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The endospermis areproductive tissue supporting embryo development.
In most flowering plants, the initial divisions of endosperm nuclei are
not succeeded by cellularization; this process occurs only after a specific

number of mitotic cycles have taken place. The timing of cellularization
significantly influences seed viability and size. Previous research implicated
auxin as akey factor ininitiating nuclear divisions and determining the
timing of cellularization. Here we uncover the involvement of a family of
clustered auxin response factors (CARFs) as dosage-sensitive regulators

of endosperm cellularization. cARFs, maternally expressed and paternally
silenced, are shown to induce cellularization, thereby restricting seed
growth. Our findings align with the predictions of the parental conflict
theory, suggesting that cARFs represent major molecular targets in this
conflict. We further demonstrate a recurring amplification of cARFsin the
Brassicaceae, suggesting an evolutionary response to parental conflict by
reinforcing maternal control over endosperm cellularization. Our study
highlights that antagonistic parental control on endosperm cellularization
converges on auxin biosynthesis and signalling.

The endosperm is a reproductive tissue derived from the fusion of a
haploid sperm cell with a predominantly diploid central cell, which
sustains and supports embryo development'.
InArabidopsisthaliana,asin mostangiosperms, endospermdevel-
opment occurs in two phases. In the initial phase, endosperm nuclei
proliferationis not followed by cellularization, resulting in the forma-
tion of a coenocyte’. At a tightly controlled timepoint, a wave of cel-
lularization starts from the micropylar region surrounding the embryo
toreach the opposite chalazal endosperm? At the end of the process,
most of theendospermis cellularized and nuclear divisions cease. The
timing of the transition from the first to the second phase s critical for
seed development. Precocious or delayed cellularization leads to very
small or enlarged seeds of impaired viability, respectively’. Endosperm
cellularization is under differential parental control; while increased
maternal genome dosage promotes cellularization, increased paternal
genome dosage has the opposite effect by delaying cellularization.

Previous work identified auxin as a critical factor initiating the
first nuclear divisions of the endosperm and determining the tim-
ing of endosperm cellularization*’. Auxin biosynthesis is initiated
after fertilization from the paternal genome by YUCCA10 (also known
as YUCI10) and TRYPTOPHAN AMINOTRANSFERASE RELATED 1 (also
known as TARI), two imprinted paternally expressed genes regulating
auxin biosynthesis*. Auxin levels cease at the time of cellularization,
while conversely, endosperm cellularization failure correlates with
increased auxin levels*. How auxin controls endosperm cellularization
is nevertheless unknown.

Results

We previously identified a cluster of Auxin Response Factors (ARFs) that
is strongly upregulated in seeds with delayed endosperm cellulariza-
tion**. Given the connection between auxin and endosperm cellulari-
zation, we investigated the function of those ARFs in the endosperm.
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This ARF cluster contains eight members that are located in the
pericentromericregion of chromosome1(Fig.1a). Allmembers share
high sequence similarity, indicating that they function redundantly
(Extended DataFig.1and Supplementary Information). The exceptions
are ARF13 for which the sequence has diverged, and ARF23 which is
truncated and has been proposed to be a pseudogene and was therefore
not considered further®. We will refer to these clustered ARFs as CARFs.

Based on available transcriptome data of the endosperm 4 days
after pollination (DAP)’, cARFs are expressed at similar levels, sug-
gesting that they are functionally redundant (Extended Data Fig. 2a).
Based onavailable parental-specificendosperm transcriptome data, all
CcARFsare maternally expressed genes (MEGs), thus the maternal alleles
are exclusively or preferentially expressed in the endosperm (Fig. 1b
and Extended DataFig. 2b). The paternal alleles of all cCARFs are highly
DNA methylated and enriched for repressive histone methylation on
H3 lysine 27 and lysine 9 (H3K27me3 and H3K9me2, respectively),
correlating with the specific silencing of the paternal alleles (Fig. 1c,d
and Extended DataFig. 2c,d).

CARFs are expressed at the onset of endosperm cellularization
Previous reports found cARFs to be expressed in the micropylar
endosperm domain at the globular stage of embryo development®°,
To specifically determine when and where cARFs are expressed, we
monitored transcript abundance by quantitative PCRwithreverse tran-
scription (RT-qPCR) and proteinlocalization using reporter constructs
for ARF15and ARF22, which contain the promoter and coding region
of both genes fused to the green fluorescent protein (GFP) reporter
(PARF15::ARF15-GFP and pARF22::ARF22-GFP) (Fig. 1e,f and Extended
DataFig. 3).Since cARFsare highly similar at nucleotide sequencelevel
(Extended DataFig.1and Supplementary Information), discriminating
individual cARFs by RT-qPCR was not possible. We thus monitored
transcriptlevels of all cARFs and found them to peak at 4 DAP (Fig. 1e).
Similarly, GFP fluorescence accumulated in both the micropylarand the
peripheralendospermat~4-5DAP (Fig. 1e,fand Extended DataFig. 3).
Thus, cARF accumulation preceded endosperm cellularization, which
in Arabidopsis wild-type Col-0 initiated at 5-6 DAP.

