
Journal of Productivity Analysis (2024) 62:121–137
https://doi.org/10.1007/s11123-024-00724-4

Efficiency in electricity distribution in Sweden and the effects of
small-scale generation, electric vehicles and dynamic tariffs

Tommy Lundgren1,2
● Mattias Vesterberg2,3

Accepted: 7 May 2024 / Published online: 29 May 2024
© The Author(s) 2024

Abstract
We measure the cost of technical inefficiency for local electricity distribution firms in Sweden using Stochastic Frontier
Analysis, and explore how small-scale generation, the number of electric vehicles and the introduction of dynamic pricing
schemes affects the transient inefficiency and efficiency scores. Our results show little to no effect of these environmental
variables on the cost of technical inefficiency of electricity distribution grids in Sweden.
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1 Introduction

The transition of society towards a low-carbon economy
introduces new challenges for electricity markets. Most
notably, the share of intermittent (renewable) generation is
increasing, more and more households are installing solar
panels on their roofs, and the number of electric vehicles is
growing rapidly (Hainsch et al. 2022). Sweden is no
exception, where, for example, the share of distributed
generation (e.g., wind and solar power) has increased from
less than one percent to more than 20 percent during the last
ten years (SvK 2022), and the number of electric vehicles
has increased from zero to 10 percent of all cars during the
last 15 years (see https://powercircle.org/english/). This may
have profound implications on the operation of electricity

distribution grids,1 that were designed and built for a very
different situation, with centralized production and no
charging of batteries (see, e.g., Basit et al. 2020; Cossent
et al. 2009; Leslie et al. 2020; Pearre and Swan 2020;
Vesterberg et al. 2021).

In this paper, we use Swedish firm-level data spanning the
years 2014 to 2021 and apply Stochastic Frontier Analysis
(SFA) to estimate how the increasing share of small-scale
generation (e.g., solar panels and wind mills) influences the
cost and technical inefficiency of electricity distribution firms
in Sweden. A related question is whether differences in small-
scale generation across firms can explain the large hetero-
geneity in inefficiency among distribution firms that is typi-
cally found in the literature (e.g., Musau et al. 2021;
Vesterberg et al. 2021; Zeebari et al. 2022). Since our data
covers the period up to 2021, we are able to capture the most
recent developments of small-scale generation in our analysis.
Furthermore, we combine the above mentioned data with
muncipal-level car registry data, allowing us to analyze how
the increasing number of electric vehicles influence the grids’
costs and efficiency. Finally, we also explore whether the
introduction of time-varying distribution tariffs influence the
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cost of technical inefficiency (we have collected data on if and
when each firm introduced a demand charge).

The effects of small-scale generation on grid operations
may be either positive or negative. For example, on one
hand, distribution networks are not designed to accom-
modate generation, only consumption, and are therefore not
necessarily built to accommodate an increasing share of
small-scale generation. An increasing share of intermittent
small-scale generation may also pose management, plan-
ning, and coordination challenges in the delivery of elec-
tricity (Mateo et al. 2018). On the other hand, the location
of generation close to consumption may, for example,
reduce networks losses, which would improve network
efficiency (see, for example, Adefarati and Bansal 2016;
Cossent et al. 2009; Jenkins and Perez-Arriaga 2017).
Which of these effects dominate is an open empirical
question, as the few previous findings are mixed regarding
these effects. Many previous papers also use relatively old
data, covering periods when small-scale generation was still
limited.2

Furthermore, the increasing number of electric cars may
also influence the operation of local electricity distribution
grids. For example, charging of electric vehicles may con-
tribute to grid congestion, especially if charging coincides with
peak demand, and previous literature has also raised concerns
about three-phase voltage imbalance and off-nominal fre-
quency problems (see, e.g., Mohammad et al. 2020).3 How-
ever, and as many previous studies have highlighted, electric
vehicles can be viewed as mobile storage (through what is
often referred to as vehicle-to-grid), and as such, can con-
tribute to local congestion management and voltage regulation,
and improve quality of service and reduce losses in the grid
(see, e.g., Venegas et al. 2021). However, as far as we are
aware, there are no previous studies on how the electrification
of transports impacts the cost side of electricity distribution,
and in particular the cost of technical inefficiency of
distribution firms.

In response to these developments, the Swedish regulator
has mandated that by 2027, all distribution firms will charge
their customers based on a so-called demand charge type of
tariff, where customers are charged based on maximum
consumption during a month, and with prices varying both
across seasons and across peak and off-peak hours. The

motivation for these tariffs is to smooth consumption,
reduce the need for costly investments, lower costs and
improve grid efficiency (see, for example, Bartusch and
Alvehag 2014; Bartusch et al. 2011; Lanot and Vesterberg
2021). During the last 10 years, a number of firms have
introduced such tariffs. However, there is little evidence for
the effects of the introduction of such tariffs on the effi-
ciency of grid operations.

In our analysis of the cost of technical inefficiency, we
distinguish between transient and persistent efficiency
(sometimes referred to as short-run and long-run ineffi-
ciency). Transient inefficiency is the part of inefficiency that
is allowed to vary freely over time for each firm, whereas
persistent inefficiency remains constant over time, although
it is allowed to vary across firms. Filippini et al. (2018)
argue that failing to account for both these components of
inefficiency can result in incorrect efficiency targets set by
regulators, and such non-optimal targets are associated with
lower quality compliance by firms. Recent econometric
advances have made it possible not only to disentangle
transient and persistent inefficiency, but also to include
determinants of these in the model (e.g., Badunenko and
Kumbhakar 2017; Kumbhakar et al. 2014; Lai and Kumb-
hakar 2018; Musau et al. 2021). We build on this devel-
opment and include small-scale generation (as a percentage
of total generation) as a determinant of transient ineffi-
ciency. This captures the fact that since small-scale gen-
eration has increased substantially over the last ten years,
and because it is intermittent in nature, its effect on firms’
operation may vary over time. We do a similar analysis for
the number of electric vehicles and the introduction of
demand charges.

In brief, our empirical analysis shows that, in line with
previous literature, there is substantial heterogeneity in
technical efficiency among electricity distribution firms in
Sweden, with the overall efficiency scores ranging from 0.4
to 0.9. Further, we show that small-scale generation reduces
the mean and variance of the transient inefficiency, but that
the marginal effects of a change in these environmental
variables on the cost of technical inefficiency of distribution
firms are small. Similarly, the effects of electric vehicles is
close to zero, and the effect of the introduction of demand
charges is statistically insignificant.

