen-
otypes as fixed effects and the random effects as 

Σ𝑢𝑢 = Σ𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + Σ𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙⨂Σ𝑏𝑏𝑙𝑙𝑙𝑙𝑙𝑙𝑏𝑏 + Σ𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙⨂Σ𝑟𝑟𝑙𝑙𝑟𝑟 + Σ𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙⨂Σ𝑙𝑙𝑙𝑙𝑙𝑙𝑢𝑢𝑐𝑐𝑙𝑙 + Σ𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙⨂Σ𝑔𝑔𝑒𝑒𝑙𝑙𝑙𝑙𝑙𝑙𝑔𝑔𝑔𝑔𝑒𝑒  

with each term having a homogenous variance as 

Σ = �𝜎𝜎𝑙𝑙𝑖𝑖2 � ∶  �
𝜎𝜎𝑙𝑙𝑙𝑙 ∀𝑜𝑜

𝜎𝜎𝑙𝑙𝑖𝑖 = 𝜎𝜎𝑖𝑖𝑙𝑙 𝑜𝑜 ≠ 𝑗𝑗�   
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From the model, the best linear unbiased estimators (BLUEs), one for each accession, 
were calculated and used as responses in the following models. The other four models 
were single-trait (ST), single-trait-longitudinal (STL), multi-trait with two traits considered 
simultaneously (MT1), and multi-trait with four traits considered simultaneously (MT2). 

Step 2 depended on the model structure, where the ST had a random variance of 
Σ𝑔𝑔𝑒𝑒𝑙𝑙𝑙𝑙𝑙𝑙𝑔𝑔𝑔𝑔𝑒𝑒 with a given variance structure as a Gaussian kernel, which was defined as the 
covariance between two subjects 𝑆𝑆𝑙𝑙 and 𝑆𝑆𝑖𝑖 as 

𝑘𝑘�𝑆𝑆𝑙𝑙 , 𝑆𝑆𝑖𝑖� = exp�−
�𝑆𝑆𝑙𝑙 − 𝑆𝑆𝑖𝑖�

2

𝜌𝜌
� ; 𝜌𝜌 > 0  

ρ was estimated by visual optimization so that the matrix values spanned 0 to 1 and 
a heatmap showed some clustering patterns. The resulting covariance matrix was used as 
the GRM. 

The STL model had a fixed effect partitioned for the different cuts, i.e., time points as 
𝛽𝛽 = �𝛽𝛽1,𝛽𝛽2, … ,𝛽𝛽𝑙𝑙� with c equaling 4 (2 cuts per year) for the late diploids and 6 (3 cuts per 
year) for the middle-late diploids and the tetraploids when yield was the response. For a 
forage quality trait, c was halved since those data were only measured during the first 
year. The random effects were 

Σ𝑢𝑢 = Σ𝑔𝑔𝑒𝑒𝑙𝑙𝑙𝑙𝑙𝑙𝑔𝑔𝑔𝑔𝑒𝑒 + Σ𝑔𝑔𝑒𝑒𝑙𝑙𝑙𝑙𝑔𝑔𝑔𝑔𝑒𝑒⨂Σ𝑙𝑙𝑢𝑢𝑙𝑙  

where Σ𝑔𝑔𝑒𝑒𝑙𝑙𝑙𝑙𝑙𝑙𝑔𝑔𝑔𝑔𝑒𝑒 is the GRM variance structure and Σ𝑙𝑙𝑢𝑢𝑙𝑙 has a factor analytical model 

Σ𝑙𝑙𝑢𝑢𝑙𝑙 = ΓΓ′  

in which Γ(𝜔𝜔×𝑏𝑏) is a matrix of loadings, ω is the number of cuts, and k is the factor rank, 
where k = 2. The residuals were partitioned over each cut and modeled as 

