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Summary
Epistasis refers to nonallelic interaction between genes that cause bias in estimates of genetic

parameters for a phenotype with interactions of two or more genes affecting the same trait.

Partitioning of epistatic effects allows true estimation of the genetic parameters affecting

phenotypes. Multigenic variation plays a central role in the evolution of complex characteristics,

among which pleiotropy, where a single gene affects several phenotypic characters, has a large

influence. While pleiotropic interactions provide functional specificity, they increase the

challenge of gene discovery and functional analysis. Overcoming pleiotropy-based phenotypic

trade-offs offers potential for assisting breeding for complex traits. Modelling higher order

nonallelic epistatic interaction, pleiotropy and non-pleiotropy-induced variation, and

genotype 9 environment interaction in genomic selection may provide new paths to increase

the productivity and stress tolerance for next generation of crop cultivars. Advances in statistical

models, software and algorithm developments, and genomic research have facilitated dissecting

the nature and extent of pleiotropy and epistasis. We overview emerging approaches to exploit

positive (and avoid negative) epistatic and pleiotropic interactions in a plant breeding context,

including developing avenues of artificial intelligence, novel exploitation of large-scale genomics

and phenomics data, and involvement of genes with minor effects to analyse epistatic

interactions and pleiotropic quantitative trait loci, including missing heritability.

Epistasis and pleiotropy in the evolution of
complex traits

Complex multigenic traits, those not following Mendelian

inheritance, are often affected by intra- or inter-locus interactions

(dominance or epistasis, respectively) and pleiotropy (gene

interactions). They often exhibit large phenotypic variation and

are highly influenced by genotype 9 environment interactions

(GEI; Cooper et al., 2009), while gene identification and

inheritance patterns do not explain transmitability (the missing

heritability problem). These traits vary in number or locus effects;

i.e. from a few to many, with small effects. Epistasis has been

recognized as fundamentally important to unlock and exploit the

structure and function of genetic pathways and evolutionary

dynamics of complex genetic systems (Phillips, 2008).

Bateson (1909) first coined the term epistasis to describe the

deviation between the prediction of segregation ratios based on

the action of individual genes and the phenotypes of a

segregating dihybrid population. Geneticists over the years

expanded the term epistasis into the functional relationship

between genes, genetic ordering of regulatory pathways, and

quantitative differences of allele-specific effects (Phillips, 1998).

Epistasis, in addition to additive and dominance models, is an

important genetic component of the variation of phenotypic traits

in natural and breeding populations. A classical dihybrid ratio

assuming two different genes controls two different traits and if

each gene locus had an independent effect on a single phenotype

result in a typical 9 : 3 : 3 : 1 ratio in a F2 population. A deviation

from this well-established ratio results in a different phenotypic

ratio when two or more genes contribute to the same phenotype.

The most detected form of two gene epistasis interactions is

12 : 3 : 1 (dominant epistasis), 9 : 3 : 4 (recessive epistasis),

9 : 6 : 1 (duplicate gene with cumulative effect), 15 : 1 (dupli-

cate dominant genes), 9 : 7 (duplicate recessive genes), and

13 : 3 (dominant and recessive interaction). The digenic epistasis

interactions for multigenic traits are termed as additive 9 addi-

tive, additive 9 dominance, and dominance 9 dominance inter-

actions for the inheritance of quantitative traits (Kearsey and

Pooni, 1996; Mather and Jinks, 1982).

Epistatic interactions involving three or more loci contributing

to complex traits (high-order epistasis) are challenging to detect,

typically requiring very large mapping populations with robust

phenotype data, with the traits themselves often being sensitive

to very local environmental conditions. The evidence from model

organisms, however, indicates that high-order genic interactions

frequently influence genetics and contribute to the evolution of

complex traits (Taylor and Ehrenreich, 2015). Epistasis interactions

shape the genotype–phenotype map of every species, and
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beneficial variants are more likely to exhibit genetic interactions

(Ang et al., 2023). The evidence suggests that epistasis

significantly influences the genetics of complex traits and

heterosis (Sang et al., 2022; Yu et al., 1997). The interaction of

several minor-effect genes in hybrids could activate the transcrip-

tion activators of epistatic genes, thereby resulting in a cascade of

amplified heterosis (Sang et al., 2022).

The term pleiotropy, introduced for the first time by a German

geneticist Ludwig Plate in 1910, refers to the phenomenon in

which a single locus affects two or more distinct phenotypic traits.

Pleiotropy has significant influence in development, physiological,

and medicinal genetics and on molecular and evolutionary

biology in all living organism (Paaby and Rockman, 2013;

Stearns, 2010), which could be a gene pleiotropy, developmental

pleiotropy, or selectional pleiotropy (Paaby and Rockman, 2013).

Both forward- and reverse-genetic approaches may be used to

unearth the pleiotropic nature of trait expression. There are

conceptual and operational constraints in detecting and quanti-

fying pleiotropy. A review of empirical data on pleiotropy shows

an L-shaped distribution of the degree of pleiotropy (i.e. the

number of traits affected), with most genes having low

pleiotropy. In crop breeding, pleiotropy could either be antago-

nistic, which may constrain adaptation or synergistic, which may

produce phenotypic novelties to favour adaptation (Zhang, 2023).

The genetic correlation between traits remains inherent in

pleiotropy, while in linkage, it is breakable. Both sources of

correlations could be modified, the former by mutation or

segregation modifiers, the latter by recombination (Paaby and

Rockman, 2013). Linkage refers to the increased likelihood of two

traits being inherited together if they are located relatively close

to each other on the same chromosome. The available literature

indicates wide occurrence of both epistasis and pleiotropy,

though to varying degrees, in crops. All these interactions are

difficult to detect, conventionally requiring large mapping

populations. The combination of the better understanding of

the nature of the interactions, dense genotype and marker data

from multiple lineages, and developing analytical tools, is

enabling selection to advance with strong genetic support.

Form, function and extent of epistasis and
pleiotropy affecting trait variation

Epistasis involves interactions between multiple genes, a

phenomenon contributing to the complexity of understanding

and exploiting genetic variation in crop plants. Much quantita-

tive variation (traits showing continuous variation) in crops

involves epistatic or pleiotropic interactions, while distinct

character states (Mendelian characters) often involve single

genes (the mantra of ‘one-gene, one-trait’). Additional quanti-

tative variation may arise from, or involve, epigenetic and gene

silencing mechanisms, so analysis must also account for these

sources of variation.

Epistatic interactions, where the effect of one gene (genetic

locus) on a trait is influenced by one or more other genes, can

mask or enhance the expression of certain traits. Thus, epistasis

leads to non-additive genetic effects, where the combined effect

of two (or more) genes is greater or less than the sum of their

individual effects. The interaction leads to ‘missing heritability’

when using a genome-wide association study (GWAS) approach,

in which the fraction of trait variation accounted for by

inheritance of various genes, is other than one (Zhang

et al., 2015). This requires more complex analysis of regulatory

networks (Kim et al., 2008; Zhou et al., 2022). Epistatic

interactions can be either positive (synergistic) or negative

(antagonistic). Positive epistasis occurs when the combined effect

of genes is greater than expected, thereby resulting in a larger

effect on trait variation. Negative epistasis occurs when the

combined effect is less than expected, which leads to a smaller

effect on trait variation.

In the case of pleiotropy, a single gene affects multiple traits

with various phenotypic effects. The traits may be clearly related

(e.g. biomass yield and heading date for a forage grass; Anhalt

et al., 2009), or under study, such as multiple biotic and abiotic

stress resistances from single genes (Wisser et al., 2011).

Pleiotropy can also occur from the simultaneous expression of

unrelated traits under the control of shared transcription factors.

Because genes affecting multiple traits can have cascading effects

on aspects of plant development, physiology, or metabolism, the

extent of pleiotropy may vary because it depends on the gene and

traits involved. Some genes may have a relatively narrow

pleiotropic effect and there may be alternative pathways, so they

affect only a few related traits, while others may have a broader

pleiotropic effect, thereby influencing a wide range of agronomic

traits.

Both epistasis and pleiotropy contribute to the complexity of

trait variation in crop plants. Understanding these genetic

phenomena, including the development of appropriate analytical

tools, is crucial for plant breeders. Manipulation of both epistatic

interactions and pleiotropic effects helps breeders better predict

and control trait expression, leading to a more efficient crop

selection strategy.

Epistasis bias in estimating genetic parameters
and in response to selection

Epistasis bias affects the estimation of genetic parameters in plants

due to the presence of gene interactions. These interactions are

difficult to capture and are often ignored in genetic analysis.

This leads to bias in predicting traits from genomic information

and reduces the speed at which crop plants can be improved

using molecular technology. Epistasis bias has been previously

noticed, e.g. in the resistance of pepper (Capsicum annuum L.) to

phytophthora stem blight (Phytophthora capsici L., Bartual

et al., 1993). In a study of pod yield and related traits in peanut

(Arachis hypogaea L.), epistasis affected the expression of eight out

of 11 traits analysed across environments (Upadhyaya and

Nigam, 1998). A follow-up study noted epistasis in the prediction

of protein and oil content in peanut (Upadhyaya andNigam, 1999).

Bias due to linkage disequilibrium (LD) and epistasis was observed

in a study of seed yield and 100-seed weight in common bean

(Phaseolus vulgaris L.), which observed that epistasis was

widespread, and bias was more frequent in inter-gene pool crosses

than in intra-gene pool crosses (Borel et al., 2016). While epistasis

bias is difficult to avoid due to the complexity of gene interactions

and the large number of markers that have small effects,

Bocianowski (2014) suggests that using all loci, not only the loci

with significant main effects, for estimation of the epistatic effects

may help capture this missing heritability. This was supported by

extensive analysis of several barley (Hordeum vulgare L.) popula-

tions (Bocianowski, 2014).