These results have important policy implications. For
example, if the results would have revealed large reductions
in the cost of technical inefficiency from an increasing share
of small-scale generation, regulators would have to take this
into account in the design of regulation of electricity dis-
tribution. However, as we do not find any such effects on
efficiency, there appears to be a limited need for additional
policy or regulation to support electricity distribution firms
during the transition to more distributed generation. The
same appears to be true for the ongoing electrification of

2 For example, Vesterberg et al. (2021) use data from 2014 to 2017.
Since then, the share of small-scale generation has increased sub-
stantially; see Section 5.
3 According to, e.g., Mohammad et al. (2020), electric vehicles are a
mobile single-phase load so they can be randomly plugged in at any
one of three phases within distribution networks, leading to a scenario
that electrical components in one particular phase, such as power
supply cables, overhead lines or transformers may be heavily loaded
while the remaining two phases are not. This, in turn, may lead to a
series of negative impacts on power quality issue, including transfor-
mer failures and equipment loss-of-life.

122 Journal of Productivity Analysis (2024) 62:121–137



private transports. Furthermore, the finding of no effect on
the efficiency of grids from the introduction of time-varying
distribution tariffs is interesting, given that the motivation
for these tariffs is to smooth consumption, reduce the need
for costly investments, lower costs and improve grid effi-
ciency. According to our results, these effects are ques-
tionable, and policy makers should take this into account
when mandating firms to introduce such tariffs.

The rest of the paper is structured as follows. In Section
2, we describe the Swedish transmission and distribution
system, including the recent developments with more small-
scale generation and electric vehicles and the introduction
of alternative pricing schemes, and review the recent lit-
erature concerning technical and cost efficiency in the
electricity distribution market in Section 3. We describe the
empirical approach in Section 4, and in Section 5, we detail
the data used in this paper. The results from our estimation
are presented in Section 6, and Section 7 concludes.

2 Electricity distribution in Sweden

During the 1990s, Sweden, along with many European
countries, deregulated their electricity markets. The deregula-
tion was mainly aimed at increasing efficiency by creating
competition in the production and retail sectors. Consequently,
regulations were removed in the wholesale and retail markets,
which allowed market participants to trade electricity with
each other. At the same time, the production and distribution
of electricity were vertically separated, i.e., they were not
allowed in the same legal entity, and the distribution sector
remained regulated since the networks were considered nat-
ural monopolies. Since then, the Swedish power transmission
and distribution system is characterized by a three-tier struc-
ture, with the national transmission grid owned and operated
by a state-owned utility, Svenska Kraftnät (www.svk.se),
about thirteen regional grids owned and operated by the large
power generators, and about 150 local distribution grids pri-
marily managed by municipalities (approximately 67 percent
of the firms) and privately owned entities (13 percent).4

Sweden (together with Austria, Germany, and the other
Nordic countries) stands out as having many more dis-
tribution firms than many other countries (e.g., Australia,
Croatia, Great Britain, Greece, Hungary, Ireland, Lithuania,
Netherlands, Portugal, and most of the Latin American
countries), see Haney and Pollitt (2009). To give a sense of
magnitudes, Sweden has more distribution firms than what
Germany, France and Italy have combined.5 Furthermore,

local distribution firms in Sweden differ markedly in size:
the aggregate market share for the largest three firms
(Vattenfall, E.ON, and Ellevio) is almost 50 percent, and
each of the three largest firms are about three times as large
as the fourth largest (Göteborg Energi). The corresponding
market share for the 90 smallest firms (corresponding to
firms with fewer customers than the median firm) is less
than 10 percent.

The local grids, which distribute electricity to the end-
users (i.e., households and firms), are each a monopoly in
their region of operation, and are the focus of our analysis.
These firms, typically referred to as Distribution System
Operators (DSO’s) in the literature, are regulated through a
firm-specific revenue cap by the Swedish Energy Market
Inspectorate (SEMI, www.ei.se). The revenue cap model
can be broken down into three parts: Controllable costs,
non-controllable costs and asset base. These are then
adjusted according to efficiency requirements (Wall-
nerström et al. 2017), and the regulator employs a Data
Envelope Analysis model to measure efficiency scores. See
Pandur and Jonsson (2015) for details.

Next, we detail three developments that all are related to
the ongoing transition of electricity markets, and which may
influence the operation of grids, namely an increasing share
of small-scale generation, an increasing share of electric
vehicles, and time-varying distribution tariffs made possible
by the roll-out of smart grids.

2.1 Small-scale generation

During the last ten years, small-scale generation has
increased substantially, and in some grids account for
almost all of the delivered electricity. On aggregate, since
2000, installed wind capacity as a percentage of total
installed generation capacity has increased from less than
one percent to almost 25 percent (see SvK 2022).

In Sweden, expansion of renewable generation, including
small-scale generation, is supported by various feed-in tar-
iffs, green certificates and subsidies to installations. For
household photovoltaic generation (i.e., solar panels),
households receive a subsidy of up to 20 percent of the
installation costs for photovoltaic generation, and a tax
reduction of 60 öre/kWh (approximately 0.05 €/kWh) for the
electricity sold to the grid (see, e.g., Lindahl 2016). Similar
support mechanisms are in place in more than 140 countries.

It is important to highlight that electricity distribution
firms are obliged to connect small-scale generation to the
grid as long as the installed small-scale generation adhere to
the rules regarding such installations; see, for example,
https://ei.se/konsument/el/solenergi-och-solcellerand chap-
ter 6, 1-2 §in the Swedish Electricity Act. In that sense, the
installed capacity of small-scale generation is driven by
investors, not distribution firms.

4 The remaining firms are managed by, e.g., co-operatives.
5 Going further back in time, the Swedish electricity retail distribution
sector consisted of approximately 900 firms in 1970, most of which
were very small and local (Kumbhakar and Hjalmarsson 1998).
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2.2 Electric vehicles

Electric vehicles in Sweden was subsidized up until late
2022 through the so-called bonus-malus system, and similar
subsidy schemes are in place in, e.g., Norway, Germany,
Austria, and France; see, for example, Habibi et al. (2019).
Bonus-malus schemes are designed to give a premium
(bonus) to car buyers who purchase a car with low CO2
emissions and to penalize (malus) those who buy a car with
high CO2 emissions. In the Swedish case, the bonus-malus
system featured credits (up to SEK 60,000, or € 5300) for
cars with CO2 emission no higher than 60g/km and higher
annual road tax (depending on the CO2 emissions and fuel-
type) for the first three years for cars exceeding 95g/km.

This subsidy, in combination with increased range of
electric cars and other technological developments (e.g.,
Habibi et al. 2019) has resulted in a large increase in the
number of electric vehicles, with more than half of all new
cars sold in Sweden being electric (see https://mobilitysw
eden.se/and https://powercircle.org/english/).