Σ𝜀𝜀 = Σ𝑢𝑢𝑙𝑙𝑙𝑙𝑙𝑙𝑢𝑢⨂Σ𝑙𝑙𝑢𝑢𝑙𝑙  

The MT1 model was modeled between the yield and one forage quality trait at a single 
time point. The fixed effect was partitioned into two, one for each trait. The variance model 
was 

Σ𝑢𝑢 =  Σ𝑔𝑔𝑒𝑒𝑙𝑙𝑙𝑙𝑙𝑙𝑔𝑔𝑔𝑔𝑒𝑒 + Σ𝑔𝑔𝑒𝑒𝑙𝑙𝑙𝑙𝑔𝑔𝑔𝑔𝑒𝑒⨂Σ𝑙𝑙𝑟𝑟𝑙𝑙𝑙𝑙𝑙𝑙  

where Σ𝑔𝑔𝑒𝑒𝑙𝑙𝑙𝑙𝑙𝑙𝑔𝑔𝑔𝑔𝑒𝑒 is the GRM variance structure and Σ𝑙𝑙𝑟𝑟𝑙𝑙𝑙𝑙𝑙𝑙 has a heterogeneous covariance 
structure as 

Σ𝑙𝑙𝑟𝑟𝑙𝑙𝑙𝑙𝑙𝑙 =  �𝜎𝜎𝑙𝑙𝑖𝑖� ∶  �𝜎𝜎𝑙𝑙𝑙𝑙 =  𝜎𝜎𝑙𝑙2 𝑜𝑜 = 1, …  𝜔𝜔
𝜎𝜎𝑖𝑖𝑙𝑙 = 𝜎𝜎𝑙𝑙𝑖𝑖 𝑜𝑜 ≠ 𝑗𝑗 �  

in which ω = 2 and i = 2. The residuals were considered independent. However, for the 
MT2 model, the increase in the number of traits made it possible to model residuals per 
trait as 

Σ𝜀𝜀 = Σ𝑢𝑢𝑙𝑙𝑙𝑙𝑙𝑙𝑢𝑢⨂Σ𝑙𝑙𝑟𝑟𝑙𝑙𝑙𝑙𝑙𝑙  

The MT2 model was formulated as MT1 except ω = 4 and i = 4. The development and 
final selection of all the above models were based on Akaike information criterion (AIC) 
and Bayesian information criterion (BIC) as well as having residuals that fulfilled the cri-
teria of 𝜀𝜀~𝑁𝑁(0,𝜎𝜎𝑟𝑟2). 

2.8. Predictive Ability and Reliability 
The genetic variation was estimated as 

𝜎𝜎𝑔𝑔2 = 𝜎𝜎𝑔𝑔𝑒𝑒𝑙𝑙𝑒𝑒𝑙𝑙𝑙𝑙𝑙𝑙2 + 𝜎𝜎𝑔𝑔𝑒𝑒𝑙𝑙𝑒𝑒𝑙𝑙𝑙𝑙𝑙𝑙:𝑙𝑙𝑟𝑟𝑙𝑙𝑙𝑙𝑙𝑙
2  

where 𝜎𝜎𝑔𝑔𝑒𝑒𝑙𝑙𝑒𝑒𝑙𝑙𝑙𝑙𝑙𝑙:𝑙𝑙𝑟𝑟𝑙𝑙𝑙𝑙𝑙𝑙
2 was specific for each trait. 
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Since the factor analytical model in STL is a correlation model, the correlation between 
cuts was recalculated to variance by multiplying the estimated correlation matrix of the 
cuts with its transpose and taking the diagonal. For MT1 and MT2, the variance was calcu-
lated from the given variance components. 

The predictions for validation and estimation of predictive ability were performed 
using 10-fold cross-validation, replicated 100 times. The predictive ability was measured 
as the Pearson’s correlation between the mean of the predicted BLUPs across all 100 iter-
ations and the corrected phenotype. 

