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Abstract
Malawi smallholder farmers are facing climate-induced challenges that have increased food and nutrition insecurity in the 
country, thus sustainable intensification practices has been widely recommended. The objective of this study was to assess the 
effects of cropping systems with improved varieties on total system productivity and nutrition under different environments. 
The study involved on-farm experiments in ten communities in Central and Southern Malawi, incrementally established 
from 2005/2006 to 2018/2019 cropping seasons. Each community had six demonstration plots with three main treatments: 
conventional ploughing (CP): sole maize grown on seasonally constructed ridges and furrows; no-tillage (NT): sole maize 
grown on retained ridges with minimum soil disturbance and residue retained; and Conservation agriculture (CA): maize 
intercropped either cowpea, pigeon pea or groundnut on retained ridges as in NT. Our results show that total system nutri-
tion was higher in CA treatments than NT and CP. The yields of maize were at least 800 kg  ha−1 higher in CA and NT than 
CP despite the variety that was grown. Legume yields were also higher under CA and NT than CP. High protein yield was 
observed in CA systems (at least 100 kg  ha−1 higher than CP) where maize and legume intercrops were rotated with grain 
legumes. Our results show nutrients and energy gains in CA and NT systems that can be invested in practices that increases 
the resilience of smallholder farmers to climate change. Conservation agriculture and NT systems have more influence on 
productivity of smallholder farms, despite the genotypes used (hybrids or OPVs).
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1 Introduction

Food and nutrition insecurity in Southern Africa continues to 
worsen due to climate, social and economic conditions prev-
alent in the region. Erratic rainfall patterns, heat and drought 
stress and shortening of the growing season accompanied 
by declining soil fertility reduces the crop yields. Further-
more, the difficult economic conditions in the region results 
in farmers’ having limited access to agricultural inputs such 
as fertilizer and certified seeds which further worsens food 

and nutrition insecurity. This is further exacerbated by the 
poor markets, which makes it difficult for farmers to adopt 
certain technologies despite their importance to smallholder 
households (Bjornlund et al., 2020). Approximately 25% of 
Southern Africa’s population is undernourished (FAO & 
ECA, 2018), which compromises the regions’ capability to 
meet the Sustainable Development Goal 2 target, “End hun-
ger, achieve food security and improved nutrition and pro-
mote sustainable agriculture”. Approximately 80% of food 
required to feed a growing population in Southern Africa is 
produced by smallholder farmers. However, most rural farm-
ers have small landholding sizes (on average 2 ha per house-
hold, Lowder et al., (2016), FAOSTATS, 2023) and limited 
access to inputs to intensify their farming systems adequate 
to reach the household living income (Marinus et al., 2022). 
To overcome this challenge, farmers could intensify their 
cropping systems making use of improved management 
practices, however this requires significant investment from 
farmers and often new knowledge (Marinus et al., 2022).
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Farming systems in Malawi are dominated by maize (Zea 
mays L.) as the staple crop, frequently cultivated in inter-
crops with less focus on soil fertility improvement. Malawi 
smallholder farmers have access to subsidized inputs from 
the government, which gives them an advantage over some 
other farmers in Southern Africa. However, due to several 
factors including inadequate weeding, late application of fer-
tilizers, low soil organic matter and poor soil quality includ-
ing high soil acidity and low phosphorus their maize yields 
are still low (Snapp et al., 2014). The average maize yield 
in smallholder farms ranges between 2–3 tons  ha−1 depend-
ing on the quality of the cropping season. Nevertheless, 
despite an average family size of 6 people per household, 
each requiring around 1500 kg of maize per year, farmers 
are left with a limited surplus for sale to meet their annual 
household needs (FAOSTATS, 2023; Stevens & Madani, 
2016). The over-reliance of farmers on maize for food secu-
rity results in imbalanced diets that worsen the malnutrition 
status of households in Malawi (Mazunda & Droppelmann, 
2012). Other crops such as grain legumes (e.g., groundnut 
(Arachis hypogea L), cowpea (Vigna unguiculata Walp), and 
pigeon pea (Cajanus cajan Millsp)) are also grown, but they 
occupy less than 30% of the arable land area. Grain legumes 
are crucial in smallholder farmers’ diets because they are a 
rich source of dietary protein, fiber, minerals (iron and zinc), 
phytochemicals and vitamins (including vitamin B) (Polak 
et al., 2015). Most of the crops are grown on annual ridges 
(constructed every year) of 75 cm to 90 cm row spacing and 
20–50 cm height which have some positive effects, e.g., trap-
ping water, especially if the ridges are tied, but have many 
detrimental effects on crops and the environment (Bunder-
son et al., 2017). The raised ridges are also labour intensive 
to construct yearly which calls for more labour reducing and 
soil conserving technologies such as Conservation Agricul-
ture (CA) where ridges are not constructed annually but 
maintained from one season to the next (Thierfelder et al., 
2016a).