As the ability to generate large quantities of both DNA marker

and complex phenotype data continues to grow, together with

more advanced methods for trait association, including pange-

nomics and machine learning (Bayer et al., 2021), breeders, and
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researchers will gain an increased capacity to assess epistatic

effects and reduce epistasis bias in crop trait prediction.

Linkage and pleiotropy affect genetic
correlations

Quantitative traits are often controlled by many genes with small

effects. A significant part of this variation is attributed to the

environment and its interaction with the genotype. The nature

and magnitude of genetic correlation measures the strength and

direction of trait association, which may arise from either

pleiotropy or linkage disequilibrium (LD), confounded at the

level of quantitative trait loci (QTL) or genes (Chen and

L€ubberstedt, 2010; Schulthess et al., 2017). Selection

and mutation affect genetic correlations (Chantepie and Che-

vin, 2020; Chebib and Guillaume, 2021). Differentiating between

the two competing phenomena remains a significant challenge in

biology. Advances in genomics provide researchers the opportu-

nity to differentiate intragenic linkage from true pleiotropy.

Disadvantageous genetic correlations may limit breeders’

ability to tailor resource use efficient cultivars to produce high

yields and desired produce quality. A genome wide study

involving a rice (Oryza sativa L.) core collection phenotyped

under long and short days and genotyped with 4.6 million single

nucleotide polymorphisms (SNPs) revealed a positive correlation

between heading date and grains per panicle, and negative

correlation between grains per panicle and panicles per plant, as

well as varying correlations among other traits. In total, 47

pleiotropic genes in 15 pleiotropic quantitative trait loci (pQTLs),

18 pleiotropic genes containing 37 pleiotropic SNPs in eight

pQTLs, and 39 pairs of interactive genes from eight metabolic

pathways contributed to phenotypic correlations, of which 27

pQTLs had r2 of LD above 0.2. Thus, deploying pQTLs and

interactive genes and associated SNPs may open new avenues

to overcome disadvantageous correlations and to utilize the

advantageous correlations through genomic-assisted breeding (Li

et al., 2018a). Plant height and seed weight in domesticated

barley remain positively correlated irrespective of growth type and

habit. A recent study involving plant height and seed weight on a

diverse barley panel and genome-wide SNPs demonstrated that

17 SNPs had a pleiotropic effect on both traits and genes with

function in diverse traits related to plant growth and development

(He et al., 2023a).

Differentiating the effect of close genetic linkage from

pleiotropy is difficult. A universal, rapid, and precise breeding

system integrating knowledge from genetic mapping and

functional analyses, as evidenced in rice, may provide an efficient

platform to bridge ever-increasing genomic knowledge and

diverse improvement needs (Wei et al., 2021). A comprehensive

and versatile genome database with functional needs has also

been developed to navigate and dissect wheat (Triticum aestivum

L.) germplasm resources for functional characterization of genes

associated with complex traits (Chen et al., 2024).

Models, software, and algorithms to analyse
quantitative trait loci (QTL) related to epistasis
and pleiotropy

Discovering and understanding the causes of pleiotropy may

improve our understanding of how a gene is involved in trait

expression. A number of valuable models have been developed,

although their complexity often means the algorithms are

computationally demanding. Software, some overviewed here

(Figure 1; Table 1), is often freely available. The null hypothesis in

multivariate methods assumes that none of the traits are

associated with a genetic variant, and deviations from the null

hypothesis indicate the presence of pleiotropy affecting two or

more traits. A novel likelihood ratio test (LRT) for pleiotropy is

based on linear regression methods for quantitative traits. LRT

closely follows a v2 distribution when only one trait is associated

with a genetic variant. In a sequential test, the null hypothesis first

tests a ‘no association’ model and, if significant, it is to be

Figure 1 Overview of the methods for detecting and validating epistatic and pleiotropic interactions among genetic variants, including SNPs and genes.
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followed by a test whether only one or multiple traits are

associated. If the test of only one associated trait rejects, then

follow sequential testing of the null of ‘j’ associated traits, until

the sequential test fails to reject the null hypothesis. Following

this, one could assess the number of traits associated with a

genetic variant, accounting for the correlation among traits.

However, this test including other methods has a limited power if

the allele is rare in the population. Furthermore, this test assumes

that all traits are quantitatively inherited traits (Schaid

et al., 2016). They further extended this approach to include

traits that can be modelled by generalized linear models, such as

binary traits, ordinal, or quantitative traits, or a mixture of these

traits. It provides a testing framework to determine the number of

traits associated with a genetic variant, as well as which traits,

while accounting for correlations among the traits (Schaid

et al., 2019). Sample size, number of traits, and trait correlations

however may limit the detection of pleiotropy.

Complex traits are controlled by many genes with small effects.

Detecting high-order epistasic interactions is a significant

challenge. A novel method, epiMEIF, detects higher order

epistatic interactions based on a group of SNPs potentially

associated with the phenotype. The tree structure facilitates the

identification of n-way interactions between the SNPs via

extensive simulations. It can handle a wide range of complex

genome-wide association studies. The effectiveness of epiMEIF is

further validated in large simulation experiments reflecting a wide

spectrum of complex models and with real datasets (Saha

et al., 2022).

Ponte-Fernandez et al. (2022) compared a variety of statistical

methods to detect high-order interactions in terms of runtime,

detection power, and type I error rate. The exhaustive methods

perform well across all experiments, although their computational

cost may be prohibitive. The consistency of epistasis interactions,

in the absence of marginal effects, is a drawback in

non-exhaustive methods. Some of these (BADTrees, FDHE-IW,

SingleMI, or SNPHarvester) are however effective in determining

high-order interactions in the presence of marginal effects. For

controlling false-positives, SNPHarvester, FDHE-IW, and DCHE

perform well. No single epistasis detection method applies in all

situations, so researchers should balance analysis between

exhaustive methods if sufficient computational resources are

available, and non-exhaustive methods when the analysis time is

prohibitive.

Sakai et al. (2021) developed a simple and easy-to-perform

method to detect epistasis. Recombinant inbred lines stepwise

epistasis detection (RIL-StEp) uses genome-wide SNPs to detect

epistasis, as evidenced for seed hull colour and chlorophyll

content in rice, with a potential to identify epistatic interactions in

other crops as well. The combined analysis of pleiotropy and

epistasis (CAPE) integrates data across multiple quantitative traits

to determine epistatic interactions. By doing this, it not only

increases power to detect genetic interactions but also interprets

these interactions across traits to identify interactions consistent

across all datasets. An informative and interpretable interaction

network, it explains how variants interact with each other to

influence related traits. A platform-independent R package can

Table 1 Summary of software package, access code, and important features for detecting pleiotropy and/or high-order epistasis interactions

Software package Access Remarks

epiMEIF https://github.com/TAGC-

NetworkBiology/epiMEIF

A high-performance flexible method for detecting higher order epistasis interactions

BADTrees https://github.com/guyrt/WFUBMC/ Can determine high order interactions in the presence of marginal effects

FDHE-IW http://www.mdpi.com/2073-4425/9/9/

435/s1

Detects high-order epistasis based on an interaction weight method

SingleMI https://github.com/sleeepyjack/singlemi/ Ultra-fast GPU based method for detecting higher order epistatic interactions

SNPHarvester https://doi.org/10.1093/bioinformatics/

btn652

Method to detect SNP–SNP interactions in GWA studies and harvests significant SNP

groups that pass the statistical tests

RIL-StEp https://doi.org/10.1093/g3journal/

jkab130

Can detect epistasis in a pair of genetic variations of RILs based on the comparison of

simple linear models

CAPE https://cran.r-project.org/web/packages/

cape/vignettes/cape.html

An R package for the combined analysis of epistasis and pleiotropy that infers directed

interaction networks between genetic variants for predicting the influence of genetic

perturbations on quantitative traits

qtl2pleio https://doi.org/10.1534/g3.119.400098 Tests pleiotropy in the case of more than two alleles, incorporating polygenic random

effects to account for population structure and uses a parametric bootstrap to

determine statistical significance

CLIP https://doi.org/10.5061/dryad.m0584 A method to distinguish whether correlated traits are due to pleiotropy and/or close

linkage

simplePHENOTYPES https://github.com/samuelbfernandes/

simplePHENOTYPES

Used for the simulation of pleiotropy and linkage disequilibrium under additive,

dominance, and epistatic models. The simulation currently takes a marker dataset as an

input and then uses it for simulating multiple traits

PolarMorphism https://github.com/UMCUGenetics/

PolarMorphism

The software uses genome-wide summary statistics from GWAS of multiple related

phenotypes to output statistics per SNP that describe its degree of ‘sharedness’ across

the phenotypes of interest and its overall (multivariate) effect size, as well as P-values

indicating significance for each statistic

Computational Framework

for Statistical Epistasis

Detection

https://github.com/EpistasisLab/

epistasis_detection

Presents several efficient algorithms to compute linear regression models for statistical

epistasis detection in Python and R
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be applied to data from both genetic screens and a variety of

segregating populations (Tyler et al., 2021).

The R package qtl2pleio detects whether causal variation is due

to pleiotropy or separate independent QTL. This software

incorporates polygenetic random effects to account for popula-

tion structure and uses parametric bootstrap to determine

statistical significance (Boehm et al., 2019a,b). The close linkage

versus pleiotropy (CLIP) test differentiates whether correlation in

genetically correlated traits is due to pleiotropy or tight linkages.

CLIP is a fast, simple, and powerful method that is based on the

comparison of the square of the observed correlation between a

combination of apparent effects at the marker level to the

minimum value it can take under pleiotropic assumption.

Simulation results show a higher CLIP detection power (68%)

to detect close-linked QTLs than confidence interval (43%) or

alpha risk (4%) tests (David et al., 2013).