In seeds inheriting a double dosage of paternal chromosomes
(referred to as paternal excess crosses), CARFswere deregulated®, sug-
gesting that cARFsare sensitive to parental genome dosage. To test this
hypothesis, we monitored pARF15::ARF15-GFPand pARF22::ARF22-GFP
expressioninseeds with unbalanced parental genome dosage. We made
use of the omission of second division 1 (osd1) mutant that produces
2n male and female gametes at high frequency”. Thus, using osd1
as either the female or the male parent allowed generation of seeds
with either increased maternal or paternal genome dosage, correlat-
ing with precocious (4-5 DAP) or delayed endosperm cellularization
(after 6 DAP), respectively’.

We found that increased paternal genome dosage generated
by crossing wild-type (WT) plants with osd1 pollen donors caused
reduced and delayed cARF transcript accumulation, shifting the peak

Fig.1|cARFs are expressed at the onset of endosperm cellularization.

a, Localization of Arabidopsis ARF genes on chromosome 1. Pericentromeric
regions are highlighted inblue”, and cARFs are indicated with ablue line.

b, Percentage of parental cARF reads derived from crosses of Col-O and Landsberg
erecta (Ler) accessions in the 4 DAP endosperm’. ¢, Parental-specific enrichment
of H3K9me2 (red) and H3K27me3 (blue) histone marks on ARF22in the 4 DAP
endosperm®. d, Parental-specific DNA methylation in CG, CHG and CHH context
(H stands for any base except G) on ARF22in the endosperm at 6 DAP*. e, RT-qPCR
analysis of cCARF expressionin 3,4, 6 and 10 DAP siliques of the indicated crosses.
Datashow mean + s.d. of 5independent biological replicates. *P,p,, = 0.003772;
*Pepar = 0.01584 (two-sided Student’s ¢-test). f, Confocal microscopy pictures
showing expression of pARF22:ARF22-GFP at different stages of seed development
inthe indicated crosses. Data are based on 2 biological replicates with a minimum
of 30 seeds per replicate. Scale bars, 100 pm.

of expression from 4 to 6 DAP (Fig. 1e). This pattern was also reflected
by the pARF22::ARF22-GFP and the pARF15::ARF15-GFP reporters; we
did not detect GFP fluorescence in paternal excess seeds between 2
and 6 DAP (Fig. 1fand Extended Data Fig. 3).

Conversely, in maternal excess seeds where osd1 was the female
parent, ARF22-GFPand ARF15-GFPexpression could be already detected
at2-3 DAP (Fig. 1fand Extended Data Fig. 3). This early expression was
not a consequence of increased copy number, since the constructs
arenotimprinted and introduced through pollen. We failed to detect
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Fig.2|Mutationsin cARFs delay endosperm cellularization. a, Schematic
representation of ARFI13and ARF20 and positions of two mutations induced

by CRISPR/Cas9. The filled squares correspond to exons. b, Multiphoton
microscopy pictures of 7 DAP Feulgen-stained seeds derived from indicated
crosses. Scale bars, 100 um. ¢, Quantification of endosperm cellularization in
seeds of indicated crosses. ‘In progress’ refers to seeds where cellularization has
initiated but not terminated (see Extended Data Fig. 8 for details). Data show
mean t s.d. of 3independent biological replicates, with a minimum of 50 seeds
perreplicate. d, The100-seed weight of seeds derived from the indicated crosses.
Each dot represents the weight of 100 seeds. Five independent measurements
were analysed for each line. *P = 0.019 (two-sided Student’s t-test). e, Percentage
of aborted seeds derived from indicated crosses. f, Percentage of established

seedlings from seeds of the indicated crosses. e,f, Each dot represents the
percentage of aborted seeds (e) or established seedlings (f) from 3-5siliques.
Data are based on 3 biological replicates, each comprising 3 inflorescences,
resulting in a total of 9 values. *Py.cqaportion = 0-000468; *Pyccdiing estaplishment = 0-0409
(two-sided Student’s ¢-test). d-f, Boxes show median values and the interquartile
range. Whiskers show minimum and maximum values, excluding outliers.

g, NMDS multivariate analysis of transcriptomes of 7 DAP seeds of the indicated
genotypes. h, Heat map showing the log, (fold change) (FC) of deregulated genes
inarfl3arf20 x WT compared to WT,and WT x osd1 compared to WT at 7 DAP.
Only genes that were significantly deregulated in WT x osd1 compared with WT
after multiple-testing correction (|log, FC| > 1; P,4; < 0.05) are shown.

CARF transcripts in maternal excess seeds by RT-qPCR, probably
because the endospermnuclei number wastoo low to allow detection
oflow-abundance endospermtranscripts. Nonetheless, the detection
of precocious ARF22-GFP and ARF15-GFP activity strongly suggests
that cARF expression is sensitive to maternal genome dosage and
that increased maternal genome dosage correlates with increased
CcARF expression.