Conservation Agriculture is a cropping system based on 
minimum soil disturbance, permanent soil cover using liv-
ing or dead organic material, and diverse crop associations 
(FAO, 2012). Several research results have shown that CA 
improves and stabilizes crop yields (Madembo et al., 2020; 
Thierfelder et al., 2015), conserves soil and water resources 
(Page et al., 2020; Thierfelder & Wall, 2009), increases bio-
diversity (Mhlanga et al., 2020; Muoni et al., 2019), reduces 
some greenhouse gas emissions (O’Dell et al., 2020; Page 
et al., 2020) while potentially maintaining or increasing soil 
carbon (Ligowe et al., 2017; Powlson et al., 2016). Improv-
ing grain yield is an associated longer-term benefit with the 
proper implementation of CA (Thierfelder et al., 2015). 
Although, CA systems have potential to improve yields, 
good agronomic practices including early planting, weed 
control and selection of suitable varieties is crucial. Maize 

varieties [hybrids and open pollinated varieties (OPVs)] 
have been assessed in several studies across Southern 
Africa e.g., Hlatywayo et al., (2016) and Thierfelder et al., 
(2016b). Farmers’ preferences on the varieties to grow vary. 
For example, in Mozambique smallholder farmers preferred 
short season varieties such as ZM 309 which is an OPV, 
because they mature very early hence reducing the risk of 
complete crop failure (Thierfelder et al., 2016b), whereas in 
other areas hybrids have been the most preferred and used 
type of germplasm. Additionally, incorporating legume-
based crop rotations or intercropping under CA has been 
demonstrated to not only enhance total system protein and 
total system energy in Zambia's smallholder farmers' house-
holds, have similar climatic conditions with Malawi small-
holder farmers, (Mhlanga et al., 2021) but also contribute 
to crop diversification, thereby improving dietary diversity 
through valuable nutrients such as protein, vitamins, iron, 
and zinc obtained from the legumes (Bassett et al., 2010; 
Scalbert et al., 2005; Stroehle et al., 2006).

Since different types of crops grown in diversified sys-
tems have different nutritional composition, it is important to 
quantify the overall contribution of involved crops. Research 
on the contribution of different crops, crop management, 
and environmental conditions on crop productivity in small-
holder farms in Southern Africa has been done but mainly 
focusing on individual crop grain yields and not much on 
nutrition of involved crops. In studies where these aspects 
were investigated, it was usually individually or combined 
depending on the aim. Thus, our study seeks to address how 
diversified systems under CA systems contribute to human 
nutrition in different environments. The aim of this paper 
was therefore to assess if: a) G × M interaction influence 
productivity with specific emphasis on human nutrition, and 
b) maize-legume systems under CA may improve the nutri-
tional yield of a household. The specific objective of the 
study was to evaluate the effect of different cropping systems 
under conventional practice and no-tillage on maize and 
legume grain yields, total system protein and total system 
energy in Central and Southern Malawi smallholder farming 
systems. However, here we try to address these objectives 
by evaluating the effect of improved varieties on yield pro-
ductivity, total system protein and total system energy under 
different cropping systems in Malawi.

2  Methods

2.1  Study area

The study was conducted in on-farm sites located in Cen-
tral and Southern Malawi from 2005/2006 to 2018/2019 
cropping seasons (Table 1). Sites in Central Malawi and 
Southern Malawi received 368 – 1863 mm of rainfall in 
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a unimodal pattern during the study period. The cropping 
seasons started in November and ended in April in a normal 
season. Maize (Zea mays L.) and to a certain extent cassava 
(Manihot esculenta Crantz) are among the common crops 
grown across the study sites (communities) namely Zidyana, 
Mwansambo, Linga, Chinguluwe, Chipeni, Lemu, Malula, 
Herbert, Matandika, and Songani located in Central and 
Southern Malawi. We maintained the same farmers’ fields 
throughout the study period, even after the death of the host-
ing farmer. The soils of the sites can be generally clustered 
as Luvisols and Lixisols with site-specific variations. Some 
farmers in the study sites practice crop rotations (especially 
in Central Malawi) but the majority use intercropping (in 
Southern Malawi) as diversification strategy involving 
grain legumes such as groundnut, cowpea and pigeon pea, 
amongst other species. These sites were selected to repre-
sent the climatic and economic conditions of the different 
agro-ecological zones of Malawi; thus, the findings of the 
study could be broadened to different parts of the country 
and similar environments elsewhere.