𝑠𝑠(𝑘𝑘𝑙𝑙 ,𝑘𝑘�𝑙𝑙)2 = 1 −
𝑃𝑃𝐸𝐸𝑃𝑃(𝑠𝑠�𝑙𝑙)

𝜎𝜎�𝑔𝑔2
  

The broad-sense heritability (H2) was calculated according to Cullis et al. [34] and 
used as reliability, following the equation 

𝐻𝐻𝐶𝐶𝑢𝑢𝑙𝑙𝑙𝑙𝑙𝑙𝑢𝑢2 = 1 −
𝑃𝑃�Δ𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

2 ∗ 𝜎𝜎𝑔𝑔2
  

3. Results 
3.1. Genotyping 

The GBS resulted in a total of 3.9 billion read pairs, with an average of 7.3 million 
reads per sample. The average mapping rate of reads to the reference genome was 62%. 
All four checks and 176 tetraploids were successfully sequenced. Among the diploids, 171 
and 165 middle-late and late diploid accessions were successfully sequenced. Five middle-
late diploid and 11 late diploid accessions failed. Following all quality control and filtering 
steps, 8107 and 13,544 high-quality bi-allelic SNP markers were obtained for the diploids 
and tetraploids, respectively, and utilized for downstream analyses. Genetic values 
(BLUEs) for biomass yield and forage quality traits were estimated as the average genetic 
value across all tested sites. 

The BLUEs for each trait in each germplasm subset (late diploids, middle-late dip-
loids, and tetraploids) across the different time points show distinct curves (Figure 2). The 
yield over time approximated a third-degree polynomial for all three subsets, except for 
the quality parameters for late diploids. As the forage quality traits were only measured 
twice on the late diploids, a first-order linear regression was the only feasible model that 
could be fitted over time for these traits. For tetraploids and middle-late diploids, different 
traits seemed to follow different curves. The NDF and NEL followed a second-degree pol-
ynomial, while protein content followed either a linear or an exponential curve. As the 
present study fitted a factor analytical model for traits over time, these distinct character-
istics would be captured by the covariance structure of the BLUEs. 

A principal component analysis (PCA) conducted based on the BLUEs of all acces-
sions and traits showed that the largest separation was between the late diploids and the 
other two subsets. This was depicted in the first principal component (PC1), which de-
scribed 62% of the total variance (Figure 3). The separation of the late diploids from the 
middle-late diploids and tetraploids was mostly due to yield, followed by NEL and NDF 
based on the angle between the vector and PC1. There was a positive correlation between 
yield and NDF, which were in turn negatively correlated with protein and NEL. The re-
verse was seen in PC2, where yield was positively correlated with protein and NEL and 
negatively correlated with NDF. No clear grouping pattern was observed in the second 
principal component (PC2), which described 15% of the total variance. Hence, PC2 ex-
plained mainly the variance within the subsets, whereas NDF seemed to separate acces-
sions within each germplasm subset. 
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Figure 2. A violin plot of the estimated genetic values (BLUES) across the tested sites for (rows) net 
energy for lactation (NEL), neutral detergent fiber (NDF), protein content, and yield at each cut (col-
umns) in the late diploids, middle-late diploids, and tetraploids. The mean is marked with a point 
on each violin. 

 
Figure 3. A principal component analysis (PCA) on the corrected best linear unbiased estimators 
(BLUEs) across the tested sites for the 532 accessions, colored by germplasm subset (red for late 
diploids, green for middle-late diploids, and blue for tetraploids). The arrows show the loadings of 
each trait at each time point. The arrows are colored according to traits. 