Together, these results show that cCARF expression is antagonisti-
cally regulated by maternal and paternal genome dosage, reflecting
their MEGidentity. Furthermore, cARF activity correlates with the onset
of endosperm cellularization®, suggesting a functional role of cARFs
inregulating this process.

cARF deficiency delays endosperm cellularization

Single T-DNA insertions in ARF15, ARF20 and ARF22 did not cause abnor-
malities in seed development, suggesting functional redundancy of
CcARFs (Extended DataFig.4). Using CRISPR/Cas9 with two guide RNAs
targeting multiple cARFs, we identified one line with premature stop
codonsinARFI3and ARF20, reflected by reduced cARF transcript levels
at 4 DAP (Fig. 2a and Extended Data Fig. 5a).

Since ARF13and ARF20 are predominantly maternally expressed,
we pollinated arf13 arf20 with WT pollen to test the effect on
endosperm cellularization. Loss of maternal ARF13 ARF20 func-
tion did not affect embryo development (Extended Data Fig. 5b) but
delayed endosperm cellularization; while most wild-type seeds were
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completely cellularized at 7 DAP, the majority of arf13/+ arf20/+ seeds
had only started the cellularization process, resembling paternal
excess seeds (Fig.2b,c). Assessing the extent of endosperm cellulari-
zation poses challenges due toits occurrenceinathree-dimensional
context, rendering a single image insufficient for quantitative analy-
sis. To quantitatively assess the degree of endosperm cellulariza-
tion, we categorized seeds on the basis of the progression of the
cellularization status as either not started, in progress, or fully cel-
lularized. Using confocal imaging, we analysed multiple layers of
Feulgen-stained seeds that formed the basis for this assessment.
Delayed cellularization was not observed when arf13 arf20 was
paternally inherited, consistent with cARFs being MEGs (Extended
Data Fig. 5¢). The timing of the cellularization was completely or
partially normalized when the mutants were complemented with a
PARF20::ARF20 or a pARF13::ARF13 construct, respectively, confirm-
ing thatmutationsin ARFI3and ARF20 are responsible for the delayed
cellularization phenotype (Extended Data Fig. 5d). Consistent with
the delay of endosperm cellularization, seeds of arf13 arf20 x Col-0
crosses were significantly heavier than the corresponding WT seeds
(Fig. 2d). Together, these results reveal that maternal cARFs have a
functional role in endosperm cellularization and probably induce
cellularization.

In paternal excess seeds, CARF expression was delayed and
reduced (Fig. 1e,f). To test the causality between cARF expression
and the paternal excess phenotype, we tested whether the arf13 arf20
mutant enhances the paternal excess phenotype. Indeed, the trip-
loid seed abortion rate was higher when the arf13 arf20 was used as
the maternal parent compared with WT plants, corresponding to a
reduced number of viable triploid arf13 arf20 seedlings (Fig. 2e,f).
Thus, impairing cARF function aggravates the paternal excess seed
phenotype, consistent with a proposed role of cARFs in regulating
endosperm cellularization.

To test whether the delay of endosperm cellularization in arf13
arf20 and paternal excess seeds has a common molecular basis, we
compared the transcriptomes of seeds lacking maternal ARF13 ARF20
function with paternal excess seeds at 7 DAP, when the correspond-
ing wild type was fully cellularized. Indeed, we found that the tran-
scriptomes of paternal excess seeds and arf13 arf20 seeds clustered
together, whereas the wild-type transcriptomes clustered separately
(Fig. 2g and Supplementary Data 1). The similarity in transcriptomes
was also reflected by a similar trend of deregulated genes in paternal
excess seeds and seeds lacking ARF13 ARF20 function (Jlog, FC| > 1;
P,4;<0.05) (Fig. 2h).

Together, the transcriptional response in seeds lacking ARF13 and
ARF20 function resembled that of paternal excess seeds, supporting
the hypothesis that delayed cellularization in paternal excess seeds is
linked to the misregulation of cARFs.

cARF overexpressioninduces early cellularization

We next addressed the question of whether precocious expression
of cARFs is sufficient to induce early cellularization and thus mimic
amaternal excess seed phenotype. To this end, we expressed ARF22
inthe endosperm under control of the PHERES1 (also known as PHEI)
promoter that is active directly after fertilization and lasts until com-
pletion of endosperm cellularization (Extended Data Fig. 6a). Under
control of the PHEI promoter, CARFs were overexpressed at 1 and
2 DAP (Extended Data Fig. 6b). Consistent with the idea that cCARFs
arerequired toinduce endosperm cellularization, pPHEI::ARF22lines
produced seeds with precociously cellularized endosperm, preceding
wild-type seedsby1oreven2 days (Fig. 3a and Extended Data Fig. 7a).
Precocious endosperm cellularization was associated with reduced
nuclei proliferation, resembling the phenotype of maternal excess
seeds" (Fig. 3e,f). Hemizygous pPHEI::ARF22lines produced aborted
seeds at high frequency (40 to 60%, Fig. 3b,c), revealing that precocious
expression of ARF22is sufficient to trigger seed arrest. Those seeds
contained well developed embryos surrounded by asmall, cellularized
endosperm, similar to maternal excess seeds" (Fig. 3a and Extended
DataFig.7a,b). The reduced seed size caused an abnormal position of
the embryo, possibly causing seed abortion (Extended Data Fig. 7b).
Together, these datashow thatinduction of endosperm cellularization
correlates with ARF22 expression.