2.2  Experimental design

The experimental design was a randomized complete block 
design (RCBD), with three main treatments. All treatments 
were replicated by 6 farmers at each study site during each 
cropping season. Replication by multiple farmers and across 
different seasons helped increase the robustness and reli-
ability of the experimental results, providing a more com-
prehensive understanding of the impact of the treatments 
under various conditions. All sites had maize as the main 
crop from the onset. From cropping season 2012/2013, crop 
rotations were practiced in all treatments. The descriptions 
of the treatments were as follows:

a) Conventional practice (CP) – maize was grown on ridges 
and furrows that were constructed in each season. No 
residues were retained.

b) No tillage (NT) – sole maize crops grown under mini-
mum soil disturbance on old ridges which subsided 
and were never reformed. Dibble sticks were used to 
make holes to place fertilizer and seed separately. Crop 
residues were retained on the soil surface at a rate of 
approximately 2.5 t  ha−1.

c) Conservation agriculture (CA) – maize crops grown 
under minimum soil disturbance on old ridges which 
subsided and were never reformed. Crop residues were 
retained on the soil surface at a rate of approximately 2.5 
t  ha−1. Maize was intercropped with a legume.

We deliberately labelled NT and CA differently although 
we acknowledge that even though the NT systems were fully 
rotated from 2012/2013 onwards and could be labelled CA 
according to the FAO definition. But for ease of distinguish-
ing from the intercropped CA system, we labelled them as 
described above. In Central Malawi, the legume used in 
the intercrops was cowpea and the rotational legume was 
groundnut. In Southern Malawi pigeon pea was the com-
panion crop of maize in intercrops (except for Herbert which 
had a maize cowpea intercropping). The rotation legumes 
were pigeon pea in Malula, Matandika and Songani; cow-
pea in Herbert and groundnut in Lemu. The seeding rate for 
pigeon pea was 25 kg  ha−1, and 80 kg  ha−1 for cowpea and 
groundnut. The plots were subdivided into five equal por-
tions in which five different maize genotypes were grown at 
each farmer’s field in each season (Table 2). The plots used 
had similar management in the previous five years and the 
most common crop was maize under conventional ploughing 
practices. The maize varieties that were grown during the 
study period had different maturity lengths and were either 
stress tolerant (heat and water) or non-stress tolerant. We 
used hybrids as well as open pollinated varieties (OPVs) 
in varietal comparison. Non-drought tolerant varieties were 
grown from the beginning of the experiments and drought 
tolerant varieties were introduced during the 2013/2014 
cropping season. The improved hybrid varieties were SC 

Table 1  Geographical location, 
altitude, and soil type in the 
ten targeted sites in central and 
southern Malawi

ь  source: Komarek et al. (2021)

District Site name Latitudeь Longitudeь Altitude (masl)ь Soil  typeь

Central Malawi Nkhotakota Zidyana -13.23 34.26 514 Lixisols
Mwansambo -13.29 34.13 660 Lixisols
Linga -12.80 34.20 491 Lixisols

Salima Chinguluwe -13.69 34.24 653 Lixisols
Dowa Chipeni -13.76 34.05 1164 Luvisols

Southern Malawi Balaka Lemu -14.78 35.03 687 Luvisols
Malula -14.96 34.99 613 Luvisols
Herbert -14.88 35.05 635 Luvisols

Machinga Matandika -15.18 35.28 683 Luvisols
Zomba Songani -15.29 31.45 815 Lixisols
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719, PAN 53, MH 30 and MH 31 while the open pollinated 
varieties were ZM 523 and ZM 309. As control variety 
we use DKC 80–53, one of the most common varieties in 
Malawi smallholder farms. All maize crops, in intercrops 
and rotations, were spaced at 75 cm × 25 cm, leaving one 
plant per station after thinning and gap filling, to achieve 
a plant population of 53,333 plants  ha−1. The same plots 
and farmer households were maintained at all sites for grain 
yield measurements throughout the study period inclusive 
of the period 2005/2006 to 2018/2019.