The correlation analysis of the BLUE values revealed positive correlations between 
cuts in all traits and germplasm subsets except for yield in the middle-late diploids (Figure 
4A). The yields of the first cut of the two years were weakly correlated with each other but 
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not with the other cuts (Figure 4A). In all three subsets, NEL and protein content were 
overall positively correlated, but the correlation was very weak in the late diploids. In the 
middle-late diploids and tetraploids, the yield was positively correlated with NDF in most 
cases but negatively correlated with NEL and protein content. Hence, the higher the yield 
of the accessions, the more fiber-rich stems and the less energy- and protein-rich leaves 
they contain. The late diploids showed a reverse pattern with yield, exhibiting positive 
correlations with protein and NEL and a negative correlation with NDF, suggesting more 
leaves per plant and delicate stems. The correlation analysis without considering the sub-
sets showed strong correlations (>±0.5) between NFD and yield (except cut 3), NEL and 
yield (except cut 3), protein and NDF, NEL and NDF, and at the first cut between NEL 
and protein (Figure 4B). The correlations of cuts (Figure 4C) showed only strong correla-
tions between tiled in all cuts and NDF at cut 2. 

 
Figure 4. A heatmap (A) showing genetic correlations within traits (between cuts). The heatmap is 
split by subgroup and shows the Pearson correlation between dry matter yield (yield), protein, net 
energy for lactation (NEL), and neutral detergent fiber (NDF), arranged by cut (first, second, and 
third for 2021 and 2022). The Pearson correlations without consideration of subgroups between (B) 
traits and (C) cuts where each subgroup is separated by color. Each Pearson correlation is marked 
with asterisk signifying level of significance, where *** is p-value < 0.001. 

3.2. Genetic Diversity of Accessions 
Neighbor-joining cluster analysis based on Nei’s standard genetic distance showed 

separation, with some overlaps, between the late and middle-late diploids with a slight 
population structure within each maturity group (Figure 5). The NordGen gene bank 
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accessions were treated as late diploids in this study. However, some of them were closely 
clustered with Lantmännen’s middle-late diploids, suggesting that they are genetically 
more similar to the middle-late diploids. Additionally, some of the late diploids were clus-
tered together with the middle-late diploids. This indicates that, even though they were 
bred as late diploids, they were genetically more similar to middle-late diploids, probably 
because of the exchange of germplasm between breeding programs. Compared with the 
diploids, the tetraploids showed a weak population structure. Nevertheless, they formed 
two major clusters, showing that some tetraploids had more genetic similarities to each 
other. 

 
Figure 5. Neighbor-joining trees based on Nei’s standard genetic distance for tetraploids (left) and 
diploids (right). Each terminal branch is an accession, which is color-labeled based on whether it is 
from NordGen or Lantmännen and either late- or middle-late-maturing. 

3.3. Model Reliability and Predictive Ability 
For the forage quality traits, the STL model showed high broad-sense heritability (H2) 

ranging from 0.65 to 1 followed by MT1 (0.37 to 1) and MT2 (0.36 to 1) (Figure 6). The ST 
model had a 0.35–0.92 heritability range (Figure 6). The trait with the highest H2 values in 
the ST model was yield. The H2 from the ST model for the forage quality traits had a nar-
row range (all below 0.5) with the lowest in the tetraploids and highest in the late diploids. 
The MT1 model had the highest H2 values for the quality traits and lowest for yield, in 
which the H2 of yield was affected differently by different quality traits and the cuts. For 
forage quality traits, there was little effect of cuts on H2 in the ST and MT1 models. H2 
varied between cuts in the case of the STL and MT2 models. The MT2 model performed 
well when there were high genetic correlations between traits. An example of this is the 
case of the middle-late diploid 2021 cut2. Here, the genetic correlations were 0.7 between 
NDF and yield, −0.8 between NDF and NEL, and −0.9 between NDF and protein content. 
The overall predictive ability was 0.56, 0.57, 0.58, and 0.56 for MT1, STL, ST, and MT2, re-
spectively. The ST model had good predictive ability for many traits but not always, out-
performing the MT1 and MT2 models for genetically non-correlated traits. Overall, none 
of the models had the best predictive ability across all germplasm subsets, traits, and cuts. 