The R/CRAN package simplePHENOTYPES simulates pleiotropy,

partial pleiotropy, and spurious pleiotropy in a wide range of

statistical-genetics models. Its ability to interface both marker

data and quantitative genetics software and packages facilitates

rigorous assessment of existing and emerging statistical GWAS

and genomic prediction of breeding values for selection (GS)

(Fernandes and Lipka, 2020). The authors of this package further

modified the use of both multivariate and univariate GWAS to

infer whether causal mutations underlying peak GWAS are

pleiotropic as it narrows down the candidate loci with potential

pleiotropic effects (Fernandes et al., 2021). Furthermore, the

use of multi-trait multi-locus GWAS is recommended for

traits controlled by both pleiotropic and non-pleiotropic loci, as

evidenced for tocochromanol-related traits in maize (Zea mays L.)

grain (Fernandes et al., 2022).

Another approach is taken by the algorithm implemented in

PolarMorphism, which detects pleiotropic SNPs from GWAS

summary statistics using two or more trait domains. It facilitates

construction of a pleiotropy network, showing the extent to

which traits share SNPs to gain insight into relationships between

traits and trait domains, and contrast it with genetic correlation

(von Berg et al., 2022).

Modelling epistasis and pleiotropy in
association genetics

A systematic analysis of several hundreds of publicly available

GWAS in humans suggests that pleiotropic genes are often

involved in transcription regulation (Watanabe et al., 2019),

which is a key biological function. In plants, flower characteristics

show correlated variation because they are likely under the same

gene control (Smith, 2016); i.e. a pleiotropic genetic architecture.

Integrating biochemistry and dense metabolomics data gives

further insights into pleiotropy affecting complex traits (Smith

et al., 2022). Chung et al. (2014) also proposed a statistical

approach facilitated by a computational algorithm that performs

integrative analysis of datasets from multiple GWAS incorporat-

ing pleiotropy and functional annotations. They used GWAS’

SNP-wise p as input from the summary statistics, thus overcoming

the lack of information when phenotypic and genotypic data are

unavailable, to identify pleiotropic effects. Mendelian randomi-

zation (Hu et al., 2022) is another approach that accounts for

both pleiotropy and sample structure due to population

stratification using GWAS summary statistics. It avoids detecting

false positives and improves the statistical power for finding

causal effects.

The relative contribution of pleiotropy and linkage to correla-

tion among quantitative characteristics was estimated by Chebib

and Guillaume (2021), who indicated that trait architecture

affects finding causal loci in multi-trait association analysis, while

pleiotropic variants underly multiple associations. According to

their research, tight linkage between non-pleiotropic causal loci

keeps high trait genetic correlations, thus leading to false

positives in GWAS. The pleiotropic locus exploration and

interpretation using optimal test (PLEIO) provides a summary-

statistic-based framework that maps and interprets pleiotropic

loci considering correlations among either binary or quantitative

traits and their heritability (Lee et al., 2021). When having sample

overlaps in association genetics, it will be possible to quantify the

expected spurious correlations through a simple linear correction,

adjusting the joint distribution of test statistics from the two

GWAS (LeBlanc et al., 2018). Recently, Fernandes et al. (2021)

demonstrated with publicly available maize and soybean data-

bases that combining multivariate and univariate GWAS may be

used to infer if associations result from true or spurious

pleiotropy.

Epistasis and pleiotropy affect the adaptive value of

fitness-related genes in plants as shown by Scarcelli et al.

(2007) in the model species Arabidopsis thaliana L. (thale cress).

Multi-locus models in GWAS revealed that epistasis has a main

role for host plant resistance to blast in rice (Rosas et al., 2020),

flowering time in soybean (Glycine max (L.) Merr.) (Kim

et al., 2020) or grain morphology and yield traits in wheat

(Fradgley et al., 2023; Malik et al., 2021, 2022) and affect seed

yield in rapeseed (Brassica napus L.) (Luo et al., 2017a). Epistasis

accounts partially for the missing or phantom heritability in

GWAS (Slim et al., 2020). However, both the sheer magnitude of

the search and related computational complexity remain the main

challenges when dealing with epistasis in GWAS. There are

several methods for finding epistasis in GWAS. For example,

epi-GWAS (Slim et al., 2020), encompassing several methods,

recognizes interactions between a target SNP and the rest of the

genome. Likewise, epiSNP (Weeks et al., 2018) allows finding

pairwise SNP interactions in GWAS in a realistic amount of time.

Moreover, a LASSO-penalized-model search algorithm has proven

to be effective for detecting epistasis in genome-wide association

analysis (Zhou et al., 2014). Furthermore, GenEpi is a computa-

tional package that uncovers epistasis associated with pheno-

types using a machine learning approach (Chang et al., 2020).

Detecting epistatic gene interactions using SNPs

Epistatic gene interactions are challenging to identify during plant

breeding, not least due to complex environmental interactions

between the traits and multiple genes involved. Hence, experi-

mental design for phenotyping, appropriate marker systems for

genotyping, statistical approaches for analysis, and biological

validation are all topics of research. With plant breeding in the

21st century targeting yield improvements as low as 1%, and

phenotypes related to quality and sustainability of production

becoming increasingly important, it is essential to consider

genetic selection of traits showing epistasis. Robustness with

stable and predictable productivity over multiple years may be

difficult to measure, requiring at the least trials in multiple

locations, but is important, not least because of increasing

climatic variation. However, with a complex polygenic trait or

phenotype, detection of epistatic groups of genes (including in

polyploid crops) from genotype information, typically SNPs from
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PCR, array, genotyping by sequencing, or other approaches, is

computationally intensive in a typical approach based on a GWAS

with additional interaction terms between markers to detect

epistatic effects. New approaches, including use of artificial

intelligence, have huge prospects for discovering epistatic

interactions and allowing selection of genes (Bhat et al., 2023).

Compounding the multi-genic nature of the traits (not confined

to epistasis), rare genetic variants may be the most important to

identify for crop improvement, enabling co-adaptation to be

selected (Dwivedi et al., 2023).

Targeted approaches to analyse epistasis based on knowledge

of genes identified in a genome-wide scan (association or

segregation studies) can be powerful. Not requiring an all-by-all

analysis of genes, but testing for interactions between candidate

genes and others (statistical or data mining) directly captures

pairwise or higher order interactions between genetic markers.

However, a favourable allele in one genetic background may be

deleterious in another, and such studies require larger datasets to

identify potential non-linear relationships. Some favourable alleles

may show opposite effects in different backgrounds due to

context dependence (Eguchi et al., 2019). There are several

reasons why this background dependency may occur. Genetic

interactions could be additive, synergistic, or antagonistic, thus

resulting in different outcomes in different genetic contexts.

Likewise, when positive epistasis occurs, the effect of an allele

may be enhanced in the presence of certain alleles at other loci,

while in case of negative epistasis, the effect may be suppressed,

which leads to opposite effects of the same allele in different

genetic backgrounds. Genetic diversity may also explain such an

outcome because alleles that are beneficial in one population may

have different effects in another population due to differences in

genetic composition and evolutionary history. Moreover, regula-

tory elements and epigenic modifications affect the expression of

genes, leading to differential gene expression and phenotypic

results. Furthermore, environmental factors can modulate the

effects of genetic variation because alleles that are advantageous

in one environment may have contrasting effects in another

environment; i.e. the GEI influencing phenotypic expression

across distinct genetic backgrounds.

Detecting epistatic gene interactions in plant breeding popula-

tions is challenging, with a large number of genetic markers and

complex environmental interactions, thus research outcomes may

not reach significance. However, once epistatic interactions are

identified, the underlying biological mechanisms and network

analysis involving gene expression analysis, pathway analysis, or

functional characterization (Borrill et al., 2019) of the interacting

genes may suggest further selection targets.

Integrated networks of genes involved in
pleiotropic and epistatic interactions

Both epistasis and pleiotropy have the potential to cause

deviation from the Mendelian genetics of one gene-one

phenotype paradigm and may limit progress towards a deeper

understanding of biological systems. Both constitute ubiquitous

and inherent properties of biomolecular networks. Understanding

and harnessing epistasis and pleiotropy genetic variants at a

systems level is therefore important to unlock the functioning of

complex traits (Tyler et al., 2009). Biomass recalcitrance is a

significant challenge to harness plant sugar for the biofuels

industry. Using high-resolution GWAS data combined with co-

expression, co-methylation, and SNP correlation networks in a

multi-omic data layering approach, Weighill et al. (2018) identi-

fied new target genes involved in lignin biosynthesis in poplar

(Populus trichocarpa Torr. & A. Grey ex. Hook). Poplars are of

particular interest for bioenergy and feed production (Sangster

et al., 2004; Tsarev et al., 2021).

SNP-based multi-phenotype associations (MPAs) in GWAS

provide useful information about the impact of a gene on closely

related traits. MPA decomposition is a new network-based

approach that decomposes the outcomes of a multi-phenotype

GWAS to unlock multi-phenotype signatures of genes. The

decomposition involves the construction of a phenotype power-

set space that maps genes into this new space. Clustering of

genes in this powerset space groups genes based on their

detailed MPA signatures. MPA decomposition tested in a large set

of poplar genotypes (882 accessions) detects multiple different

MPA and pleiotropic signatures within individual genes. It

classifies and clusters genes based on these SNP–phenotype
association topologies. Thus, they are helpful in interpreting large

GWAS datasets that could aid in future synthetic biology efforts

in designing and optimizing phenotypes of interest (Weighill

et al., 2019).

Plants being sessile in nature use vast regulatory networks,

involving epistasis between genes within and across networks to

adapt in diverse environments. The accumulation of aliphatic

glucosinolate can regulate plants fitness. An investigation

involving a large network of TFs regulating aliphatic glucosinolate

biosynthesis in Arabidopsis single and pairwise mutants uncov-

ered extensive pairwise epistasis between TFs, regardless of

subnetwork membership. The accumulation of metabolites

shows antagonistic epistasis, indicating a buffering mechanism.

Epistasis affecting enzymatic activity is highly conditional on the

tissue and environment that shift between both antagonistic and

synergistic forms. The epistasis shifts, however, depend on how

the network’s phenotype is quantified, suggesting epistasis may

be a common feature of large regulatory networks influencing

adaptive traits in plants (Li et al., 2020).