Interestingly, expression of pPHE1::ARF22 did not only change
the time of endosperm cellularization, but also affected the pattern
of this process. In wild-type seeds, endosperm cellularization starts
at the micropylar region surrounding the embryo and spreads from
there over the whole endosperm' (Extended Data Fig. 8). In contrast,
in pPHEI::ARF22lines, cellularization started at both ends simultane-
ously and the generally uncellularized chalazal endosperm became
completely cellularized (Extended DataFigs. 7aand 9). This cellulariza-
tion pattern corresponds with the activity of the PHEI promoter, which
is strongly expressed in the chalazal region of the endosperm®.

Together, these datastrongly support the hypothesis that ARF22
directly induces endosperm cellularization.

Similar phenotypes were observed when overexpressing ARF15
and ARF21 under control of the PHEI promoter, in line with the pro-
posed redundant function of cARFs in promoting endosperm cellu-
larization (Extended DataFig. 9).

Paternal excess seeds fail to undergo endosperm cellularization,
aphenotype which correlated withreduced cARF expression (Fig. 1e,f)
and that was enhanced by maternal arf13 arf20 mutants (Fig. 2e). We
thus tested whether early cellularization induced by pPHEI::ARF22
could suppress paternal excess seed lethality. We found a significantly
reduced rate of seed abortion when hemizygous pPHE1::ARF22 lines
were pollinated with diploid osd1 pollen, correlating with increased
numbers of viable triploid seedlings (Fig. 3g,h). The increase was

Fig. 3 | Precocious cCARF expression promotes endosperm cellularization.
a, Multiphoton microscopy pictures of 5 DAP Feulgen-stained seeds of 3
independent pPHEI::ARF22lines. Scale bars, 100 um. b, Pictures showing

seed abortion in the pPHEI::ARF22lines. ¢, Quantification of seed abortion
in3independent pPHE1::ARF22lines. Each dot represents the percentage of
aborted seeds in onessilique. The number of analysed siliques isindicated on
thetop of boxes. Lines1and 2 are hemizygous for the transgene, while Line 3
ishomozygous. d, The 100-seed weight of seeds from indicated crosses. Each
dotrepresents the weight of 100 seeds. Five independent measurements

were analysed for each line (n=5). *Pyje; = 4.519 X 1075, *P, ., = 1.669 x 10°;
*Prines = 2.769 x 107 (two-sided Student’s t-test with Bonferroni correction). Boxes
show median values and the interquartile range. Whiskers show minimum and
maximum values, excluding outliers. e,f, Endosperm nuclei counts of 3 DAP (e)
or 4 DAP (f) seeds in the pPHE1::ARF22lines. Each dot represents the number
of endosperm nuclei of one seed. Two biological replicates with more than 30
seeds per replicate were analysed. €, *Py;,e; = 2.129 X 107°%,*P,, ., =9.543 x 1072,
£, *Ppinei= 0.004038; *P, e, = 7.291 x 107%° (Wilcoxon signed-rank test with

Bonferroni correction). g, Percentage of aborted seeds derived from indicated
crosses. h, Percentage of established seedlings from seeds of the indicated
crosses. Each dot represents the percentage of aborted seeds (g) or established
seedlings (h) from 3-5siliques. Five biological replicates were generated, each
comprising 3 or 4 inflorescences, resulting in a total of ~-18 values. g, *P, .1 =
2.9666 x 107 *P 1, =2.904 x 107 h, *Py; = 4.858 X 1074 *Py; ., = 6.326 X 1072
(Student’s ¢-test with Bonferroni correction). Boxes show median values and the
interquartile range. Whiskers show minimum and maximum values, excluding
outliers. i, Heat map showing the log, FC of deregulated genes in 4 DAP seeds of
0sd1xWT compared to WT, and pPHE1::ARF22 compared to WT. Only genes that
were significantly deregulated in osdI x WT compared to WT after multiple-
testing correction (|log, FC| 2 1; P,4; < 0.05) are shown. j, Correlation plot of log,
FCsof deregulated genes in pPHEI::ARF22lines and the osd1 x WT crosses. The
linear regression is shown inred and the coefficient of correlation R2 is indicated
inthe chart. k1, Upset plots showing the number of commonly upregulated (k)
and downregulated (I) genes in the different transcriptomes.
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cellularization viaregulation of auxin production and signalling. a, After
fertilization, the paternally expressed genes YUCIO and TAAI trigger auxin
production and initiate endosperm proliferation. Proliferation ends when cARFs
are expressed from the maternal genome and probably block auxin signalling,
thereby inducing endosperm cellularization. b, Altering the parental genome
dosage changes the time of cARF accumulation and endosperm cellularization.
In paternal excess crosses, the double dosage of the paternal genome stimulates
auxin production, reducing the effect of maternally produced cARF transcripts,
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nevertheless relatively weak, since overexpression of ARF22 caused
seed lethality at high frequency (Fig. 3b,c).