The success of the models seemed to be based on both the genetic correlation of traits 
and the BLUE variation. For example, the BLUEs of NEL ranged from 6 to 6.8 (Figure 2), 
and the predictive ability of the models was the lowest, on average, for this trait (Figure 
7). For the late diploids, the MT1 model outperformed the ST model in predicting NEL in 
the cut2 2021, although the correlation between NEL and yield was only 0.2. The STL 
model, on average, performed better at predicting yields in the middle-late diploids than 
in the late diploids and tetraploids. Nevertheless, the tetraploids had a higher overall ge-
netic correlation between yield and cuts, where six corresponding measurements were 
weakly correlated (≥0.2) compared with 16 measurements in the middle-late subset. 
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Figure 6. Bar graphs showing model reliability calculated as H2 using the Cullis method for each 
cut. Each bar is colored according to single-trait (ST), single-trait-longitudinal (STL), multi-trait two 
traits (MT1), and multi-trait four traits (MT2). For MT1, the yield was modeled three times together 
with NDF, protein content, and NEL. The graphs are organized vertically according to traits and 
horizontally according to germplasm subsets. 

 
Figure 7. Bar graphs of the predictive ability between the best linear unbiased estimators (BLUEs) 
and the mean best linear unbiased predictor (BLUP) of 100 iterations of 10-fold cross-validation for 
each trait and each cut of the three germplasm subsets. The bars are colored according to the model 
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used to calculate the BLUPs. The graphs are organized vertically according to traits and horizontally 
according to germplasm subsets. 

The coefficients of determination (R2) between H2 and the estimates of the models’ 
predictive abilities (Figure 8) indicate the extent to which the predictions were based on 
genetic variance. A low R2 between the two suggests that BLUP variability is not mainly 
due to genotypic variance. However, if an increase in H2 results in a higher predictive 
ability of a model, it shows that genotypic variance makes a major contribution to the 
variance in BLUPs. For forage quality traits, there seemed to be a decrease in PA as H2 
increased. The MT1 model’s high H2 could be due to a strong genetic correlation between 
traits where the interaction effect of genotypes and traits was overestimated. In the case 
of the ST model for quality traits, H2 differed among the germplasm subsets, where the 
late diploids had the highest H2 followed by the middle-late diploids and then the tetra-
ploids. The reverse was observed for PA. This could be due to non-additive effects not 
explained by the Gaussian kernel. The STL and MT2 models followed the hypothesis of 
increased H2 as a function of predictability. The STL models could capture the non-addi-
tive effects in the interactions between genotype and cut, thus improving predictive ability 
as H2 increased. The genetic correlations between forage quality traits (−0.4 to −0.8 be-
tween NEL and NDF, −0.5 to −0.9 between NDF and protein, and 0 to 0.7 between NEL 
and protein content) were stronger than between yield and forage quality traits (−0.4 to 
0.7 between NDF and yield, −0.6 to 0.2 between NEL and yield, and −0.7 to 0.5 between 
protein and yield). Thus, the MT2 model performed better than the MT1 model because 
there was a stronger correlation between forage quality traits than between yield and for-
age quality traits. For yield, all multivariate models seemed to overestimate either PA or 
H2, suggesting there was no beneficial model for improving yield when combined with 
quality. Overall, the variance in each correlation was high. This suggests that independent 
model formulation is needed based on each data set. 
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Figure 8. Predictive ability as a function of broad-sense heritability (H2) separated according to the 
models used. Each point is the result of a model on a specific trait in a specific subset. Each point 
has a shape according to the subset it belongs to and is colored by trait. The coefficient of determi-
nation (R2) was estimated from a linear regression of the predictive ability on H2. The black values 
are R2 values for all models across subsets and traits within each plot panel. 