2.3 Demand charges

Since 2000, ten Swedish distribution firms have introduced
so-called demand charges as a way of charging for elec-
tricity distribution, and the regulator has mandated that all
firms should have introduced such tariffs by 2017.6 Demand
charges can be understood as a non-linear distribution tariff,
where households are charged for the distribution of elec-
tricity based on the largest hourly consumption in any
given month.

Whenever these have been implemented in Sweden, the
tariff structure is very similar across firms, and in all cases,
the marginal price typically varies by several orders of
magnitude as the quantity consumed increases infinitesi-
mally. For example, for one of the firms, the highest per-
unit price is more than three Euro, while the lowest price is
less than 0.1 Euro (see Lanot and Vesterberg 2021), and
prices are similar for other firms. Hence, the individual
marginal incentives to reduce peak demand appear very
large. This contrasts with the standard residential distribu-
tion tariff in Sweden, which charges a constant price for
every unit of consumption, typically coupled with a sub-
scription fee; i.e., a two-part tariff. As far as we are aware,
demand charges are the only type of time-varying dis-
tribution tariff introduced in Sweden.7

The distribution firms’ motivations for encouraging
customers to reduce peak consumption are multifaceted.
Most importantly, reducing peak demand reduces the need
for costly peak capacity that remains unused most of the
time. Furthermore, in addition to avoiding or postponing
costly investments in the grid, a reduction in peak demand
can also lead to cutting costs associated with subscriptions
to the overlying grid, power losses, wheeling charges and
maintenance.

3 Previous literature

Turning to previous studies of electricity distribution firm
operations, the literature on measurements of electricity
distribution firm efficiency using SFA has increased sub-
stantially over the last 20 years, and has seen many meth-
odological developments. The common findings in the
literature are that few firms are fully efficient, and that the
efficiency scores vary substantially across firms.

Some recent examples of papers estimating efficiency of
electricity distribution firms using SFA include Musau et al.
(2021) who use data on Norwegian electricity distribution
firms to estimate both transient and persistent technical
inefficiency, as well all allocative inefficiency (or input
miss-allocation). Furthermore, they allow for all three type
of inefficiencies to depend on covariates. They show that
the average values of transient efficiency and persistent
efficiency are high, at 0.98 and 0.86, respectively. These
estimates are generally in the upper end of the range of
previous estimates of the efficiency scores. The authors also
show that costs of the distribution firms increase with more
disruptions to the service, and that this has a negative
impact on their efficiency scores. In addition, their results
reveal that there is a negative association between firm size
and persistent inefficiency.

Similarly, Kumbhakar et al. (2020) estimate the persis-
tent and transient components of technical inefficiency and
input mis-allocation of Norwegian electricity distribution
firms, using panel data from 2000 to 2016. They use the
proportion of underground cables as a determinant of per-
sistent inefficiency, and the value of lost load per kilometer
of network as a determinant of transient inefficiency, and
show that the costs of input mis-allocation of Norwegian
electricity distribution firms are non-negligible. The tran-
sient technical efficiency ranges from 0.76 to 0.92,
depending on specification, whereas persistent inefficiency
is estimated to be 0.85.

Kumbhakar and Lien (2017) estimate the transient and
persistent efficiency of Norwegian electricity distribution
companies for the period 2000-2013. The environmental
variables (the proportion of underground cables, the pro-
portion of air cables, the average slope in terrain and the

6 Similar tariffs have been implemented in Finland, and Norway and
in the US. See, for example, Lanot and Vesterberg (2021)
7 However, households are free to choose any retail contract,
including tariffs with time-varying prices such as real-time pricing.
The demand for such contracts have, however, been limited; see, for
example, Brännlund and Vesterberg (2021); Karimu et al. (2022);
Vesterberg and Krishnamurthy (2016).
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coastal climate) have all positive and significant parameters.
This means that they contribute to higher production costs,
on average. Their results reveal more inefficiency in the
long run than in the short run, but that efficiency scores vary
substantially across specifications, indicating that the reg-
ulators and practitioners should take extra caution in using
the proper model in practice, especially when the efficiency
measures are used to reward/punish companies through
incentives for better performance. They also illustrate how
the environmental variables proportion of underground
cables, average slope in terrain and coastal climate have
positive and significant parameters for all models. This
means that they contribute to higher production costs, on
average.

Zeebari et al. (2022) use data on Swedish electricity
distribution firms to measure technical inefficiency, and
allow estimates of the inefficiency to vary across ownership
structure (public and private). They find technical ineffi-
ciency among all type of firms. Orea and Álvarez (2019)
study inefficiency among Norwegian distribution utilities
over the years 2004 to 2011 and allow inefficiency to
depend on a number of firm characteristics, such as share of
overhead lines, customer density and the number of trans-
formation stations to examine, for example, whether larger
utilities tend to be more efficient than smaller utilities. They
show, among many things, that all determinants of ineffi-
ciency are significant and contribute negatively to the
inefficiency scores.

A few papers have studied how firm efficiency depends
on an increasing share of intermittent generation. Arocena
(2008) analyzes the degree of vertical integration and
diversification in the electricity industry using Data Envel-
ope Analysis on Spanish data on electricity distribution. He
shows that cost and quality gains from integrating power
generation and distribution amount to approximately five
percent, whereas diversifying the source of power genera-
tion saves between 1.3 and 4.3 percent of costs and
improves quality. Zhang et al. (2022) allow efficiency
scores to depend on renewable energy access, and shows
that renewable energy has a significant positive impact on
the mean of inefficiency. Vesterberg et al. (2021), using a
sub-set of our data, find that the effect of small-scale pro-
duction on technical grid efficiency is insignificant or
slightly positive.

Turning to the literature on the impacts of EVs on
electricity grids, Burlig et al. (2021); Qiu et al. (2022)
illustrate how EV charging may contribute to peak demand,
which generally impose costs on the distribution network
(see, for example, Lanot and Vesterberg 2021). Further-
more, several studies have focused on the scope for so-
called vehicle-to-grid (or V2G) systems, where plug-in
vehicles contribute with demand response to the grid, either
through discharging or through reductions in charging (e.g.,

Venegas et al. 2021). While this literature appears to agree
that storage provided from EVs may act as a flexibility
option in power systems with high shares of variable
renewable energy sources (e.g., Despres et al. 2017; Yu
2021), the actual impacts on grid operation are unknown
and the literature on the magnitude of the economic benefits
of vehicle-to-grid applications shows inconsistent and
contradictory results (see the discussion in Heilmann and
Friedl 2021).