Totest whether the phenotypic similarities between seeds overex-
pressing cARFsand maternal excess seeds was reflected at the molecu-
lar level, we compared the transcriptomes of two pPHEI::ARF22 lines
with maternal excess seeds (osd1 x WT) at 4 DAP. At this timepoint,
cellularization had not yet started in WT, but was completed in the
othergenotypes (Fig.3a). Significantly deregulated genes (Jlog, FC| > 1;
P, < 0.05) inmaternal excess seeds were similarly deregulated in seeds
of pPHE1::ARF22lines, correspondingto a strong correlation between
the datasets (Fig. 3i,j and Supplementary Data 2). The majority (78%)
of upregulated genes in maternal excess seeds were also upregulated
in at least one of the pPHE1::ARF22 lines and about half (53%) of them
were commonly upregulated inboth lines (Fig. 3k,1). The 88 commonly
upregulated genes were enriched for functions related to phragmo-
plast and cytoskeleton fibre formation, consistent with the induced
cellularization process (P < 0.05).

Together, our data uncover cARFs askey regulators of endosperm
cellularization that act in a dosage-dependent manner and probably
underpinthe parental dosage sensitivity of endosperm cellularization.

Evolution of cCARFsin angiosperms

Phylogenetic analysisrevealed that Arabidopsis cARFs are derived from
aBrassicaceae-specific duplication of ARF9 (Extended DataFig.10a,b
and Supplementary Data 3), and in many Brassicaceae crown species,

the ancestral cARFs duplicated into tandem arrays nested in pericen-
tromeric regions (Extended Data Fig.10c). The recurring copy number
increase of cARFs and the conserved location in pericentromeric het-
erochromatinsuggest selection towards increased maternal-specific
expression of cARFsin the Brassicaceae.

The cARFs are more similar to the tandem paralogues within a
speciesthanto orthologuesinssister species (Extended Data Fig.10c),
suggesting that frequent events of gene conversion homogenized the
cluster of cARFs'*". Concerted evolution of cARFs leading to multiple
copies of nearly identical cARF genes may have evolved as amechanism
allowing maternal control of endosperm cellularization. This evolution-
ary pattern is consistent with the predictions of the parental conflict
theory™®", which forecasts the evolution of maternally expressed sup-
pressors of endosperm growth to counteract paternally expressed
growth promoters®.

The ARF9 clade arose from the y-whole-genome triplication
shared by all core eudicots'’, while the paralogous clade corresponds
to ARF11/18(ref.19) (Extended DataFig.10b). The identified orthologue
of ARF9/11/18in maize, ZmARF7 (Zm00001eb118970), is expressed in
the endosperm sharply around the cellularization stage, putatively
promoting the transition from the nuclear to the cellular phase®. We
thus speculate that the repressive ARF clade harbouring the cARFs
and ARF9/11/18 play a conserved role in promoting endosperm cellu-
larization. In line with this hypothesis, the orthologues of ARF9/11/18
in several species are also expressed in the early endosperm or seed
transcriptomes (Extended Data Fig. 10b). In contrast, Arabidopsis
ARF9/11/18 are not expressed in the early endosperm (Extended Data
Fig.6A), suggesting that therise of cARFs allowed themto adopt special-
ized functionsinthe endosperm. Theloss of abroad expression pattern
may have promoted the increase in copy number without detrimental
effects on sporophyte development.

Discussion

The timing of endosperm cellularization is decisive for final seed
size and a major target of parental conflict”. Our study reveals that
parental-dosage-dependent regulation of cARFs controls endosperm
cellularization, implicating cARFs as molecular targets of parental
conflict (Figs.2-4).

cARFs belong to the evolutionarily conserved ARF B class that
are considered to be transcriptional repressors?**. Repressive B
class ARFs were shown to antagonize activating A class ARFs*, pro-
viding an intuitive model whereby cARFs block auxin-mediated
endosperm proliferation* by competing with activating A-type ARFs
thatremaintobeidentified (Fig. 4a). In support of this view, we found
that increased dosage of cARFs reduced endosperm proliferation
(Fig.3e,f).

Akey prediction of the parental conflict theoryis that maternal and
paternal genomes antagonistically affect the growth of embryo sup-
portive tissues. Specifically, natural selection is expected to favour
paternally active alleles promoting seed growth and maternally active
alleles restricting seed growth. By promoting endosperm cellulari-
zation and thus restricting seed growth, cARFs are probably major
targets of this conflict. Consistent with the predictions regarding
maternally biased expression of growth suppressors, cCARFs are mater-
nally expressed while paternally silenced by a combination of repres-
sive epigenetic modifications (Fig.1c,d and Extended Data Fig. 2b-d).
Interestingly, withinthe Brassicaceae, we found evidence forarepeated
amplification of cARFs into tandem arrays nested in pericentromeric
regions (Extended Data Fig. 10b). This recurring copy number increase
of cARFs is probably a consequence of parental conflict, ensuring
maternal control of endosperm cellularization. Auxin biosynthesis
intheendospermis controlled by the paternalgenome and increased
auxinlevels delay endosperm cellularization’, revealing an antagonistic
parental control of endosperm cellularization converging on auxin
biosynthesis and signalling (Fig. 4b).
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In conclusion, we identified cARFs as maternally active dosage-
sensitive regulators of endosperm cellularization. cARFs induce
endosperm cellularization and thus restrict seed growth, making
themdirect molecular targets of parental conflict inangiosperm seeds.