2.3  Experiment management

The experiments were managed by both farmers and Gov-
ernment of Malawi agricultural extension officers and the 
regional non-governmental organisation Total LandCare, 
while CIMMYT researchers provided overall technical 
supervision. To improve our reach to more farmers, we 
conducted field days that included field tours at all sites 
throughout the study period. The overall plot size at each 
farmers’ field was 3000  m2, which was subdivided into 
three treatments of 1000  m2 each. All plots were planted 
after the first effective rains of the season i.e., after receiv-
ing at least 30 mm of rainfall within two days from the 15th 
of November. All treatments (except the legumes in the 
intercrop) received the same basal dressing at 69 kg  ha−1 
(21 kg  ha−1 N: 21 kg  ha−1  P2O5: 4 kg  ha−1 S) application 
rate. Top dressing was done to maize only using urea (46% 
N) at 100 kg  ha−1 application rate approximately three weeks 
after sowing.

Crop rotations of maize and legumes in all treatments 
were introduced from the 2012/2013 cropping season in 
Zidyana, Mwansambo and Chipeni and 2013/2014 crop-
ping season in Songani, Matandika, Malula, Linga, Lemu, 
Herbert and Chipeni. Crop rotations were practiced with 
both maize and legume phases in each cropping season at 

each site. Farmers in Herbert showed little interest in pigeon 
pea due to limited selling options and opted for cowpeas 
instead. Groundnut was spaced at 37.5 cm between rows and 
20 cm between plants in both rotations and intercropping 
with maize. Pigeon pea was spaced at 75 cm × 20 cm with 
1 seed per planting station after thinning in CA rotations, 
while in intercrops it was spaced at 50 cm between plants 
and the rows were located between the maize rows. Cow-
pea rows were between maize rows and the in-row spacing 
was 40 cm and as sole crops (Herbert) they were planted at 
37.5 cm × 40 cm spacing.

Weed control in NT and CA treatments was done using 
glyphosate [N-(phosphonomethyl) glycine] at 2.5 L  ha−1 
(1.025 L  ha−1 active ingredient) and bullet [25.4% Ala-
chlor (2-chloro-N-(2,6-diethylphenyl)-N-(methoxymethyl) 
acetamide) at 6 L  ha−1) depending on cropping seasons. In 
later years, bullet was replaced by the more environmentally 
benign product Harness® (acetochlor (2-ethyl-6- methylphe-
nyl-d11)) which was applied in all communities from 2017 
cropping season, at 1 L  ha−1 application rate. Hand hoes 
were used to control weeds which emerged as the season 
progressed. Weed control in CP treatment was done through 
tillage and later using hand hoes whenever necessary.

Harvesting of maize was done at physiological maturity 
by measuring total cob fresh weight at 10 sampling plots of 
7.5  m2 (5 m × 2 rows), avoiding borders, and a subsample of 
20 cobs was collected for further drying of the cobs from the 
beginning of the experiments to the 2011/2012 cropping sea-
son. From the 2012/2013 cropping season onwards, only two 
samples were collected from each variety across the treat-
ments (each sampling point measured 5 m × 2 rows). The 
subsample collected had only 4 cobs. Legume crops were 
also harvested from 10 sampling points with similar land 
area as maize. Each sampling point measured 5 m × 4 rows). 
A pod-sub-sample of approximately 2 kg was collected for 
further drying. The sub-samples were air-dried and their dry 

Table 2  The maize varieties 
grown at different sites during 
the study period

y means the variety was grown at that site and n means the variety was not grown at that site

Sites Maize variety

DKC
8033

DKC
8053

DKC
9053

DKC
9089

MH
30

MH
31

PAN
53

SC
627

SC
719

ZM
309

ZM
523

Chinguluwe n y y y y n y y y n y
Chipeni y y y y y y y y y n y
Herbert y y n n y n y n n n y
Lemu y y n n y y y n n y y
Linga n y y n y n y y y n y
Malula y y n n y y y n n y y
Matandika y y n y y y y n y n y
Mwansambo y y y y y y y y y n y
Songani y y n y y y y n y n y
Zidyana y y y y y n y y y n y



1071Management of maize-legume conservation agriculture systems rather than varietal choice fosters human nutrition in Malawi

weights and grain moisture were collected which were used 
to calculate maize and legume yields in kg  ha−1 at 12.5% 
and 9% moisture basis for maize and legumes, respectively.