The empirical literature on the impact of demand charges
is sparse, but Lanot and Vesterberg (2021) show that
households’ response to the marginal incentives presented
by demand charges is small. Bartusch and Alvehag (2014);
Bartusch et al. (2011) find similar results. However, as far
as we are aware, there are no previous studies on the
impacts on the grid. While the limited demand response
suggests that the effects are expected to be small, it may be
the case that even small demand responses imply relatively
large effects on firms’ cost, and this motivates our empirical
investigation of this issue.

4 Empirical approach

The methodology of applying SFA to panel data has
evolved from the early work proposed by, for example, Pitt
and Lee (1981), to the more recent four-component SFA
model (e.g., Kumbhakar et al. 2014). In this model, the error
term captures (i) unobservable unit-specific heterogeneity,
(ii) transient inefficiency, (iii) persistent inefficiency, and
(iv) random noise, each of which is separately identified
given distributional assumptions.

The four-component SFA model improves upon the
earlier models because it can separate unobserved hetero-
geneity from persistent inefficiency, and transient ineffi-
ciency from random noise. The model is more flexible in
the sense that it allows for the inefficiency of a unit (e.g.,
firm) to be correlated with itself over time, and a unit may
reduce part of its inefficiency over time by reducing short-
term rigidities. In contrast, earlier SFA models generally
assumed that inefficiency is independently distributed over
time, which is a rather restrictive assumption (Lien et al.
2018). Other developments of the four-component error
term SFA model allow identification of determinants of
inefficiency (e.g., Battese and Coelli 1995; Lai and
Kumbhakar 2018). For example, this allows the estimation
of how firm characteristics, such as the amount of dis-
tributed generation, affects inefficiency.

We estimate the cost function of firms:

lnCit ¼ β0 þ f ðpit; yit; βÞ þ bi þ ηi þ vit þ uitðzitÞ; ð1Þ
where Cit is the total cost, pit is a vector of input prices and
yit is a vector of outputs. bi is the firm-specific effect that is
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time-invariant, ηi is persistent inefficiency, vit is random
shocks and uit is transient inefficiency with zit the vector of
the determinants for the transient inefficiency. We assume
that uit(zit) ≥ 0 and E½uitðzitÞ� ¼ gðzitÞ � 0. The random
shocks vit are assumed to have mean zero and a constant
variance. By estimating a cost function, including prices
and given level of output, we are avoiding the endogeneity
problems often encountered when using a primal production
function approach where the regressors are inputs.

We assume that there is no allocative inefficiency, and
thus interpret the inefficiency here as cost of technical
inefficiency. An alternative approach would be to allow also
for allocative inefficiency. This approach—i.e., lumping
technical and allocative inefficiency together—has been
challenged in, e.g., Kumbhakar and Wang (2006b) as it may
bias the estimation of model parameters if allocative inef-
ficiency is not addressed explicitly/separately. Kumbhakar
and Wang (2006a) suggest a solution to this, similar to
Schmidt and Lovell (1979), where first-order conditions are
estimated together with the cost function to explicitly
separate out allocative inefficiency. It is outside the scope
for the present study to econometrically explore the
separation of the two types of inefficiency, and we focus on
the cost of technical inefficiency. We refer to Kumbhakar
and Wang (2006a, b) and the argumentation therein for
further details regarding the biases that may arise if tech-
nical and allocative inefficiency are lumped together as
‘cost inefficiency’.

We assume that the cost for firm i= 1, . . . ,N in time
t= 1, . . . , T can be described by a translog cost function for
k outputs and m inputs, so that

f ðpit; yit; βÞ ¼ P
kβ1;k ln yk;it þ

P
mβ2;m ln pm;it

þ 1
2

P
k

P
mβ3;km ln yk;it ln pm;it

þ 1
2

P
kβ4;kj ln yk;it ln yj;it

þ 1
2

P
mβ5;mn ln pm;it ln pn;it

ð2Þ

In addition to this translog specification, we have also
estimated a specification where we assume costs to be
Cobb-Douglas, and the results are similar (see Section C in
the Appendix). However, a likelihood ratio test reveals a
significant improvement in model fit for the translog spe-
cification over the Cobb-Douglas specification.

Similar to the previous literature, we assume that the
outputs are number of customers and network length, and
the input prices are wages, cost of capital and price of
electricity (firms purchase electricity from producers to
replace network losses),

Previous literature on the efficiency of electricity dis-
tribution firms have made different assumptions regarding
the parametrization of the inefficiency term. For example,
Orea and Álvarez (2019) assume these to include the share
of overhead lines, the number of transformer stations, and

customer density (customers per km of network length).
Musau et al. (2021) assume that the determinant for per-
sistent inefficiency is firm size (measured by logarithm of
number of network stations), and that the determinant for
transient inefficiency is value of lost load per kilometer
network.

Furthermore, while some papers only parameterize the
variance of the inefficiency term, and others only para-
meterize the mean, Wang (2002) argues for a parameterize
of both the variance and the mean. According to Kumb-
hakar et al. (2015), this double parameterization is not only
less ad-hoc, but it is also more flexible as it accommodates
non-monotonic relationships between the inefficiency and
its determinants. We follow this line of reasoning and allow
both the mean and variance of the inefficiency term to
depend on the same vector zit. Specifically, we assume four
different specifications for the determinants of transient
inefficiency. In specification 1, we do not include any
determinants of the inefficiency term; in specification 2, zit
includes small-scale generation (as percentage of total
electricity delivered); in specification 3, we add the number
of electric vehicles sold since 2012; in specification 4, we
add an indicator variable taking the value one if firm i has
introduced a demand charge tariff in year t. The persistent
inefficiency is assumed to be iid with E½ηi� ¼ a which is a
constant.

To estimate Equation (1), we follow the three-step pro-
cedure in Musau et al. (2021). In the first step, we assume
the firm-specific effects to be random. We then rewrite
Equation (1) as

lnCit ¼ ½β0 þ aþ gðzitÞ� þ f ðpit; yit; βÞ þ ½bi þ ηi � a�
þ ½vit þ uitðzitÞ � gðzitÞ�

¼ hðzitÞ þ f ðpit; yit; βÞ þ αi þ ϵit

ð3Þ

where h(zit)= β0+ a+ g(zit), αi= bi+ ηi− a and ϵit= vit+
uit(zit)− g(zit). The model in Equation (3) is a partial linear
model for random effects panel data.

We follow Musau et al. (2021) and estimate the para-
metric component f(pit, yit; β) in Equation (3) in the fol-
lowing way: first, we take the conditional expectation of
each side of Equation (3) with respect to the determinants of
the transient inefficiency, zit;

E½lnCitjzit� ¼ hðzitÞ þ f ðE½pit; yitjzit�; βÞ ð4Þ
since E½αijzit� ¼ 0 and E½ϵitjzit� ¼ 0.