Correlations among traits and epistatic interactions impacting

single traits pose a significant challenge in cultivar development.

GWAS involving 809 soybean accessions and 84 trait data

collected over two years from three environments detected 245

significant genetic loci, of which 95 interacted with other loci.

Network analyses identified 51 traits linked to 115 associated loci

reflecting phenotypic correlations. Twenty-three loci, including

known Dt1, E2, E1, Ln, Dt2, Fan, and Fap, and 16, undefined

associated loci, have pleiotropic effects on different traits (Fang

et al., 2017). A rice GWAS involving 21 traits on 113 cultivars and

565 test cross hybrids identified 381 primary significant associ-

ated loci (SAL) and 1759 secondary SALs showing epistatic

interaction with primary SALs, which could contribute to trait

enhancement by pyramiding superior haplotypes with desirable

epistatic alleles. Furthermore, incorporating SALs as covariates

into a genomic selection model could enhance the prediction

accuracy of the parental lines by incorporating epistatic effect

SALs to predict trait values more accurately (He et al., 2023b).

Pleiotropic and non-pleiotropic QTL affecting
multiple traits

Mapping QTL and detection of overlapping genomic regions is a

powerful method to identify pleiotropy. High resolution mapping

delineates pleiotropic QTL from tightly linked QTL (Knight

et al., 2001), while joint mapping of QTL affecting multiple traits
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assesses whether genetic correlations arise because of pleiotropic

QTL or unlinked QTL affecting different traits (Jiang and

Zeng, 1995). Previous research indicated the existence of

pleiotropic variation affecting multiple traits in animals and plants

(Flint and Mackay, 2009; Hall et al., 2006). Pleiotropic variation in

plants has been shown to impact genes with effects on plant

growth and development, stress tolerance, and total biomass

including their nutritional quality (Table 2). Rice among grain

crops is the most extensively studied for detecting QTLs/genes

with pleiotropic effect controlling complex traits. Traditionally

early generation breeding populations (such as F2:F3 progenies),

advanced backcross lines, recombinant inbred lines (RILs) derived

from biparental crosses or using more complex genetic mating

systems such as multiparent advanced generation intercross

(MAGIC) or nested association mapping (NAM), doubled haploid

lines (DHLs), genome wide association mapping panel (GWAMP),

or near isogenic lines (NILs) are employed to identify both

independent and pleiotropic QTLs/genes. All forms of mating

designs including gene-based mutation (‘forward genetics’) and

transgene were used to detect pleiotropic QTLs/genes in diverse

crops (Table 2). GWAMP, RILs, DHLs detect major QTLs because

of their limitation in collecting large-scale data sets, whereas use

of gene-based mutation, transgene, or NILs provide more robust

approach to detect pleiotropic effect.

Investigating the extent to which pleiotropy impacts pheno-

types using GWAS summary statistics reanalyzed from previously

published phenotyping data (metabolite, field, and expression

phenotypes) and over 480 million significant quantitative trait

nucleotides across the NAM population and Goodman diversity

panel, for example in the maize genome, revealed 1.56%–32.3%
of intervals with some degree of pleiotropy. A relationship

between pleiotropy and various features (gene expression,

chromatin accessibility, sequence conservation, etc.) reveals that

pleiotropy of common alleles is not widespread in maize and is

impacted by population structure and linkage disequilibrium

(Khaipho-Burch et al., 2023). Meta-analysis involving an associ-

ation panel (234 separate datasets on 304 lines) and large SNP

data sets (107 751 in 2013 and 257 882 in 2020) captures only

35%–43% of potentially detectable loci controlling variation for

traits, and limited evidence for pleiotropy, detected both known

(i.e. dwarfing genes on root architecture) and new pleiotropic loci

controlling phenotypic trade-offs in sorghum (Sorghum bicolor

(L.) Moench.) (Mural et al., 2021). Both the reports indicate that a

substantial proportion of detectable phenotypic variation is

governed by non-pleiotropic loci.

Designing future crops to enhance productivity,
nutritional quality, and abiotic stress
adaptation of staple food crops

Domestication genes contributing to the pleiotropic
variation for multiple traits

With the genetic bottleneck of domestication and strong

selection for the characters that make a crop worthwhile and

possible to grow, genes contributing to pleiotropic variation for

multiple traits play a fundamental role in the selection of plants

with traits that differ significantly from their wild ancestors.

Mendel (1866) in his pea (Pisum sativum L.) experiments showed

a now classic example of pleiotropy, with three characters,

namely seed-coat colour, flower colour, and axillary pigmenta-

tion, being inherited together: plants show either a brown seed

coat, violet flowers, and axial spots or a white seed coat, white

flowers, and no axillary spots. Allelic variation in the A gene, a

basic helix–loop–helix (bHLH) transcription factor, was shown to

be involved (Hellens et al., 2010). A second gene, A2, a WD40

regulator, was also shown to be involved in the regulation of the

anthocyanin pathway, and potentially epistatic dominance hiding

the effect of the A gene. In general terms, because of potential

effects on expression of multiple structural genes, transcription

factors, and cis-regulatory elements are frequently detected as

underlying genetic changes during domestication and have been

considered as targets for genome editing (Swinnen et al., 2016).

With segregation analysis and crossing, it can be difficult to

distinguish genetic linkage (with genes for multiple characters in

adjacent chromosomal loci and minimal recombination) from

pleiotropy (discussed by Vaughan et al., 2007) where the same

gene controls multiple characters. Even with genome assemblies,

several genes may be identified in a GWAS or QTL analysis, and a

signature of domestication detected as a selective sweep leading

to low diversity in a genomic region, associated with domestica-

tion and breeding. Furthermore, contrasting selection pressures

during domestication may lead to pleiotropic genes with chimeric

positive and purifying selection signals (Tao et al., 2017).

Systematic knockouts will assist detection of genes involved in

epistatic effects with CRISPR-Cas9 gene editing technology.

Current developments in full-length mRNA sequencing are

revealing extensive variation in post-transcriptional modification

(e.g. Wang et al., 2022b), and particularly for structural genes it

will be interesting to find how frequently different functions

relate to transcript diversity.

Pleiotropic effects of genes selected during domestication

contribute phenotypic diversity that are often related to diverse

reproductive (flower and seed) traits. However, the presence of

pleiotropic genes means that the functions cannot be separated.

The widespread occurrence of pleiotropy may also be important

in adaptation to changes in environmental stress, particularly in

the light of predicted climate change (Stearns, 2010).

Identifying high value pleiotropic genes

Overlapping genomic regions provide evidence for the presence

of pleiotropic genes impacting multiple traits. High value

pleiotropic genes refer to those having major (≥ PVE 10%)

effect and favourably (i.e. positive pleiotropy) impacting multiple

traits. Multi-role pleiotropic genes impacting two or more traits

have been discovered in diverse crops. As examples, the

glutathioneS-transferase (GST ) gene provides modest levels of

resistance to southern leaf blight (Cochliobolus heterostrophus

(Drechsler) Drechsler, 1934), northern leaf blight [Setosphaeria

turcicum (Luttr.) K.J. Leonard & Suggs, (1974)], and grey leaf spot

(Cercospora zeae-maydis Techon & E.Y. Daniels) in maize (Wisser

et al., 2011). A pleiotropic stress-responsive gene, OsSGL confers

multiple stress tolerances, increased grain length, grain weight,

grains per panicle, and yield in rice (Wang et al., 2016) and was

identified by overexpression in transgenic plants (reverse genetics)

despite lack of natural variation in the gene. TaNPF5.34 has a

pleiotropic effect on plant height, ears per square meter, grains

per ear, and 1000-grain weight across N regimes in wheat (Lisker

et al., 2022). The compactum I locus, in addition to its effect on

compact spike, exhibited pleiotropic effects on plant height,

spike, and grain-related traits in wheat (Wen et al., 2022). A

pleiotropic natural variant NAL1 (GPS ), selected for high yield in

rice, also increases photosynthesis rate (Takai et al., 2013).

Several pleiotropic loci control accumulation of structural and

nonstructural carbohydrate accumulation in sorghum for
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Table 2 Pleiotropic QTLs reported in cereal, food legumes, and oil crops from 2001 to 2024

Mating design Pleiotropic QTL/genes and markers impacting multiple traits References

Barley (Hordeum vulgare)

GWAS 17 pleiotropic SNPs affected plant height and seed weight He et al. (2023a)

Gene mutation Row type mutant genes show pleiotropic effects on tillering, seeds spike�1, seed size, and 1000-seed weight Liller et al. (2015)

SSD and DHLs sdw1, affect flowering, grain weight spike�1 and 1000-grain weight Kuczy�nska

et al. (2014)

Brassica species

RILs Four pleiotropic QTLs, including qSR.A07, associated with high stem strength in rapeseed Tian et al. (2024)

GWAS BnaA03g23490D, BnaC09g46370D, BnaA07g37150D, BnaA01g32590D, and BnaC09g37280D, pleiotropic

genes controlling multiple traits in B. napus

Xiang et al. (2023)

DHLs Affect developmental traits, seed yield, and yield components or seed quality in rapeseed Luo et al. (2017b)

DHLs Pleiotropic QTLs affecting flowering, stress tolerance, and yield attributing traits in B. napus Udall et al. (2006)

Common bean (Phaseous vulgaris)

RILs Pleiotropic QTLs control seed weight, root architecture, shoot and root traits, and shoot traits Singh et al. (2019)

GWAS A pleiotropic locus impacting seed weight, width, and length Lo et al. (2019)

RILs A major pleiotropic QTL for leaf growth trajectories across environments Wei et al. (2018)

Chickpea (Cicer arietinum)

GWAS 60 SNPs pleiotropic affecting multiple traits Ilgokina et al. (2020)

Cotton (Gossypium hirsutum)

GWAS Genomic regions harbouring favourable pleiotropic loci and candidate genes to simultaneously improve yield and

fibre quality

Wang et al. (2021)

Maize (Zea mays)