Methods

Plant cultivation and lines used in this study

The Arabidopsis mutant osdI-3has been previously characterized". The
arf15-1 (SALK_029838) and arf20-2 (SALK_032522) mutants have been
published®. The arf22-3 (SALKseq_49790) mutant has been character-
ized in this study. Primers used to genotype the mutants are listed in
Supplementary Data 4. For all experiments, Col-0 was used as the
wild-type control.

Arabidopsis seeds were sterilized for 15 minin a solution of 70%
ethanoland 0.0001% Triton X-100 and washed with 100% ethanol for
an additional 15 min. Dried seeds were sown on plates containing
15 Murashige and Skoog medium and stratified at 4 °C for 2 days.
Plates wereincubated inagrowth chamber for 2 weeks (16 hlight/8 h
dark, 60 pmol s™ m™ 22 °C), then transferred to soil and grown in
phytotron chambers (16 h light/8 h dark, 150 pmol s m™, 21°C,
70% humidity).

Generation of plasmids and transgenic plants

Genes were amplified from Arabidopsis Col-O genomic DNA with
the primers described in Supplementary Data 4. After amplifi-
cation, the fragments were inserted into a pENTR vector by using
the pENTR/D-TOPO kit (ThemoFisher, K240020SP). For the
PPHEI::cARFs, the fragments were inserted into the pPHE1-pB7WG2
(ref. 4) vector using an LR reaction (ThermoFisher, 11791020). For the
PARF15::ARF15-GFPand pARF22::ARF22-GFP constructs, the destination
vector was pB7FWG.O0.

For pARF13::ARF13 and pARF20::ARF20, the amplified fragments
were firstintroduced in a pDONR221 vector using a BP reaction (The-
moFisher, 11789100). The fragments were theninserted intoa pBGWO
vector using an LR reaction (ThermoFisher, 11791020).

For the CRISPR construct, the guide RNA sequences for mutating
cARFs were designed by E-CRISP4. Two guide RNAs were chosen to
target cCARF genomic DNA: DTI(AAGTTTATTACTTTCCTCAAGGG) and
DT2c (AAAGATCCCATTGAAGAAATTGG). The construction protocol
has been previously published*”. The PCR fragment was amplified
from pCBC-DT1T2with the four primers listed in Supplementary Data4
andinserted into pHEE401E by Golden Gate cloning.

All constructs were introduced into the Arabidopsis Col-0 acces-
sionusing the floral dip protocol®. Transformed plants were selected
on medium containing appropriate chemicals.

Microscopy

For monitoring pARFI15::ARF15-GFP and pARF22::ARF22-GFP, siliques
were opened at the indicated stage and seeds were mounted in water.
Fluorescence was observed using a LEICA Stellaris 8 Dive microscope
with an excitation of 488 nm and an emission range of 493-551 nm.
The data were generated by first analysing a minimum of 15 seeds to
determine whether a signal is present or not. If a signal was detected,
we observed at least 40 and recorded only the average phenotype
excluding any atypical signal.

For clearing and Feulgen staining, siliques were opened at indi-
cated stages and incubated overnight at 4 °C in a fixing solution of
ethanol:acetic acid (3:1). On the next day, the solution was replaced
with 70% ethanol and stored at —20 °C until staining.

For seed clearing, the seeds were removed from the siliques and
incubated overnight at4 °Cina clearingsolution (66.7% w/w chloralhy-
drate, 8.3% w/wglycerol). They were then mounted in clearing solution
and observed on an Olympus BX-51 microscope.

Sample preparation and embedding for Feulgen staining were
done as previously described®. Samples were observed on a LEICA

Stellaris 8 Dive microscope using the multiphoton mode with an excita-
tion of 800 nm and an emission range of 563-668 nm.

Endospermnuclei, aborted seeds and seedling establishment were
counted using the Fiji software.

RNA extraction, RT-qPCR and library preparation

For RT-qPCR, two siliques were harvested at the indicated stage,
ground in liquid nitrogen and stored at —80 °C until extraction. For
mRNA sequencing, ~500 seeds were dissected from siliques and
stored in RNAlater solution (ThermoFisher, AM7021) at 4 °C before
extraction.

RNAwas extracted using the RNeasy plant minikit (Qiagen, 74904).
RNAs were treated with DNAsel at 37 °C for 30 min (ThermoFisher,
ENO0521). DNAsel wasinactivated by incubation at 65 °C for10 minand
removed by TRIzol extraction beforelibrary construction following the
manufacturer’s protocol (ThermoFisher, 15596018).

Thereverse transcription reaction was performed using the Rever-
tAid HMinus First Strand cDNA Synthesis kit (ThermoFisher, K1631) and
adTTTNprimer (Supplementary Data4). The qPCR was performed with
the Power SYBR Green PCR Master Mix (ThermoFisher, 4367659) and
theindicated primers (Supplementary Data 4). The efficiency for the
GAPDH primers was 99.6% and 100% for the cARFs. The relative quan-
tification of the CARF expression normalized to GAPDH was calculated
as defined by the Bio-Rad qPCR manual.