4. Discussion 
4.1. Genotype and Phenotype Data 

A key aspect of this study showcases the ability to use population-wide measure-
ments of genotypes and phenotypes in genomic prediction. The phenotypic values of the 
accessions sown in plots, as is performed in a phenotype-based breeding program, were 
collected and analyzed. For genotyping, the development of pool-seq techniques is key to 
implementing GS methods in population-based red clover breeding. This is because gen-
otyping an adequate number of individuals to represent each population is both costly 
and labor-intensive. Since the marker sets were different for tetraploids and diploids, ge-
netic diversity analysis was performed separately. Osterman et al. [9,10] showed a modest 
population structure separating tetraploids from diploids. In this study, the results 
showed a very low population structure within each data set. 

The BLUEs of each trait showed a non-linear trend over time (Figure 2), which indi-
cates differences in growing conditions between the different cuts. Additionally, the cor-
relations between traits within each data set differed across cuts, indicating that plant 
vigor and forage quality traits were unstable across the growing seasons. 

The major difference between the late diploids and the other two germplasm subsets 
was the ratio between NEL, protein content, NDF, and yield (Figure 2). The late diploids 
had positive correlations between protein content, NEL, and yield while the reverse was 
observed for the middle-late diploids and tetraploids. This could be the effect of cultiva-
tion conditions as the late and middle-late diploids were grown at different sites with dif-
ferent harvesting time points. It could also be a result of differences in the genotypes’ ge-
netic makeups as there was a separation between the late and middle-late diploids when 
observing the population structure in the NJ tree generated based on Nei’s genetic dis-
tance. 

4.2. Trial Design and BLUEs 
The trial design used to collect phenotypic data was an augmented design at two and 

three locations for diploids and tetraploids, respectively. The motivation for using an aug-
mented design was the cost–benefit, i.e., more accessions can be tested within a location. 
Northern Europe has the disadvantage of having few and small field trial sites; hence, an 
augmented design was a reasonable choice. Each trial was divided into four blocks con-
taining 44 non-replicated treatments and two checks replicated 16 times each. The key to 
an augmented design is the use of checks replicated within the environment to model 
spatial variability, and between environments to explain the reaction norm [35]. Unfortu-
nately, the specific parameters of the augmented design were not optimal for red clover, 
as accessions had higher phenotypic plasticity within the trial than expected. Hence, the 
measurements of each accession in the two or three trial sites needed to be combined to 
estimate the BLUEs. To estimate the effect of G×E interactions in future studies, increasing 
the number of checks is recommended so that they have adequate and uniform coverage 
of the trial site. 

4.3. Correlations Between Traits and Their Effect on Predictability and Reliability 
To increase predictive ability using a multi-trait or longitudinal model, the traits or 

cuts need to be correlated with one another. The model borrows information about the 
variation explained by the genotype in different traits or cuts, thereby increasing reliabil-
ity and consequently predictive ability. This study showed increased predictive ability for 
correlations stronger than 0.5. Additionally, this study showed that the stronger the 
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genetic correlation between traits, the more linear the relationship between reliability and 
predictive ability (Figure 8). This could be because genetic effects were better explained 
when genotype × trait was included in the model. By using the Gaussian kernel as a ge-
netic relationship matrix, additive genetic effects were better explained. Nevertheless, it is 
worthwhile to consider non-additive effects in crops such as red clover that have high 
heterozygosity and suffer from inbreeding depression. 

To predict forage quality traits, the Gaussian kernel was not enough. However, by 
including multiple traits with positive or negative genetic correlations higher than 0.5, 
genetic effects could be better captured (Figures 3 and 7). Nonetheless, the predictive abil-
ity of the MT2 model for some cuts was high for yield in the tetraploids and middle-late 
diploids and low for NDF in the same subsets compared with H2. Hence, introducing 
multiple traits resulted in unaccounted additional effects. Although the use of multiple 
traits aided the model’s ability to explain the quality traits, it added complexity that af-
fected the model’s ability to explain forage yield. 