Biparental population Pleiotropic QTLs affecting multiple grain quality traits Ndlovu et al. (2024)

GWAS and RILs Forty common intervals impacted multiple ear traits Dong et al. (2023)

F2/F3 and RILs A pleiotropic consistent QTL for plant height overlapped with ear height Fei et al. (2022)

GWAS and RILs 36 pleiotropic SNPs across 16 pleiotropic QTLs impacting multiple grain yield traits; Zm00001d016656 associated

with five traits across environments

Zhang et al. (2022)

RILs Pleiotropic QTLs affecting stem-related traits Shang et al. (2020)

NILs qKNPR6, ear length, kernel number per row, kernel weight, and grain yield Liu et al. (2012)

Pea (Pisum sativum)

RILs Major pleiotropic loci affecting seed testa thickness and permeability Williams et al. (2024)

RILs Pleiotropic QTLs controlling stress resistance and plant phenological and architectural traits Boutet et al. (2023)

RILs Pleiotropic QTLs affecting total seed protein, in vitro protein digestibility, methionine + cysteine concentration Zhou et al. (2023)

GWAS Shoot architecture (PsLE ) or flowering (PsTFL1) genes with pleiotropic effects on root system architecture (RSA),

and an SNP mapped to the major QTL Ae-Ps7.6 pleiotropic to both resistance and RSA traits

Desgroux

et al. (2018)

NILs Genes affecting starch biosynthesis show pleiotropic effects on seed protein and composition Hughes et al. (2001)

Peanut (Arachis hypogaea)

GWAS Twelve pleiotropic SNPs associated with multiple fatty acid composition traits Otyama et al. (2022)

RILs 29 unique pleiotropic impacting multiple yield and yield attributing traits Chen et al. (2017)

Pearl millet (Pennisetum glaucum)

RILs Affecting flowering and plant height Kumar et al. (2017)

Quinoa (Chenopodium quinoa)

F2/F3 mapping

population

Affecting flowering, plant height, and 1000-seed weight Maldonado-Taipe

et al. (2022)

Rice (Oryza sativa)

RILs Hd1, Hd16, and Ghd7 impacting culm length, panicle length, and % head rice grains; Ghd7, impacting # of

panicles and grain size

Lee et al. (2024)

NILs qSCM4, lodging resistance QTL, enhances panicle branches, and grains panicle�1 Yang et al. (2023a)

BC6F2 EP4.2, DEP7 and DEP8 pleiotropic effect on panicle architecture traits Yang et al. (2023b)

GWAS 33 pleiotropic loci impacting multiple traits associated with lodging resistance Rashid et al. (2022)

NILs qph12, simultaneously affected plant height, panicle length, spikelet number and grain yield He et al. (2022)

Transgene and GWAS GSE5, simultaneously affect grain chalkiness and grain shape Jiang et al. (2022)

CRISPR/Cas9-meidated

gene edting

GW2, plant and grain architecture, and nutritional quality Achary and

Reddy (2021)

RILs RFT1 (heading date genes), with a strong effect on most amino acids Xie et al. (2020)

RILs Straw N percentage, biomass, seed and seed N across treatments and seasons Vishnukiran

et al. (2020)
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bioenergy traits and shared several marker-trait associations

among bioenergy and compositional traits (Kumar et al., 2024),

while another pleiotropic variant control assimilate partitioning to

grain vs vegetative biomass in sorghum (Maina et al., 2022).

Multi-role pleiotropic genes impacting favourable and unfa-

vourable pleiotropy include BnUD1, adversely impacted plant

height and 1000-seed weight, but positively increased seeds

silique�1 and photosynthetic efficiency in rapeseed (Yang

et al., 2016); while POWR1 increased seed oil content, seed

weight, and seed yield but reduced seed protein content in

soybean (Goettel et al., 2022). A novel pleiotropic QTL, qSS14

simultaneously controls 100-seed weight, seed length, seed

width, and seed thickness and is predicted to contain two

candidate genes in soybean (Yuan et al., 2023). Seed coat

permeability is an important trait in many legumes. The QTL gene

PG031 regulates seed coat permeability and seed weight in

soybean. Three haplotypes and a single SNP explain natural

variation in seed permeability, and overexpression of the

impermeable allele PG031289H significantly reduces seed coat

permeability and 100-seed weight in transgenic soybean (Wang

et al., 2022a).

Allelic variation within a pleiotropic locus, e.g. domestication

gene (Q ) in wheat, has also shown differential pleiotropy. The Q

allele increases grain yield, grains per m�2, and 1000-grain

weight, but reduced grains per spike/spikelet, whereas the q allele

contributed to more grains per spike/spikelet (Xie et al., 2018).

Qs1, another variant had no effect on grain protein but adversely

affected grain yield by decreasing grain weight and grains per

spike, while Qc1-N8 positively affected grain protein and yield by

increasing grain weight and grains per spike (Chen et al., 2022).

Epistasis contributes substantially to hybrid vigour
in crops

Hybrid vigour or heterosis refers to the superior performance of F1
hybrid plants over the average of its parental lines or above the

high performing parent and has been extensively exploited

towards the development of hybrid cultivars in both cross- and

self-pollinated crops. Epistasis, involving non-allelic gene interac-

tions, strongly affects the performance of hybrids. Maize hybrids

involving temperate and tropical maize inbred lines with varying

levels of interparental divergence show significantly higher mid-

parent heterosis in temperate by tropical hybrids than in the

Table 2 Continued

Mating design Pleiotropic QTL/genes and markers impacting multiple traits References

GWAS Pleiotropically impacting heading date (HD), grains panicle�1 (GNP), HD and panicles plant�1 (PN), HD and kilo-

grain weight (KGW), GNP and PN, GNP and KGW, and PN and KGW

Li et al. (2018a)

NILs qHD5 affect flowering, flag leaf length and width, panicle branches, and 1000-grain weight Sun et al. (2017)

RILs A major pleiotropic QTL on chromosome 5 affect flowering, source size, and panicle traits Zhan et al. (2015)

Advanced backcross

lines

qHd1, pleiotropic effects on yield attributing traits Chen et al. (2014)

NILs Ghd7.1, flowering, plant height and spikelets per panicle Liu et al. (2013)

NILs Ghd8, a major QTL with pleiotropic effects on grain yield, heading date, and plant height Yan et al. (2011)

NILs qSCM2, enhances culm strength and increases spikelet Ookawa et al. (2010)

RILs qPLSD-9-1 and qPLSD-9-2, novel pleiotropic loci affecting panicle length and spikelet density Guo and

Hong (2010)

RILs/NILs qGL7, exhibited pleiotropic effects on spikelets panicle�1, grain length, width, and thickness, and 1000-grain

weight

Bai et al. (2010)

NILs Two pleiotropic intervals controlling three traits by the same QTL or tightly linked QTL Zhang et al. (2008)

Sesame (Sesamum indicum)

RILs qSmin11-1 and qSmol, respectively, regulate seed sesamin (PVE ~68%) and sesamolin (PVE 46%) lignans Xu et al. (2021)

Sorghum (Sorghum bicolor)

GWAS ~0.61% of 122 000 SNPs exhibited significant pleiotropic effects for multiple bioenergy traits across the genome Kumar et al. (2024)

GWAS Numerous pleiotropic and/or epistatic interactive effects influencing multiple carbon-partitioning and seed

composition traits

Boatwright

et al. (2022)

Soybean (Glycine max)

NILs L1, pleiotropic control pod colour, pod shattering, and seed pigmentation, l Lyu et al. (2023)

NILs POWR1 (domestication gene) pleiotropically regulate seed quality and yield Goettel et al. (2022)

RILs qPH18, controls plant height, node number and internode length Kou et al. (2021)

RILs Leaf-related traits, chlorophyll content and 100-seed weight Yu et al. (2020)

RILs A novel and validated QTL cluster (8.8%–16.8% PVE) affecting 10 amino acids in soybean seed Li et al. (2018b)

Wheat (Triticum aestivum)

RILs Pleiotropic effects on yield attributing traits Liu et al. (2023)

RILs QWue.acn-2B increases water use efficiency and enhance multiple agronomic traits Hui et al. (2023)

RILs Novel pleiotropic QTL (stable and co-localized QTL) control two or more traits Rathan et al. (2023)

Transgene Green revolution gene Rht-B1b with multiple pleiotropic effect on plant architecture and yield attributing traits Xu et al. (2023)

RILs C exhibited pleiotropic effect on plant height, spike- and grain-related traits Wen et al. (2022)

RILs qSn-1A.1, qFsn-1B, and qFsn-7D relate to spikelet fertility and kernel numbers under low N conditions Fan et al. (2019)

DHLs, doubled haploid lines; GWAS, genome-wide association studies; RILs, recombinant inbred lines; SSD, single seed descent.
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temperate-by-temperate hybrids. Epistasis effects relative to

dominance effects contribute more to enhanced performance

in temperate by tropical hybrids and detected 33 and 420

epistatic QTL for grain weight per plant and days to silking. The

epistatic genes involved in protein interactions and minor effect

gene interactions in the hybrids could activate the transcription

activators of epistatic genes and amplify yield heterosis (Sang

et al., 2022).

Variation between two parental genomes may generate

epistasis interactions. The proteome of each parent may provide

novel protein to protein interacting (PPIs) partners specific to the

F1 hybrid. An in silico study involving the hybrid interactome

between rice japonica (cv., Nipponbare) and indica (cv., 9311)

cultigen pools predicted 4612 hybrid-specific PPIs accounting for

20.5% of total PPIs observed in the hybrid interactome. Genes

involved in hybrid PPIs encode metabolic enzymes are localized in

genomic regions harbouring metabolic gene clusters. Following

genomic selection and assuming additive, dominant, and epistatic

effects considered separately in the model, it shows that

the removal of SNPs associated with hybrid PPIs reduces the

prediction accuracy when epistatic effects are considered in

the model, but no such significant changes are observed when

additive or dominant effects are considered. This clearly shows

that genomic divergence between japonica and indica rice

cultigen pools may generate hybrid-specific PPIs, some of which

may cumulatively contribute to hybrid vigour (Li et al., 2020).