The mRNA libraries were generated using the NEBNext Ultra Il DNA
Library Prep kit (NEB, E7645S) coupled to the NEBNext Poly(A) mRNA
Magnetic Isolation Module (NEB, E7490S). Sequencing was done by
Novogene on aHiSeqX in150-bp paired-end mode.

RNA-seq analysis

For eachreplicate, 150-bp-long paired-end reads were trimmed using
Trimgalore (5bp at the 5’ end and 20 bp at the 3’ end) and mapped to
the Arabidopsis (TAIR10) genome using hisat2. Mapped reads were
counted using Htseq-count and normalized to transcripts per million
(TPM) for genes using StringTie. Differentially regulated genes between
conditions and across the replicates were detected using DESeq2
applying athreshold of log, FC > 1 with a false discovery rate adjusted
Pvalue of <0.05. Non-metric multidimensional scaling (NMDS) multi-
variate analysis was performed to assess the replicability and degree of
similarity between samples using the metaMDS function of the vegan
packageinR.NMDS is anon-parametric ordination method where the
dissimilarity distances amongall pairs of samples are ranked. Dissimi-
larities were calculated using the Bray-Curtis index applied to gene
expression values (TPM). Charts were generated using the R package
ggplot2 and Microsoft Excel 2019.

Phylogenetic analyses

To elucidate the relatedness within the ARF family, amino acid
sequences of all 23 ARFs in Arabidopsis were obtained from TAIR10.
MUSCLE was used to generate the multiple sequence alignments with
default settings®. The sequences of the three defining functional
domains: B3 type DNA-binding domain (InterPro, IPRO03340),
auxin response factor domain (IPR0O10525) and AUX/IAA domain
(IPR033389), were identified by the conserved domain search tool,
CD-Search®, and were extracted and aligned independently to gener-
ate the concatenated alignments of conserved ARF protein regions.
IQ-TREE 1.6.7 was applied for maximume-likelihood inference of the
phylogeny?®, with theJTT substitution model as suggested by the imple-
mented ModelFinder®* and 1,000 ultrafast bootstrap replicates to
estimate the support for reconstructed branches®. The phylogenetic
tree figure was generated by Figtree.

To analyse the phylogenetic timing of cARF and ARF9 duplica-
tion, amino acid sequences of homologues of ARF9, ARF11and ARF18
were identified in several angiosperm species, with an emphasis on
Brassicales (Supplementary Data3). Full-length sequence alignments
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using MUSCLE were used as input for the IQ-TREE analyses, following
the procedure above.

To investigate the pattern of cARF evolution after the diver-
gence from ARF9, amino acid sequences and nucleotide sequences
of cARFs and ARF9 in several Brassicaceae species (Supplementary
Data 3) were used to generate a guided codon alignment in MUSCLE.
A maximume-likelihood tree was then generated in IQ-TREE with the
codon alignment as input, and using the GTR substitution model and
1,000 replicates of ultrafast bootstrap.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

RNA-seq data generated in this study are available at NCBI's Gene
Expression Omnibus database under the accession number GSE232803.
The imprinting, CHiP-seq, DNA methylation and endosperm expres-
sion data can be found under GSE66585 (ref. 34), GSE84122 (ref. 35),
GSE12404 (ref. 8) and GSE157145 (ref. 36), respectively. Sequence analy-
sis was based on the Arabidopsis TAIR10 genome.
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Coding regions
ARF12 ARF13 ARF14 ARF15 ARF20 ARF21 ARF22 ARF23*
ARF12 100% 50% 87% 90% 87% 90% 92% 88%
ARF13 100% 51% 51% 51% 50% 51% 56%
ARF14 100% 87% 84% 86% 88% 87%
ARF15 100% 90% 92% 91% 88%
ARF20 100% 92% 89% 87%
ARF21 100% 91% 85%
ARF22 100% 86%
ARF23* 100%

Extended Data Fig. 1| cARFs share high sequence similarity. Percentage of identity at the protein level between each cARF. ARF23is a pseudogene, indicated by the
asterisk. The analysis was done using Clustal Omega.
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Extended Data Fig. 2| The paternal allele of cCARFs is marked by repressive
histone modifications and DNA methylation. (a) Individual cARF expression
inthe endosperm at 4DAP’. Data show the mean expression values of two
independent crosses, with error bars representing the standard deviation.

(b) Percentage of parental cARF reads derived from crosses of Cviand Col-0

accessionsin the 4 DAP endosperm™. (c) Parental-specific enrichment of

H3K9me2 (red) and H3K27me3 (blue) histone modifications on cARFsinthe 4
DAP endosperm®*. (d) Bedgraphs showing parental-specific DNA methylationin

the endosperm at 6DAP™.
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PARF22::
osd1-3 x Col-0 x PARF15:: PARF15:: PARF22:: Col-0 x ARF22-GFP x
Col-0 x Col-0 PARF15:: PARF15:: ARF15-GFP ARF15-GFP x ARF22-GFP PARF22:: PARF22::
ARF15-GFP ARF15-GFP x Col-0 o0sd1-3 x Col-0 ARF22-GFP ARF22-GFP