2.4  Calculations

Since some of the cropping systems in our study involved 
different crops and different crop sequences and spatial 
arrangement, it was important to express the systems pro-
ductivity in terms of a common unit for the possibility of 
comparisons. To do this, we expressed system productivity 
in terms of total system protein (kg  ha−1) and total system 
energy (gigajoules (GJ)  ha−1). The total system protein was 
calculated based on nutritive values of maize, groundnut, 
cowpea and pigeon pea obtained from the Food Nutrition 
Table (http:// www. foodn utrit ionta ble. com/). The protein 
percentage used for calculations for maize, cowpea, ground-
nut and pigeon was 10%, 28%, 26% and 22% respectively. In 
intercrops, total system protein was determined by adding 
the protein yield from maize and the legume. The total sys-
tem energy calculations were based on crop energy values 
obtained from the GeNUS database (http:// proje cts. iq. harva 
rd. edu/ pha/ genus). Total system yield was calculated using 
the formulas shown in Table 3. Differences in the formu-
lae for calculating GJ are due to different cropping systems 
(intercrop or rotations) and different crop combinations. See 
Komarek et al. (2021) and Mhlanga et al. (2021) for further 
explanation.

2.5  Statistical analysis

The grain yields of crops (legumes and maize), total system 
protein, and total system energy were subjected to a nor-
mality and homoscedasticity test in R environment before 
analysis (R Core Team, 2021). Since on-farm data is usu-
ally of hierarchical nature and hence non-independent, the 
use of linear mixed models was more desirable in assess-
ing the effect of treatment and variety (fixed factors) on the 
investigated aspects. In the models, cropping seasons and 

farmers nested into the sites were treated as random factors 
to account for repeated measurements and grouping factors 
(Eq. 1).

where γijk is the maize/legume grain yield, system energy, 
and protein yield observed in the  kth site of the  ith variety in 
the  jth treatment (i = 1, 2, …,; j = 1, 2, …,; k = 1, 2, …); µ is 
the grand mean; αi is the effect of the  ith variety; τj is the 
effect of the  jth treatment; (ατ) ij is the interaction effect of 
the  ith variety with the  jth treatment; and εijk is the random 
error.

The rotation factor was tested by separating the data sets 
before and after introduction of crop rotations on all commu-
nities. Wald Chi-squares were used to test the significance of 
the fixed factors and their interactions using “lme4” package 
in R (Bates et al., 2014). Mean separation of all significant 
data was done using Tukey test in “emmeans” package in R 
(Lenth et al., 2018).

3  Results

3.1  Maize grain yield

Treatments and varieties had a significant effect on maize 
grain yield (Table 4). Treatment × variety interaction had 
a significant effect on maize grain yield after introduc-
tion of crop rotations. Conventional practice treatment had 
lower maize grain yields across varieties compared to CA 
and NT treatments (Fig. 1). The yield benefits of NT and 
CA when compared to CP ranged between approximately 
-35 to 240%. The overall mean yield was approximately 
4000 kg  ha−1. The OPVs ZM 309 and ZM 523 and the 
hybrid MH 31 were below the average yield irrespective 
of the cropping system. Both OPVs and hybrids showed 
clear yield gains in CA and NT when compared with CP. 

(1)�ijk = � + �i + �j + (��)ij + �ijk

Table 3  The formulas used in the calculation of system yield for each cropping system

MzY and LegY = maize grain yield and legume grain yield in kg  ha−1, respectively; MzKcal and LegKcal = kcal/100 g seed for maize and leg-
ume crops, respectively; GJConv is a conversion factor that converts kcal to GJ, where 1 GJ is 238845.897 kilocalories.