Multiple strong correlations (>±0.5) were found between traits (Figure 4B) and be-
tween cuts when measuring yield (Figure 4C). However, when the data were divided into 
subsets, two prominent correlation patterns were found between yield and quality traits 
(Figure 4A). The first pattern was a positive correlation between yield and NDF, which, in 
turn, were negatively correlated with protein content and NEL. This result suggests that 
the plants had denser and tougher stems and fewer leaves. The second pattern was the 
opposite, where positive correlations were observed between yield and the two quality 
parameters, protein content and NEL, which, in turn, were negatively correlated with 
NDF. This suggests that the plants had more leaves and fewer or finer stems [36]. The first 
pattern was prominent in the tetraploid accessions as well as in the middle-late diploids’ 
second and third cuts. The middle-late diploids’ first cut as well as all cuts of the late dip-
loids showed the second pattern. This could be due to the plants’ maturity levels because 
younger plants with fine and delicate stems with more leaves are expected to show the 
second pattern [21]. This is possibly the case for the first cut of the middle-late diploids. 
However, with the colder and shorter growing seasons in northern Sweden, red clover is 
expected to be less mature at harvest; hence, the protein and NEL content could be higher. 
Another plausible explanation could be higher levels of rhizobacteria in the soil in north-
ern Sweden [37], which would benefit protein synthesis due to the increased availability 
of bio-available nitrogen. However, this hypothesis needs to be analyzed through a multi-
environment field trial with sites varying in levels of rhizobacteria. 

As shown by Nay et al. [17], red clover cultivated in the northern region is adapted 
to the region’s specific growth conditions where it outperforms accessions adapted to the 
southern region because of its later maturity as well as vigor. Thus, the difference in 
growth patterns is probably due to a combination of genetic and environmental differ-
ences. Since multiple genes regulate the target traits, trait expression may differ between 
the germplasm subsets, as their breeding programs may have different goals. Support for 
this was observed in the correlation between PA and H2, where the relationship between 
the two differed for each data set. It may be possible to capture these differences in growth 
patterns by utilizing STL models. Further development of the STL models could include 
data from additional years, especially for the quality traits. With an equal amount of data 
points for quality and yield, a multi-trait longitudinal model could be evaluated. How-
ever, with the increase in model complexity, more accessions are needed. 

Longitudinal traits are often measured as growth or responses to biotic or abiotic 
stresses, where non-destructive phenotyping methods are preferred. Longitudinal models 
have been successful, for example, in dairy cows [38] and rice [39]. Hence, it could be 
interesting to apply non-destructive measures of dry matter yield and quality traits using 
near-infrared indices from drone imaging. With the increase in data points, Legendre pol-
ynomials or B-splines could be used to measure the relationship between maturity and 
the target traits. However, that would reframe the research question from a test of vigor 
and quality as a response to the stress of cutting to a question of growing rate and 
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maturity. With more research on drone imaging for red clover to estimate yield and qual-
ity, nonlinear models can be compared to these models in the future. 

As for the MT2 model, the correlation between yield and multiple forage quality traits 
could be used to decrease the number of accessions sampled for forage quality analysis. 
As shown by Cuevas et al. [24], multi-trait models can be used to predict expensive traits 
using their genetic correlation with cheaper traits. To implement such a model, the ratio 
between predictive ability and missing data points of quality traits needs to be investi-
gated to see if it is economically viable to use in breeding. 

5. Conclusions 
The analysis presented in this study provides valuable insights into the genotypic 

and phenotypic landscape of red clover, offering a solid foundation for future breeding 
efforts. By applying pooled sequencing methods, a large number of high-quality SNP 
markers were obtained, facilitating genetic diversity studies and genomic prediction. The 
observed trends in genetic values for biomass yield and quality traits underscore the com-
plexity of trait dynamics over time and across germplasm subsets. Notably, correlations 
between traits and their implications for the models’ predictive abilities and reliabilities 
highlight the importance of considering genetic correlations in multi-trait models. Over-
all, this study advances our understanding of red clover genetics. It also sets the stage for 
more targeted and efficient breeding strategies to enhance yield and quality traits in this 
agriculturally significant crop. 
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