These observations regarding the influence of epistasis on

heterosis, however, are based on a simplified multiplicative

model that assumes very few genes, only additive 9 additive

epistasis, and LD.

A simulation-based study involving diverse populations (nine

populations, the selfed populations, the 36 interpopulation

crosses, 180 doubled haploids, and their 16 110 crosses) and

assuming a more complex model (additive model, hundreds of

genes, LD, dominance, and seven types of digenic epistasis

interactions) shows that epistasis may have a negative impact on

the heterosis of panmictic populations (i.e. population where all

potential parents may contribute equally to the gamete pool, and

that these gametes are uniformly distributed within the popula-

tion), leading to erroneous inferences regarding the identification

of superior and most divergent populations. This, however,

depends on the type of predominant epistasis, percentage of

epistatic genes, and magnitude of the epistatic effects. In general,

there is a decrease in the average heterosis by increasing the

percentage of epistatic genes and the magnitude of their effects.

Duplicate genes with cumulative effects and non-epistatic genic

interaction maximize average heterosis, whereas for other type of

epistasis, increasing the percentage of epistatic genes and the

ratio of epistatic variance/(additive plus dominance variances)

decreases the average heterosis. Clearly the negative impact of

epistasis in heterosis cannot be avoided if the genetic system

involves a high number of epistatic genes with great effects

(Viana, 2023).

Modelling epistasis in genomic selection of complex
traits

Many loci with small effects impact variation of complex

characteristics. Genomic prediction is used for estimating

breeding values of an individual based on genome-wide SNPs.

However, breeding values often ignore the non-additive genetic

factors such as epistasis (McGaugh et al., 2021). Hence, epistatic

genomic prediction models that incorporate SNP interactions are

necessary. In this regard, epistatic random regression best linear

unbiased predictor (ERRBLUP) and selective epistatic random

regression BLUP (sERRBLUP) are useful for modelling epistasis in

genomic prediction (Vojgani et al., 2021b). EERBLUP uses a full

epistatic model that considers all pairwise SNP interactions, while

sERRBLUP selects a subset of the pairwise SNPs according to their

absolute effect size or the effect variances. Both methods are

implemented in the R Package EpiGP that efficiently handles large

genomic data. sERRBLUP gives a significant prediction accuracy

increase when keeping the optimal proportion of SNP interactions

in the model, particularly if they are selected based on their effect

sizes.

Genomic prediction accuracy increased in a maize doubled-

haploid population derived from two European landraces after

including top-ranked SNP interactions in the model (Vojgani

et al., 2021a), thus demonstrating that sERRBLUP is better than

genomic BLUP. Bivariate models considering selected subsets of

pairwise SNP interactions further improved prediction accuracy

when using multi-environment trial data, assuming a high

genomic correlation across years (Vojgani et al., 2023). Roth

et al. (2022) have shown further that a genomic prediction model

incorporating additivity, dominance, epistasis, and inbreeding

effects was the most robust in two admixed maize hybrid

populations, which derived from recombination between struc-

tural groups. Similarly, additivity 9 additivity (a 9 a) epistasis

improved predicting ability in inbred wheat lines (Raffo

et al., 2022), which was not surprising since a 9 a is the most

important non-additive genetic effect in such a population and

useful for developing new cultivars when selecting based on total

genetic merit. Epistatic interactions affect flowering time,

maturity, and seed size in cowpea (Olatoye et al., 2019), which

should be taken into account for improving genomic prediction

accuracy of selection models for such traits. Moreover, Derbyshire

et al. (2021) indicated that the accuracy of breeding values was

improved between 3 and 40% when adding (a 9 a) epistasis in

linear mixed prediction models for sclerotinia stem rot resistance

in rapeseed. Models with SNP interactions also increased

prediction accuracy for implementing selection for rhizomania

resistance in sugar beet (Beta vulgaris L.) (Lange et al., 2023). The

above results highlight the importance of acknowledging epistasis

terms in genomic prediction models for complex characteristics.

Genomic selection models exhibit a spectrum of complexity,

encompassing Bayesian methods, ridge regression, random

forests, support vector machines, and neural networks. The

selection of a model hinges upon factors such as the dataset’s size

and structure, available computational resources, and the traits

earmarked for selection (Alemu et al., 2024).

The major limiting factors in genomic selection can vary

depending on the context and the specific application. However,

both big data and genomic selection model-related factors can

present challenges (Bassi et al., 2023). Dealing with large-scale

genomic data can be computationally intensive and requires

robust infrastructure and computational resources. Challenges

related to big data in genomic selection include data storage,

data management, data preprocessing, and computational

efficiency (Bassi et al., 2023). Handling and analysing massive

datasets efficiently can be a significant bottleneck, especially for

organizations with limited computational resources. As noted by

Desta and Ortiz (2014), the complexity and accuracy of the

genomic selection model are crucial factors in its effectiveness.

Developing accurate and reliable prediction models requires a

comprehensive understanding of genetic architectures underlying
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the traits of interest, as well as suitable statistical and machine

learning methodologies. Choosing an appropriate model archi-

tecture and optimizing its parameters can be challenging,

especially when dealing with complex traits or heterogeneous

populations (Crossa et al., 2017). Additionally, ensuring the

scalability and robustness of the model across different popula-

tions and environments is essential for its practical utility.

Machine learning to capture epistasis and pleiotropy
interactions for breeding

Machine learning has proven to be a valuable tool for capturing

epistasis and pleiotropy interactions in plant breeding, with

several advantages over more traditional methods. Machine

learning algorithms have the ability to capture complex interac-

tions and patterns in large datasets (Costa et al., 2022). By

considering the interactions between multiple genes, machine

learning models can provide more accurate predictions of plant

traits compared to traditional statistical models that assume linear

relationships.

Machine learning algorithms excel at capturing non-linear

relationships. By explicitly modelling these interactions, machine

learning models can identify and quantify the nonadditive effects,

providing breeders with a better understanding of the underlying

genetic architecture. Machine learning can also reveal complex

and subtle interactions that may go unnoticed with traditional

statistical approaches. By examining a large number of genetic

markers simultaneously, machine learning models can identify

unexpected relationships and interactions that contribute to the

observed trait variation. Machine learning can integrate genotypic

data with complex phenotypic data such as drone imagery to

identify markers associated with complex traits that cannot easily

be tabulated. This can lead to the discovery of new genetic

markers or pathways that influence the target traits, providing

valuable insights for plant breeders. By identifying specific gene

interactions and their effects on multiple traits, machine learning

can aid in the design of more targeted and efficient breeding

strategies. Machine learning models can also assist in the

optimization of a breeding strategy by identifying key genetic

markers or regions for marker-assisted selection or genomic

selection (GS).

Various machine learning algorithms can be employed to

capture epistasis and pleiotropy interactions and some software

packages have been developed specifically for this task (Chang

et al., 2020; Guo et al., 2019). These algorithms range from

traditional statistical models like linear regression to more

complex models such as random forest, support vector

machines, or deep learning architectures such as neural

networks. The choice of the algorithm depends on the specific

characteristics of the dataset and the complexity of the

interactions being studied.

The application of machine learning to capture epistasis has

predominantly been applied in biomedical fields but

has significant potential for crop studies. While offering several

advantages over traditional methods, the effectiveness of

machine learning in capturing epistasis and pleiotropy interac-

tions relies on high quality and a significant quantity of data, as

well as the choice of appropriate features and algorithms. The

interpretation of the results should be done with caution, as

machine learning models provide correlations rather than

causation. Thus, validation and further experimental verification

are often necessary to confirm the identified interactions and

their practical implications in plant breeding.

Balancing trade-offs as influenced by epistasis and
pleiotropy genes

Trade-off refers to ‘situations when one trait cannot increase

without a decrease in another trait (or vice versa)’ (Garland

Jr., 2014). A variety of trade-offs particularly from genetic and

ecological adaptation viewpoints exist, for example, resource

acquisition-resource conservation, source-sink, growth defence,

and yield nutrition. Pleiotropic effects and tight linkage influence

genetic trade-off. Balancing trade-off involving resource acquisi-

tion and resource conservation or between multiple stresses,

productivity and nutritional quality are significant challenges to

adaptation of new species in ecologically different environment

or plant breeders to tailor new cultivars (Dwivedi et al., 2021).

Sorghum is both a grain and biofuel crop. Bioenergy sorghum

rapidly accumulates significant amounts of carbon (C) per unit

time per unit area per unit input as above-ground biomass. The

interaction between source and sink organs greatly influences C-

partitioning in plants. The accumulation and distribution of fixed

C is dependent upon the source, pathways, and interactions of

the system. A holistic understanding of complex systems

demands adoption of multiscale phenotypes including phenotypic

measurements (e.g. plant height, above-ground biomass, and dry

weight) and compositional traits (ash, lignin, cellulose, hemicel-

lulose, water soluble carbohydrate, water) to deconvolute the C-

partitioning pathways on a diverse germplasm panel. Multivariate

analyses of these traits in a sorghum C-partitioning panel

(Boatwright et al., 2021) detected numerous loci associated with

several C-partitioning traits, which putatively regulate sugar

content, manganese homeostasis, and nitrate transportation.

The identification of several loci associated with multiple traits

suggests pleiotropic and/or interactive effects, positively influence

multiple C-partitioning traits and the overlap indicate molecular

switches mediating C-allocation or partitioning networks, and

detected C-trade-off wherein reduced lignin content is associated

with increased sugar content (Boatwright et al., 2022).

C4 perennial bunch grass (Panicum hallii Vasey), adapted to

diverse habitats and climates in North America, has two distinct

ecotypes, xeric upland and mesic lowland that are classified as

distinct varieties, xeric (P. hallii var. hallii), and mesic (P. hallii var.

filipes) types (Gould, 1975). Var. hallii is a large seeded upland

ecotype adapted to xeric environments, while var. filipes is a

small-seeded lowland ecotype adapted to mesic environments.