We then subtract Equation (4) from Equation (3) to
obtain:

lnC�
it ¼ f ðp�it; y�it; βÞ þ αi þ ϵit ð5Þ

where lnC�
it ¼ lnCit �E½lnCitjzit� and where we have

removed the conditional mean from each of the squares
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and interactions in f(pit, yit; β) to get f ðp�it; y�it; βÞ. We
estimate the conditional means nonparametrically using
the local-linear kernel estimator (the local-constant estima-
tor gives similar results).

Estimation of Equation (5), which is a linear random-
effects panel data model, gives consistent estimates of β
irrespective of the distributions of the error components
(Kumbhakar and Lien 2017; Lien et al. 2018). It also gives
predicted values of αi and ϵit, which we use in steps 2 and 3.

In the second step, we use the predicted value of αi from
the first step: αi= bi+ ηi− a. Assuming bi � Nð0; σ2bÞ and
ηi � Nþð0; σ2ηÞ,8 we can estimate this equation using the
standard cross-sectional SF technique, where a is a constant
(see, e.g., Kumbhakar et al. 2015; Lien et al. 2018), and
obtain predicted values of the persistent efficiency as
Spi ¼ expð�ηiÞ.

Finally, in the third step, we use the predicted values of
ϵit from the first step to estimate ϵit= vit+ uit(zit)− g(zit).
We assume vit � Nð0; σ2vÞ and uitðzitÞ � Nþð0; σ2uðzitÞÞ so

that E½uitðzitÞ� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=πσuðzitÞ

p ¼ gðzitÞ. Furthermore, we

assume g(zit)= exp(δ0+ δ1zit). We then estimate ϵit= vit+
uit(zit)− g(zit), again using the traditional SFA technique, to
obtain predicted transient inefficiency values as Sui ¼
expð�uitðzitÞÞ and marginal effects of zit on the transient
inefficiency.

Although it is possible to estimate the model in a single
step (as in, for example, Badunenko and Kumbhakar 2017;
Lai and Kumbhakar 2018, 2019, there are at least two
advantages of the three-step approach over the single-step

method. First, the regression coefficients β estimated using
the three-step approach are not affected by distributional
assumptions on uit and ηi since they are estimated prior to
distributional assumptions (Kumbhakar and Lien 2017;
Lien et al. 2018). Second, the three-step approach is rela-
tively easy to implement.

Finally, we also note that previous literature has pro-
posed other alternatives to estimating determinants of
inefficiency in a parametric way. For example, Tran and
Tsionas (2009) propose a stochastic frontier model with a
non-parametric specification for covariates affecting the
mean of technical inefficiency. Zhou et al. (2020) extend
this work to also include firm heterogeneity in the non-
parametric framework. However, none of these approaches
allow for distinguishing between transient and persistent
inefficiency.

5 Data

The data used for this analysis is publicly available from the
regulator’s website (Swedish Energy Market Inspectorate,
see www.ei.se), and includes information on all (N= 179)
the Swedish DSOs’ financial and technological data for the
years 2014 to 2021. These data are used by the regulator for
measuring firm efficiency.

The data includes firm-specific capital gross investments,
which enabled us to create a firm-specific capital stock by
applying the perpetual inventory method (Berndt 1991).9

Specifically, we compute the capital stock at time t as
Kit= Iit+ (1− θ)Kit−1 where Kit denotes capital at time t, Iit
denotes gross investments in inventories and machinery,
and θ is the depreciation rate which we, following Dahlqvist
et al. (2021), assume to be 0.087. Statistics Sweden also
provided data on an investment good price index and a
long-term interest rate, both at the national level, together
with a sector-specific Producer Price Index (the output
price), which are used to calculate the user cost of capital as
follows: pK= pI/pY(r+ δ) where pI and pY denote the
investment good price index and the output price (sector-
specific Producer Price Index), respectively, r denotes the
long-term market capital interest rate and θ= 0.087 the
depreciation rate as before.

Wage is calculated for each firm by dividing yearly total
salary costs over the firm’s number of employees (full-time
and part-time), thus reflecting the average salary paid to a
employee that year. The electricity price is calculated as the
annual spending on electricity to cover network losses,

Table 1 Summary statistics

Mean Std. Dev. Min Max

Cost (MSek) 128,050 186,189.2 1,380 1,401,259

Wage (1000 Sek) 741.515 294.852 101 3705

Rental price of capital
(Sek)

0.092 0.005 0.086 0.104

Electricity price (Sek) 0.383 0.116 0.069 1

Network length (km) 1,765.682 3,084.903 44 27,818

No. of customers 20,192.6 31,214 276 270,030

Share of small-scale
generation

4.876 9.049 0 88.612

Number of network
stations

555.858 1,026.733 15 8,826

Share of overhead lines 0.180 0.174 0 0.751

Customer density 106.849 59.0128 27.090 306.858

Observations 872

8 Greene (1990) compared average inefficiency levels across four
main distributional specifications for the one-sided inefficiency term
(half-normal, truncated normal, exponential, and gamma) and found
that there is almost no difference in average inefficiency for 123 U.S.
electric utility providers.

9 This requires at least two observations on capital gross investments
over two consecutive years for each firm. When this is not available,
observations have been excluded.
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divided by the quantity (in kWh) purchased. All monetary
values in this paper are in 2014 SEK.

Summary statistics of the key variables included in the
empirical modeling are presented in Table 1.

As already discussed, firms differ markedly in size,
illustrated by the large heterogeneity in costs, network
length and number of customers, which mostly reflects
variation across firms and not across time. For example,
Fig. 1 illustrates that there is little variation in costs over
time. Interestingly, there is large variation in customer
density, illustrating that firms operate in very different
environments. Furthermore, we note that there is large
heterogeneity in all of the input prices. However, it is worth
noting that while our data have variation across firms in the
price of labor and electricity, there is no across-firm varia-
tion in the user cost of capital, and this should be kept in
mind when interpreting these results. In particular, this
means that it might be difficult to distinguish the effects of
changes in interest rates to other events that affect firms in
similar ways.

The regulator distinguishes between small-scale and
micro-scale generation in the collection of data, where the
former typically refers to wind power and the latter to solar
power installations on roof tops. We briefly discuss the
differences between these two measures here, but will in the
rest of the paper focus on the aggregate of these two and
refer to this quantity as small-scale generation. However, as
a robustness analysis, we also estimate specifications where
we allow these two measures to have different effects on the
transient inefficiency.

While we see a large increase in micro-scale generation
over time (and a large variation across firms as well) in the
left panel in Fig. 2, it is interesting to note that the small-
scale generation is relatively stable over time (right panel in
Fig. 2) but varies substantially across firms, with a mini-
mum of zero and a maximum close to 150,000 MWh (note
that outside values are excluded in Fig. 2 to make it more
easily readable). In shares of total generation within a grid,
these numbers corresponds to a range from 0 to 0.9. We
also note that the total amount of delivered electricity has
been relatively stable over time.