2 DAP

3 DAP

4 DAP

5 DAP

6 DAP

Extended Data Fig. 3| pARF15::ARF15-GFP and pARF22::ARF22-GFP show the same expression pattern. (a) Confocal microscopy pictures showing expression of
PARF15::ARF15-GFP and pARF22::ARF22-GFP at different stages of seed development in the indicated crosses. Data are based on two biological replicates and 30 seeds
were analyzed per replicate. Scale bars, 100 pm.
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arf15-1 (SALK_029838) —
a b

ARF20

arf22-3 (SALK_49790)

Extended Data Fig. 4 | Single arfT-DNA insertion mutants do not exhibit abnormal seed phenotypes. (a) Schematic representation showing the position of T-DNA
insertionsin ARF15, ARF20 and ARF22. Filled boxes correspond to exons. (b) Multiphoton microscopy pictures of 6 DAP Feulgen stained seeds. A minimum of 30 seeds
were analyzed. Scale bars, 100 pm.
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Extended DataFig. 5| Characterization of the arfI3 arf20line. (a) RT-qPCR terminated (See Extended Data Figure 8 for pictures). Data show the mean of
analysis of CARF expression in 3-and 4-DAP siliques of the indicated crosses. three independent biological replicates (n = 3) and a minimum of 50 seeds
Data show the mean of three independent biological replicates (n = 3), with error were analyzed per replicate. Error bars represent standard deviation.
barsindicating the standard deviation. Asterisks denote statistically significant (d) Quantification of endosperm cellularization in seeds of indicated crosses. Data
differences based on a one-sided Student’s t-test. (*P = 0.03415). (b) Pictures of show the mean of five independent biological replicates (n = 5) and aminimum
cleared seeds taken at the indicated time points. Data are based on two biological of 50 seeds were analyzed per replicate. Error bars represent standard deviation.
replicates and 30 seeds were analyzed per replicate. Scale bars, 100 pum. Asterisks denote statistically significant differences based on a Chi-squared
(c) Quantification of endosperm cellularization in seeds of indicated crosses. test with Bonferroni correction. (*Pygei35 = 7.08 X 10-5; *Pygei33 = 8.675 X 10-5;
In progress refers to seeds where cellularization has initiated but not *Pareizs = 2.314 X 10-4; *Pyrer0 = 0).
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Extended Data Fig. 6 | Comparison of relative PHEI and cARF expression independent biological replicates (n = 3), with error bars indicating the standard
during different stages of endosperm development. (a) Expression of PHE1, deviation. Asterisks denote statistically significant differences based ona
ARF9/11/18 and cARFsbased on published ATH1 microarray data®. Only cARF12 two-sided Student’s t-test (*Pypap.iner = 6127 X 10-3; *Pipap.Line: = 4.864 x 10-3;
and 21 are present on the ATH1 array. (b) RT-qPCR analysis of cCARF expression *Popap-tine2 = 3-174 X 10-3; *Popap.rines = 8.07 x10-4). N.S. Not significant.
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Extended DataFig.7|Seed phenotypes of the pPHE1::ARF22lines. (b) Pictures of cleared seeds taken at the indicated time points. Data are based on
(a) Multiphoton microscopy pictures of Feulgen stained seeds taken at the two biological replicates and a minimum of 30 seeds were analyzed per replicate.
indicated time points. Data are based on two biological replicates and a Scalebars, 100 pm.

minimum of 30 seeds were analyzed per replicate. Scale bars, 100 um.
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Extended Data Fig. 8 | Endosperm cellularization in WT and pPHE1::ARF22 seeds. (a) Multiphoton microscopy pictures of Feulgen stained seeds taken either
at 6 DAP (WT) or at 4 DAP (pPHEL::ARF22 seeds). (b) Same pictures as in (A) but with the non-cellularized endospermindicated in brown and green for WT and
PPHEI::ARF22, respectively. Scale bars, 50um.
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Extended Data Fig. 9 | pPHE1::ARF15 and pPHE1::ARF21 exhibit an early endosperm cellularization phenotype. (a,b) DIC pictures of cleared seeds (upper part)
or multiphoton microscopy pictures of Feulgen stained seeds (bottom part), of different pPHE1::cARF15 and pPHEI::cARF21 (b) lines at 6 DAP. Three independent lines
were analyzed for each construct. Scale bars, 100 pm.
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Extended Data Fig. 10 | Maximum-likelihood (ML) trees of ARFs with
bootstrap values supporting branches of interest. (a). The phylogeny of

23 ARFsin Arabidopsis showing the clade of cARFs (red), ARF9 (blue) and ARF11/18

(purple). (b). The phylogeny of cARFs (red), ARF9 (blue) and ARF11/18 (purple) in

angiosperms. The asterisk marks the eudicot y- Whole Genome Triplication, and

the diamonds mark the Brassicaceae-specific gene duplication. Genes labelled

by orange stars are the ARF9/11/18 homologs with confirmed expressionin
early-stage endosperm or seed transcriptomes. (c). The phylogeny of cARFs (red)
and ARF9 (blue) in the Brassicaceae. cARFs are colored by tandem clusters. Pink
dotslabel ARFslocated in pericentromeric regions. The source of sequences,
transcriptomes and centromere locations are listed in Supplementary Data 3.
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