Heterogeneity in the environment may drive patterns of

functional trait variation and evolution of locally adapted

ecotypes. The correlated root and shoot traits that share common

genetic and physiological relationships differentiate plant eco-

types. While shoot traits determine plant water loss, it is the root

systems that determine water access and constraint shoot water

status. Several genomic hotspots, involving mesic and xeric

ecotypes of P. halli, control suits of correlated root and shoot

traits. The genetic coordination between plant organs contributes

to ecotype divergence. This study shows that colocalized QTL for

most root and shoot growth related traits are independent of

colocalized QTL for root and shoot resource acquisition traits. The

allelic effects of individual QTL highlight ecological adaptation

between ecotypes, which may breakdown due to epistatic

interactions (Khasanova et al., 2019). Furthermore, traits with

ecological significance, for example seed mass, drive ecotype

adaptation. Seed mass may impact adult and reproductive traits.

Greenhouse and field evaluations of P. hallii accessions belonging

to both ecotypes reveal that seed mass in the greenhouse varied
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greatly across ecotype divergence (xeric and mesic ecotypes of P.

hallii) and correlate with seedling and reproductive traits, whereas

in field environments representing xeric and mesic habitats, it has

different impacts on seedling and reproduction. Upland habitat

favours large seeds, whereas lowland habitat small seeds,

consistent with local adaptation, and may provide opportunity

to unlock life-history trade-offs across ecotype divergence

(Razzaque et al., 2023).

Balancing trade-offs is a significant breeding challenge, for

example, pleiotropic Ideal Plant Architecture 1 (IPA1) gene

increases grains per panicle but reduces tillers in rice. Deletion

of a 54-base pair cis-regulatory region in IPA1 via a tiling-deletion-

based CRISPR–Cas9 system mediates the trade-off between

grains per panicle and tiller number, which significantly improves

seed yield per plant. The deleted fragment is a target site for the

transcription factor An-1, which represses IPA1 expression in

panicles and roots (Song et al., 2022). Plants have evolved diverse

root system architectures and function across environments. Plant

species with inexpensively constructed roots (less biomass per unit

root length) explore more nutrient hotspots at the cost of

frequent root-tissue turnover, while those with costly constructed

roots (more biomass per unit root length) are more conservative

in resource acquisition and maintain higher root-tissue persis-

tence. Switchgrass (Panicum virgatum L.) adapted to southern

lowland displays root features with more costly constructed roots

than those of inexpensively constructed roots of northern upland

ecotype. The evidence suggests multiple genetic linkages among

root morphology, growth, and turnover in two switchgrass

ecotypes. Swapping alleles derived from southern ecotypes to

northern ecotypes increases root turnover but reduces tissue

investment in enhancing root length. Local adaptation based on

root systems is facilitated by the trade-off between root

construction and turnover strategy along the warm to cold

climate gradients of the species range. Improving the bioenergy

yield of switchgrass does not clash with enhancing root-derived

carbon sequestration (Chen et al., 2021).

In soybean, Ln locus pleiotropically regulate leaf shape and

seeds per pod. Ln/Ln soybean(s) have broad leaflets and low seeds

per pod, while ln/ln soybean(s) have narrow leaflets and high

seeds per pod. QTL analysis revealed that Ln is associated with

leaf, pod, and seed traits. ln allele(s) increases leaflet length,

leaflet length/leaflet width ratio, and 3- and 4-seeded pods, but

decreases leaflet width, leaflet area, 2-seeded pods, and

100-seed weight. Nevertheless, the effect of ln allele(s) towards

3-seeded pods and 100-seed weight is not always detected. Two-

and four-seeded pods are negatively correlated. Therefore,

reducing in 2-seeded pods cancel the effect of 4-seeded pods

in enhancing seed yield in ln/ln soybean. Thus, Ln pleiotropically

and antagonistically regulates 2- and 4-seeded pods (Chanchu

et al., 2023).

Variation in inflorescence architecture has direct bearing on

grain yield in cereals. It is hypothesized that introducing variation in

inflorescence architecture with a branching spike, such as Miracle-

Wheat (Triticum turgidum convar. compositum), may enhance

grain yield in wheat. However, the increase in spikelet number in

such accessions is generally not translated to greater grain yield

advantage because of reduced grains per spikelet and grain weight

possibly due to limitation in source-sink strength. Biparental RILs

involving spike-branching landraces and elite durum wheat line

unlocked a newmodifier QTL for spike branching, branched head 3

(bht-A3), epistatic to the known bht-A1 locus. bht-A3 also confers

more grains per spikelet and a delay in flag leaf senescence rate.

More importantly, the favourable alleles that delay senescence

(bht-A3 and gpc-B1) are also critical to improve grain number and

grain weight in the spike-branching accessions. Thus, achieving a

balanced source–sink relationship can minimize grain yield trade-

offs in Miracle-wheat (Abbai et al., 2024). Multi-trait principal

component analysis-based QTL mapping increases the power to

detect novel small effect pleiotropic loci across related traits to

optimize trade-offs between nutritional and productivity traits in

wheat (Fradgley et al., 2022).

Immunity to disease resistance costs penalty to growth and

development in plants. Biomass yield (i.e. grain or stover yields) in

field crops is the main breeding target, usually affected by levels

of disease resistance. A proper balance between growth and

defence is critical for achieving efficient crop improvement.

Growth-defence trade-off is mediated by resistance (R) genes,

susceptibility (S) genes and pleiotropic genes. Plant breeding is

expected to make significant advancement through creative

incorporation of artificial intelligence algorithms to maintain a

proper balance in achieving appropriate levels of disease

resistance at no yield penalty. The integrated disease manage-

ment, which combines diverse strategies to prevent plant diseases

while minimizing the impact on crop yield, has the potential to

expedite the breeding of next generation crops, thereby fostering

the development of more sustainable and resilient agricultural

systems (Gao et al., 2024; Xu et al., 2022).

Selecting for pleiotropic loci with favourable effects on
traits and favourable loci with no detectable pleiotropic
effects in breeding programs

Pleiotropy promotes the evolution of complexity (Wang

et al., 2010). Crops are useful genetic resources to dissect the

effects of pleiotropy on multi-trait evolution. Large variation in

flowering and maturity (nine major-effect loci, E1 to E8, J ) is

available in soybean germplasm (Watanabe et al., 2012). Pleio-

tropic variation regulates both flowering and maturity in this crop

(Nelson, 1988; Smith and Nelson, 1986). Whether these loci

independently control flowering and maturity in soybean was

investigated recently. Domestication and diversification of soy-

bean favoured pleiotropic loci (E loci) controlling both flowering

and maturity. Novel non-pleiotropy loci were isolated following

stringent selection in a cross between cultivated and wild (G. soja

Siebold & Zucc.) soybean, indicating that pleiotropy in flowering

and maturity can be genetically separated (Sedivy et al., 2020).

Long-term wheat breeding targeted loci with favourable pleiot-

ropy. Analysis of segregating population of a cross between

ancestral and modern parents reveals that modern wheat

cultivars contain the Rht-B1b green revolution semi-dwarfing

allele and compensatory alleles that reduce its negative effects.

Furthermore, pleiotropic loci with favourable effects on traits and

favourable loci with no detectable pleiotropy contributed to the

improvement in other traits (Raherison et al., 2020). Thus,

combining pleiotropic loci with favourable effects and favourable

loci with no detectable pleiotropy is an efficient selection strategy

to enhance breeding value of the elite lines.

Combining pleiotropy and regulatory SNPs as novel
breeding target for improvement of multiple traits

SNP-based molecular genetic markers have been applied for crop

breeding for more than 20 years (Batley et al., 2003). Initial

applications were to select for loci that provided single beneficial

traits that were not readily amenable to phenotypic assessment

(Edwards and Batley, 2004). With the development of genomic

ª 2024 The Author(s). Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd., 22, 2788–2807

Epistasis and pleiotropy in plant breeding 2799

 14677652, 2024, 10, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/pbi.14405 by Sw

edish U
niversity O

f A
gricultural Sciences, W

iley O
nline L

ibrary on [25/10/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://onlinelibrary.wiley.com/action/rightsLink?doi=10.1111%2Fpbi.14405&mode=


selection methods, initially in livestock (Hayes et al., 2009) but

later adapted for crop breeding, there was a growth in the

application of genome wide SNPs in breeding. However, these

approaches often failed to capture epistatic interactions, limiting

potential gains. Several advances are required to capture and

apply epistasis in crop breeding. These include the development

of advanced pangenomes representing the diversity of available

breeding germplasm (Edwards and Batley, 2022); the continued

efficiency and reducing cost of DNA sequencing; the expansion of

high throughput phenotyping and sharing of this data (Danilevicz

et al., 2021b); and the development and application of advanced

machine learning tools (Bayer et al., 2022). These advances

continue to accelerate. Pangenomes are increasingly available for

a wide range of crop species (Zanini et al., 2021), even those with

large and complex genomes (Bayer et al., 2022; Montenegro

et al., 2017). Costs for short read DNA sequencing continue to

decline, making DNA sequencing based whole genome genotyp-

ing ever more cost effective, while large scale phenomic studies

are increasingly being applied for trait prediction (Danilevicz

et al., 2021a). This growth of technology supports the

identification of pleiotropic variants and epistatic SNPs that can

be modelled by advanced explainable AI methods to provide an

even greater accuracy of traits, supporting both traditional crop

breeding as well as genome editing based approaches (Scheben

et al., 2017).