In addition to the above data, we have collected annual
data on the total number of new EVs sold since 201210 in
each municipality from Statistics Sweden (see https://www.
scb.se), and matched these municipality-level data to each
grid area. However, there are a number of grids that either
(i) only serve rural areas, with no metropolitan area, or (ii)
serve several grids. Unfortunately, our data does not allow
for matching these grids to car sales at the municipality
level, and these grids (27 grids) are therefore excluded from
the regressions where we explore the effects of EV sales on
the cost of technical inefficiency. While the total number of
EVs, including cars sold before 2012, and vintage EVS,
should be what really matter to the operation of distribution
firms (rather than only new cars sold since 2012), we do not
have access to such data. However, we expect new EVs per

Fig. 1 Box plot of costs, prices
and customer density

10 In a given year, EVit ¼
Pt

t¼0 evit where ev is the number of cars
sold in a given year, and EV is the aggregate number of sold cars since
t= 0 (2012, in our case).
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municipality to be highly correlated to the total number
of EVs.

Figure 3 provides a box plot of the distribution of EVs, by
grid area. Evidently, the number of EVs has increased sub-
stantially during the latter part of the sample period, but with
substantial heterogeneity across grid areas. In particular, some
grid areas have seen a much larger increase in the number of
EVs than other grids, and this is the case even if we account
for the total number of cars sold per price area (e.g., by
dividing the number of EVs by the total number of sold cars).

Finally, we have collected information about if and when
firms have introduced demand charges. At the end of our
sample period, a total of 10 firms had done so, which means
that our analysis of pricing schemes on the cost of technical
inefficiency relies on a relatively few number of

observations of non-zero outcomes. This should be kept in
mind when subsequently interpreting the results.

6 Results

We estimate the cost function in Equation (1) for the different
specifications of the inefficiency term, using the three-step
approach described in Section 4 and the data described in
Section 5. Parameter estimate for the first-step estimation (i.e.,
the random effects model) are presented in Table 4 in the
Appendix, associated elasticities at the mean in Table 2 and
the distribution of elasticities in Fig. 4, efficiency scores are
presented in Table 5, and determinants of the transient inef-
ficiency are presented in Table 3. The number of observations
differ across the specifications since there are a number of
grids (27 grids) where our data does not allow for matching
these grids to car sales at the municipality level, and these
grids are therefore excluded from the regressions where we

Fig. 2 Small-scale and micro-
scale generation

Fig. 3 Number of EVs per grid area over years

Table 2 Elasticities of total cost with respect to prices and outputs

Elasticity Std. Err.

Wage −0.505 0.444

Price of electricity 0.142 0.231

User cost of capital −39.503 36.238

Cable length 0.605** 0.250

Number of customers 1.901*** 0.255

Standard errors are computed using the delta method

Asterisks indicate p-values with *p < 0.10, **p < 0.05, ***p < 0.01
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explore the effects of EV sales on the cost of technical inef-
ficiency. However, using only the smaller sample from spe-
cification 3 and 4 to estimate specification 1 and 2 does not
change our results to any large extent.

Starting with the parameters in the cost function, a first
thing to notice from Table 2 is that the only elasticities that
are statistically different from zero are the output elasti-
cities, with estimated elasticities of 0.605 for cable length
and 1.901 for number of customers. The former elasticity is
in line with previous literature; for example, Orea and
Álvarez (2019) finds this to be 0.708 for electricity dis-
tribution in Norway. The elasticity with respect to the
number of customers is larger than those found in previous
literature; for example, Zeebari et al. (2022) find this elas-
ticity to be 0.8087, whereas Orea and Álvarez (2019) find
this elasticity to be approximately 0.163 (at the mean values
of number of customers and cable length).11 However, from

Fig. 4, we see that the elasticities vary across firms, with, for
example, the elasticity with respect to cable length varying
from zero to more than unity.

Furthermore, the mean elasticities with respect to input
prices are all positive but statistically insignificant, and with
a rather large variation across firms. In Table 10, where we
assume the cost function to be Cobb-Douglas instead of
translog, we find positive and significant elasticities with
respect to the price of capital and the price of electricity, but
the elasticity with respect to the cost of labor is insignificant;
this is different from, e.g., Zeebari et al. (2022), who find the
elasticity with respect to the cost of labor to be positive and
statistically significant, with an estimate of 1.1079.

Next, we turn to the estimated efficiency scores, pre-
sented in Figs. 5, 6, 7 where we show box plots for the
inefficiency scores for all four specifications. We also pre-
sent mean, min and max efficiency scores in Table 5 in the
Appendix. Beginning with the transient efficiency, the mean
scores vary between 0.59 and 0.97, depending on specifi-
cation, and where the efficiency scores from specifications
2, 3 and 4 are lower than for specification 1. For specifi-
cations 2 to 4, there is substantial heterogeneity among
firms, as indicated by the difference between min and max
efficiency. The mean persistent efficiency is relatively large,
with a score of 0.915, but again with substantial hetero-
geneity among firms. The mean overall efficiency varies

Fig. 4 Distribution of elasticities of total cost with respect to prices and outputs

11 Furthermore, Kumbhakar et al. (2020); Musau et al. (2021) study
similar problem as ours for the Norwegian electricity distribution
sector, but from an input demand perspective (estimating first order
conditions from a cost minimization). Both approaches are input
oriented but the elasticity estimates generated are not directly com-
parable since our more “primal” approach estimates (i.e.,
∂C=∂piÞ=ðpi=CÞ) and an input demand elasticity - as in the case of
Kumbhakar et al. (2020); Musau et al. (2021) - would be
ð∂2C=∂p2i Þ=ðpi=XiÞ, and therefore not directly comparable.
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between 0.54 and 0.89, but where the least efficient firms
have an efficiency score of less than 0.4. For comparison,
Vesterberg et al. (2021) find technical efficiency for
Swedish electricity distribution firms to be in the range of
0.33 to 0.95.

The determinants of the inefficiency term are presented
in Table 3. We also illustrate the distribution of marginal
effects in Fig. 8 (see Kumbhakar et al. 2015; Wang and
Schmidt 2002 for how these marginal effects are computed)
and the the distribution of the percentage of small-scale
generation Fig. 9. In the results for specification 2, we see
that an increasing share of small-scale generation reduces

both the mean and the variance of the transient inefficiency.
However, the marginal effects on the mean and variance of
the inefficiency term are small and close to zero.12 Fur-
thermore, the effect of EVs on the mean of the inefficiency
is close zero, albeit statistically significant, and the effect of
EVs on the variance of the inefficiency is statistically
insignificant. We find no significant effect of the introduc-
tion of demand charges on the inefficiency, neither on the
mean nor on the variance.