Applying simultaneous selection for combining
nonallelic interactions and high value pleiotropic loci in
hybrid breeding

As noticed by Rasmusson and Phillips (1997), epistasis arising from

de novo non-allelic interactions seems to be very important when

selecting in offspring derived from elite breeding pools; i.e.,

crossing good 9 good. Likewise, it appears that long-term

selection may be accumulating coadapted gene arrangements

(Breen et al., 2012), which may be disrupted subsequently. Non-

allelic interactions may be also affected by a changing environment

(Anholt, 2020). The importance of epistasis in plant germplasm

enhancement depends on crop breeding systems and genetic

improvement methods because they determine the types of

epistatic effects to reliably propagate (Holland, 2001). The effect

of epistasis has been demonstrated in segregating populations of

beans (de Melo et al., 2023), cowpea (Vigna ungiculata (L.) Walp.)

(Olatoye et al., 2019), maize (Sofi et al., 2007), tomato (Solanum

lycopersicum L.) (Soyk et al., 2017), and wheat (Sannemann

et al., 2018), among other crops.

Viana (2023) indicated that an increase on epistatic genes and

the magnitude of their effects decrease the average heterosis

and impact on combining ability analysis in populations of

doubled haploids and inbred lines. Moreover, prediction accuracy

significantly increased in plant breeding populations after

including 2-locus epistatic effects (Wang et al., 2012). Nonethe-

less, modelling and simulation research suggest that phenotypic

selection may be superior to marker-aided recurrent selection and

genomic selection under epistasis (Ali et al., 2020).

According to de Visser et al. (2011), pleiotropy is key for

epistasis, which could evolve as an adaptive change. Genes

involved in pleiotropy affect expression of various traits resulting

from the covariance among them (Pavlicev et al., 2011). For

example, pleiotropic QTLs are important for simultaneously

improving multiple amino acid concentrations in soybean

(Li et al., 2018b). Hence, marker-aided breeding must consider

these pleiotropic QTL clusters for multiple amino acid

improvement. Moreover, these loci responsible for genetic

variation due to pleiotropy are involved in epistatic interactions.

The CAPE has been used to model genetic networks affecting

multiple characteristics because both are necessary to understand

the genetic architecture of complex traits (Vivek et al., 2014);

the associated R/cape allows the detection of interactions

affecting phenotypes simultaneously (Tyler et al., 2013).

Precision breeding requires accurate prediction of phenotypes

from genotypes. Accurate genomic prediction of complex traits

across environments, breeding cycles, and populations remains a

challenge in plant breeding. The genomic prediction accuracy of

phenotype is compromised in the presence of epistasis, while

prediction accuracy can be increased if epistasis is factored into

the prediction model (Vojgani et al., 2021a). The adoption of

multi-trait ensemble genomic prediction models, relative to single

trait models, further increases prediction accuracy, as evident in

16-founder wheat multi-parent advanced generation inter-cross

population. The non-parametric models (i.e. random forest) for

complex traits outperformed simplified additive models (i.e.

LASSO). Clearly, factoring both epistasis and pleiotropy in

breeding practices may provide greater insights into mechanisms

for sustained genetic grain in a limited gene pool and

optimization of multiple traits for crop improvement (Fradgley

et al., 2023).

Non-additive genetic (G 9 G) and genotype 9 environment

(G 9 E) interactions generate allelic substitution effects that are

non-stationary across different contexts. Such non-stationary

effects of alleles are either ignored or presumed to be implicitly

captured by most gene-to-phenotype (G2P) maps used in

genomic prediction, which necessitates that G2P maps should

be re-estimated across different contexts. Hierarchical G2P maps

explicitly capture non-stationary effects of alleles to improve

short-term prediction accuracy. Long-term prediction remains a

challenge. The breeding community should undertake compli-

mentary simulation and empirical experiments to interrogate

various hierarchical G2P maps that connect G 9 G and GEIs

simultaneously. To achieve this, the existing genetic correlation

matrix can be used to assess the magnitude of non-stationary

effects of alleles and the predictive ability of these hierarchical

maps in long-term, multi-context genomic prediction of complex

traits in crop breeding (Powell et al., 2021). Further, a large

proportion of the missing heritability hidden in epistatic

interactions can be retrieved by developing a comprehensive

epistatic 2D maps (termed as next-gen GWAS, NGG) with

sufficient SNP density to achieve gene-level resolution, as

evidenced in Arabidopsis, and can be readily adapted in other

biological models (Carr�e et al., 2024).

Identifying conserved (latent genetic variation)
pleiotropy genes

Mutation, gene duplication, and gene loss are the primary causes

of evolution and divergence of gene function (Holland

et al., 2017). A distinction between divergence of gene function

and conserved function across species along the evolutionary

time frame is challenging. Large evolutionary distances often fail

to unmask the full breadth of gene function, exposing only part

of a gene’s pleiotropic functions. WUSCHEL HOMEOBOX9

(WOX9), a plant homeobox gene, has species-specific roles in

embryo and inflorescence development. Assessment of functional

divergence of WOX9 in tomato by cis-regulatory editing drive

system identified hidden pleiotropic roles for WOX9, the

functions of which are conserved in groundcherry, a relative of
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tomato. Mimicking these alleles in Arabidopsis reveals new

inflorescence phenotypes, suggesting conserved pleiotropy in

distantly related species (Hendelman et al., 2021 and references

therein). Browning of freshly cut eggplant (Solanum melongena)

fruit reduces its commercial value. Polyphenol oxidase (PPO)

contributes to the browning of fruits and vegetables (Hamdan

et al., 2022), with most of the PPO genes clustered on

chromosome 8 (Maioli et al., 2020). Mutagenesis of the PPO2

by CRISPR/Cas9 system resulted in a diverse spectrum of

phenotypes, ranging from plant dwarfism and architectural

differences, early flowering, fruit set and maturation, flower

colour, fruits size, shape, colour and weight to reduced and

delayed browning of fruit-cuts and fewer seeds, thereby

indicating hidden pleiotropic role of PPO gene in eggplant

(Kodackattumannil et al., 2023). Sequencing and cataloguing of

large mutant populations, particularly in the protein-coding

regions, are powerful tools to uncover hidden variation (or

pleiotropy), as evidence in polyploid wheat (Krasileva

et al., 2017).

Conclusion

Genes associated with crop domestication contribute to pheno-

typic diversity for multiple traits. Accessing and exploiting

epistasis interactions and pleiotropy effects may help breeders

predict and control trait expression for the development of an

efficient selection strategy (Figure 2). Epistasis bias reduces the

speed at which crops can be improved. Advances in generating

large-scale genomics and phenomics datasets and factoring all

loci including those with small effects in association genetics, with

associated computational analysis, may unlock and reduce

epistasis bias in trait prediction. New approaches including use

of artificial intelligence, use of pangenomes representing diversity

in breeding germplasm, the continued improvement and

reduction in genotyping cost, and advances in phenomics

and data sharing may further facilitate detection of causal

variation. Artificial intelligence can be implemented through self-

learning algorithms that may be extremely efficient in detecting

unanticipated pleiotropic or epistatic interactions and have the

potential to make connections between genes, genome, pheno-

type, and even metabolome from diverse publications. Future

developments of digital twins of these complex genetic phenom-

ena may then reveal gene combinations that can be selected in a

breeding program giving enhanced characteristics. Pleiotropy and

LD cause genetic correlations, and their decoupling may provide

new avenues to tailor germplasm modelling pleiotropic QTL,

epistasis, and associated SNPs combined with multi-trait GWAS

mapping may overcome unfavourable correlations.

Figure 2 Schematic diagram showing the potential of epigenetic and pleiotropic gene interactions for crop breeding. (a) Basic representation of additive

gene interaction, whereby each gene contributes equally to the phenotype. (b) Different scenarios of epistatic interactions, whereby the interaction of

genes b and c, and a with d, enhances shoot and root traits, respectively, contributing to different yield outcomes that are better than the basic interaction

of genes a and b. The combined effects of the epistatic interaction of genes c and d result in further enhancement of yield. Furthermore, the ln allele affects

several traits in soybean in an antagonistic manner, in that the presence of this allele increases leaflet length, the number of three and four-seeded pods,

while decreasing leaflet width, leaflet area, and the number of two-seeded pods. (c) Harnessing these interactions has the potential to capture missing

heritability, which is not explained by classic additive gene interactions. Genes in blue-shaded circles (g, i) represent non-significant or low-effect genes but

are still important in the gene network and along with independent genes (j, k, l ) contribute to capturing the missing heritability of agronomic traits,

including tolerance to stresses, superior quality and yield. This provides a promising approach for developing cultivars with superior traits.
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The evidence to date suggests significant effects of epistasis

and pleiotropy impacting plant phenology, host plant resistance,

seed morphology, yield, and quality. A substantial proportion of

detectable phenotypic variation is also governed by non-

pleiotropic loci. Identifying and exploiting high value pleiotropic

genes impacting multiple favourable traits may enhance breeding

efficiency. Multi-role pleiotropic genes (GST in maize, BnUDI in

rapeseed, OsSGL and NAL1 (GPS ) in rice, PG031, POWR1, and

qSS14 in soybean, and compactum1, Q, and TaNPF5.34 in wheat)

are known in diverse crops. Pleiotropic effects and tight linkage

influence genetic trade-off. Many pleiotropic loci (i.e. IPAI in rice,

Ln in soybean, and bhtA3, bhtA1 in wheat) mediate trade-offs

between competing traits. These genes (or their functional

orthologs) may be deployed in breeding programs to mediate

complex trade-offs.

Epistasis relative to dominance effects contribute more to

enhanced performance of hybrid cultivars due to involvement of

protein-to-protein interactions. However, epistasis may also cause

a negative impact on heterosis provided a higher number of

epistatic genes with great effects are involved. Modelling epistasis

in genomic selection, which incorporates SNP interactions,

provides better genomic prediction accuracy for complex traits.

Simultaneous selection for nonallelic interactions and high value

pleiotropic loci may model genetic networks affecting multiple

traits. Detecting and exploiting higher order epistasis interactions

(i.e. protein to protein interaction in F1) between traits and

multiple genes may account partially for missing heritability,

though computationally intensive for complex traits. The

sequencing and cataloguing of protein-coding region of large

mutant populations, however, is a powerful tool to uncover

hidden variation (pleiotropy) for use in crop improvement.
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