6.1 Robustness analysis

To asses the robustness of our empirical analysis, we esti-
mate a number of alternative specifications; the results are
briefly summarized below and the estimation output is
presented in the Appendix in Section B and Section C.

First, we estimate the third step of the model assuming
either that the environmental variables (percentage of

Table 3 Determinants of transient inefficiency, translog specification

(1) (2) (3) (4)

Mean of uit
Percent small-scale generation −0.032* −0.074** −0.075**

(0.018) (0.035) (0.038)

EV and Plug-in hybrids −0.001** −0.001*

(0.000) (0.000)

Demand charge −0.653

(0.919)

Constant −36.095

(57.428)

Variance of uit
Percent small-scale generation −0.058*** −0.053** −0.058**

(0.020) (0.025) (0.027)

EV and Plug-in hybrids −0.000 −0.000

(0.000) (0.000)

Demand charge −0.543

(0.726)

Constant −0.062

(1.595)

Variance of vit
Constant −5.422*** −0.425** −1.163*** −1.277***

(0.063) (0.215) (0.168) (0.172)

Observations 872 872 639 639

Standard errors in parentheses

*p < 0.10, **p < 0.05, ***p < 0.01

Fig. 5 Distribution of transient efficiency scores

Fig. 6 Distribution of persistent efficiency scores

Fig. 7 Distribution of overall efficiency scores

12 Furthermore, the association between the marginal effects and the
share of small-scale generation is not very clear.
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small-scale generation, number of electric vehicles and
demand charge) only influence the mean, or only the variance,
of the transient inefficiency. These results are presented in
Tables 6 and 7. When the environmental variables only affect
the mean inefficiency, we find a negative effect of small-scale
generation and electric vehicles on the mean transient ineffi-
ciency, but the effects are small or insignificant, depending on
the specification. Similar to the translog specification, we find
no significant effect of introducing a demand charge. Results
are similiar if we instead the environmental variables only
affect the variance of the inefficiency.

Second, we estimate the third step of the model where we
only include the environmental variables percentage of
small-scale generation, the number of EVs and the intro-
duction of demand charge separately. These results are

presented in Table 8, and show that the percentage of small-
scale generation and the number of EVs on the mean has a
negative effect on the mean and that the percent of small-
scale generation has a negative effect on the variance.
However, similiar to our main specification, the effects are
very small. Note that the results in the first column are
identical to the results in the first column in Table 3; we
include these results for comparison.

Third, we estimate a specification where we distinguish
between small- and micro-scale generation; see Section 5
for details about these variables. We estimate three speci-
fications; one where both the mean and the variance depend
on small- and micro-scale generation, a second specification
where the environmental variables only affect the mean, and
a third specification where the environmental variables only
affect the variance. In all three specifications, the effects of
small- and micro-scale generation are very close to zero.

Fourth, we have estimated the model but assuming that the
cost function is described by a Cobb-Douglas specification
rather than a translog specification. These results are presented
in Tables 10, 11 and 12. Worth noting is that a likelihood ratio
test reveals a significant improvement in model fit for the
translog specification over the Cobb-Douglas specification. A
first thing to notice is that the elasticity of total costs with
respects to the input prices for capital and electricity are
significant and positive (see Table 10), which is a different
result than from the translog specification, where all input
price elasticities were insignificant. Furthermore, and similar
to the translog specification, the elasticities for total cost with
respect to outputs are significant and positive. The efficiency
scores for the Cobb-Douglas specification (Table 11) are

Fig. 8 Marginal effects of the
percentage of small-scale
generation on the mean and
variance of the transient
inefficiency term

Fig. 9 Distribution of the percentage of small-scale generation
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approximately similar to the efficienct scores obtained from
the translog specification, and again, we note that there is a
large heterogeneity among firms.

For the determinants of the transient inefficiency (Table 12),
we first note that in specification 1, small-scale generation has
a negative and significant effect on both the mean and the
variance of the inefficiency. Second, we note that the effect of
EVs on both the mean and the variance are close to zero of
insignificant. Finally, we find no significant effect of the
introduction of demand charges.

To summarize, we have estimated a range of alternative
specifications, and the results appear robust. In particular,
the effects of the environmental variables on the mean and
variance of the transient inefficiency are small.

7 Conclusions

In this paper, we explore how increasing small-scale gen-
eration and an increasing number of electric vehicles affect
the cost of technical inefficiency of electricity distribution
firms in Sweden. Using a detailed firm-level panel data with
information about both the percentage of small-scale gen-
eration, and the number of electric vehicles sold, we esti-
mate a SFA model using the three-step approach suggested
by Musau et al. (2021).

Our results reveal that there is substantial heterogeneity
in efficiency among firms, with mean overall efficiency
scores ranging from 0.6 to 0.9, depending on specification.
We also show that the mean transient (or short run) ineffi-
ciency is larger than the mean persistent (or long term)
inefficiency. Furthermore, we find little to no effect of
small-scale generation and electric vehicles on the transient
inefficiency, with marginal effects being close to zero for
most firms.

Our results have important policy implications. First,
there has been a worry that an increasing share of inter-
mittent distributed generation may pose management,
planning, and coordination challenges in the delivery of
electricity, and that since distribution networks are not
designed to accommodate generation, only consumption,
this may reduce grid efficiency. Our results suggest that this
worry may be exaggerated, and that the effects of dis-
tributed small-scale generation has only small effects on
grid efficiency.

Second, there has been similar discussions about how the
increasing number of electric vehicles may affect the grid:
e.g., charging of electric vehicles may contribute to grid
congestion, especially if charging coincides with system
peak demand, and that electric vehicles may lead to a series
of negative impacts on power quality. However, our results
suggest that an increasing number of electric vehicles does
not have any effect on grid efficiency.

Third, we find no effect on the efficiency of grids from
the introduction of time-varying distribution tariffs. The
motivation for these tariffs is to smooth consumption,
reduce the need for costly investments, lower costs and
improve grid efficiency, but these effects are question-
able, according to our results. On the other hand, it
should be kept in mind that these type of tariffs are still
rare among distribution firms, and that in our data, few
firms have introduced such tariffs. Thus, our results
regarding this development should be interpreted with
caution, and we call for more research on the impact of
time-varying distribution tariffs and their effects on grid
operation.

To summarize, we show little to no effect of small-scale
generation and electric vehicles on the efficiency of elec-
tricity distribution grids in Sweden. Further research is
needed, however, to confirm these results, and especially
demand charges should be studied in the future, as more and
more firms adopt these pricing strategies.
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9 Appendix B: Robustness analysis

Tables 6, 7, 8, 9

Table 4 Cost function parameter estimates

Coefficient Std. Err.

Wage −0.507 0.445

Price capital −39.532 36.249

Price electricity 0.143 0.232

Network length 0.617** 0.253

No. of customers 1.914*** 0.254

Wage x Price capital −0.194 0.302

Wage x Price electricity −0.044 0.060

Wage x Network length −0.017 0.044

Wage x No. of customers 0.067 0.041

Price capital x Price electricity −0.089 0.145

Network length x Price capital 0.005 0.024

Price capital x No. of customers 0.906*** 0.104

Price electrcity x Network length 0.042 0.043

Price electricity x No. of customers −0.066* 0.040

Network length x No. of customers −0.418*** 0.124

Wage squared −0.004 0.053

Price capital squared −15.711 15.330

Price electricity squared −0.071* 0.041

Network length squared 0.256*** 0.064

No. of customers squared 0.104* 0.061

Constant −0.068 0.072

Observations 872

*p < 0.10, **p < 0.05, ***p < 0.01

Table 5 Efficiency scores, translog specification

Mean Std. dev. Min Max

Transient efficiency 1 0.974 0.012 0.718 0.990

Transient efficiency 2 0.592 0.052 0.534 0.952

Transient efficiency 3 0.662 0.102 0.525 0.994

Transient efficiency 4 0.673 0.104 0.530 0.995

Persistent efficiency 0.915 0.049 0.714 0.975

Overall efficiency 1 0.891 0.050 0.617 0.960

Overall efficiency 2 0.542 0.055 0.394 0.831

Overall efficiency 3 0.604 0.098 0.409 0.929

Overall efficiency 4 0.614 0.101 0.413 0.936

Observations 872

Table 6 Determinants of transient inefficiency, zit only affect mean

(1) (2) (3)

Mean of uit
Percent small-scale generation −0.251*** −0.503*** −0.482***

(0.033) (0.105) (0.110)

EV and Plug-in hybrids −0.003*** −0.002***

(0.001) (0.001)

Demand charge −0.023

(0.546)

Variance of uit
Constant −1.048*** −0.315 −0.766**

(0.243) (0.332) (0.369)

Variance of vit
Constant −2.307*** −1.825*** −2.203***

(0.440) (0.452) (0.483)

Observations 872 639 639

Standard errors in parentheses

Asterisks indicate p-values with *p < 0.10, **p < 0.05, ***p < 0.01

Table 7 Determinants of transient inefficiency, zit only affect variance
of uit

(1) (2) (3)

Mean of uit
Constant −0.025 −0.005 −0.000

(0.134) (0.046) (0.003)

Variance of uit
Percent small-scale generation −0.165*** −0.234* −0.214***

(0.027) (0.123) (0.062)

EV and Plug-in hybrids −0.002 −0.003*

(0.001) (0.002)

Demand charge −0.023

(0.831)

Variance of vit
Constant −2.001** −2.995* −0.538**

(0.824) (1.570) (0.242)

Observations 872 639 639

Standard errors in parentheses

Asterisks indicate p-values with *p < 0.10, **p < 0.05, ***p < 0.01
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10 Appendix C: Cobb-Douglas results

Tables 10, 11, 12

Table 8 Determinants of transient inefficiency, separate environmental
variables

(1) (2) (3)

Mean of uit
Percent small-scale generation −0.032*

(0.018)

EV and Plug-in hybrids −0.009***

(0.001)

Demand charge −0.160

(0.362)

Variance of uit
Percent small-scale generation −0.058***

(0.020)

EV and Plug-in hybrids 0.000*

(0.000)

Demand charge −4.073***

(1.322)

Variance of vit
Constant −0.425** −3.140*** −8.758***

(0.215) (0.176) (0.969)

Observations 872 639 857

Standard errors in parentheses

Asterisks indicate p-values with *p < 0.10, **p < 0.05, ***p < 0.01

Table 9 Determinants of transient inefficiency, separate small-scale
and micro-scale

(1) (2) (3)

Mean of uit
Small-scale generation (MWh) −0.000 −0.000**

(0.000) (0.000)

Micro-scale generation (MWh) −0.000* −0.002***

(0.000) (0.001)

Constant −1.734***

(0.199)

Variance of uit
Small-scale generation (MWh) −0.000 −0.000*

(0.000) (0.000)

Micro-scale generation (MWh) –0.000 −0.000***

(0.000) (0.000)

Constant −0.674***

(0.137)

Variance of vit
Constant −0.935*** −1.265 −1.902***

(0.133) (.) (0.183)

Observations 872 872 872

Standard errors in parentheses

Asterisks indicate p-values with *p < 0.10, **p < 0.05, ***p < 0.01

Table 10 Elasticities of total cost with respect to prices and outputs,
Cobb-Douglas specification

Elasticity Std. Err.

Wage −0.024 (0.024)

Price capital 0.996*** 0.253

Price electricity 0.024* 0.013

Network length 0.374*** 0.024

No. of customers 0.600*** 0.022

Constant −0.111*** 0.032

Observations 885

Standard errors are computed using the delta method

Asterisks indicate p-values with *p < 0.10, **p < 0.05, ***p < 0.01

Table 11 Efficiency scores, Cobb–Douglas specification

Mean Std. dev. Min Max

Transient efficiency 1 0.591 0.052 0.532 0.952

Transient efficiency 2 0.655 0.103 0.518 0.995

Transient efficiency 3 0.670 0.104 0.528 0.995

Persistent efficiency 0.997 0.000 0.997 0.997

Overall efficiency 1 0.590 0.052 0.531 0.950

Overall efficiency 2 0.653 0.103 0.517 0.993

Overall efficiency 3 0.668 0.104 0.527 0.993

Observations 885

Table 12 Determinants of transient inefficiency, Cobb–Douglas
specification

(1) (2) (3)

Mean of uit
Percent small-scale generation −0.032* −0.076** −0.077**

(0.018) (0.033) (0.037)

EV and Plug-in hybrids −0.001** −0.001

(0.000) (0.000)

Demand charge −0.619

(0.904)

Variance of uit
Percent small-scale generation −0.058*** −0.049** −0.056**

(0.020) (0.023) (0.026)

EV and Plug-in hybrids −0.000 −0.000

(0.000) (0.000)

Demand charge −0.534

(0.726)

Variance of vit
Constant −0.413* −1.064*** −1.254***

(0.214) (0.166) (0.170)

Observations 885 643 643

Standard errors in parentheses

Asterisks indicate p-values with *p < 0.10, **p < 0.05, ***p < 0.01
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