Treatment System yield (GJ  ha−1)

Conventional Practice (CP) maize without legume rotation (MzY × MzKcal × 10)/GJConv
Conventional Practice (CP) maize with legume rotation (½ × MzY × MzKcal × 10 + ½ × LegY × LegKcal × 10) /GJConv
No-tillage (NT) maize without legume rotation (MzY × MzKcal × 10)/GJConv
No-tillage (NT) maize with legume rotation (½ × MzY × MzKcal × 10 + ½ × LegY × LegKcal × 10) /GJConv
Conservation Agriculture (CA) maize legume intercrop without legume rotation (MzY × MzKcal × 10 + LegY × LegKcal × 10) /GJConv
Conservation Agriculture (CA) maize legume intercrop with legume rotation (½ × (MzY × MzKcal × 10 + LegY × LegKcal × 10) + 

½ × (LegY × LegKcal)) /GJConv

http://www.foodnutritiontable.com/
http://projects.iq.harvard.edu/pha/genus
http://projects.iq.harvard.edu/pha/genus
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Highest maize yield was observed in the long-season 
hybrid maize variety SC 719 (5635 kg  ha−1) under CA 
treatments.

The results also show that introduction of crop rota-
tions across sites resulted in significant treatment × variety 
interaction (Table 4). Yields under CA and NT were higher 
than CP before and after introduction of crop rotations, 
however maize yield after introduction of rotations were 
lower than before rotations (Fig. 2).

3.2  Legume grain yield

Treatments and treatments × rotational crop interaction had 
a significant effect on legume grain yield (Fig. 3). Crop 
yields observed under CP treatments were significantly 
lower than CA and NT treatments throughout the study 
period.

Table 4  Linear mixed effects model output for maize grain yield, total system energy and total system protein

P-values were significant at *** P < 0.001, ** P < 0.01, * P < 0.05

Maize grain yield
Source Combined effect No rotations With rotations

Df Wald chi-
square

P-value Df Wald chi-
square

P-value Df Wald chi-
square

P-value

Treatment (T) 2 632.4  < 2.20 ×  10–16*** 2 155.4  < 2.20 ×  10–16*** 2 331.4  < 2.20 ×  10–16***
Variety (V) 10 435.9  < 2.20 ×  10–16*** 3 79.19  < 2.20 ×  10–16*** 9 335.9  < 2.20 ×  10–16***
T × V 20 54.7 4.50 ×  10–04** 6 3.97 0.68 18 31.2 0.03*
Total system energy

Combined effect No rotations With rotations
Df Wald chi-

square
P-value Df Wald chi-

square
P-value Df Wald chi-

square
P-value

Treatment (T) 2 1870.2  < 2.20 ×  10–16*** 2 293.0  < 2.20 ×  10–16*** 2 2418.9  < 2.20 ×  10–16***
Variety (V) 10 265.8  < 2.20 ×  10–16*** 3 4.44 0.22 9 206.85  < 2.20 ×  10–16***
T × V 20 44 0.001** 6 20.01 0.002656 ** 18 54.1 1.792e−05 ***
Total system protein

Combined effect No rotations With rotations
Df Wald chi-

square
P-value Df Wald chi-

square
P-value Df Wald chi-

square
P-value

Treatment (T) 2 2602.5  < 2.20 ×  10–16*** 2 293.0  < 2.20 ×  10–16*** 2 2418.9  < 2.20 ×  10–16***
Variety (V) 10 183.4  < 2.20 ×  10–16*** 3 4.44 0.22 9 206.85  < 2.20 ×  10–16***
T × V 20 61.3 4.51 ×  10–06*** 6 20.1 0.002656 ** 18 54.1 1.792 ×  10–05 ***

Fig. 1  Interactive effect of 
treatments and varieties on 
maize grain yield across 13 
cropping seasons at study sites 
in central and southern Malawi. 
Treatment abbreviations: CP – 
conventional practice involving 
construction of ridges, NT- no-
tillage system which involved 
seeding into old ridges without 
remaking them plus retention 
of crop residues and, CA – no-
tillage with residue retention 
and intercropping. The vertical 
dotted line shows the overall 
mean. Description of varieties 
are provided in Komarek et al., 
2021
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3.3  Total system protein

Combined results show that treatments, varieties, and 
their interactions had a significant effect on total system 
protein (Table 4). Conventional practice treatments had 
significantly lower total system protein ranging between, 
245 to 327 kg  ha−1, than CA and NT treatments (range 
385–477  kg   ha−1 and 351–419  kg   ha−1, respectively) 

(Fig. 4). Also, systems that involved legumes and OPVs 
(ZM 309 and ZM 523) had lower total system protein than 
other varieties across treatments (Fig. 4). Conservation 
agriculture treatment involving rotation of grain legumes 
with maize/legume intercrops had the highest protein 
yield. No-till treatment had higher total system protein 
than CP treatments even before introduction of crop rota-
tions (Fig. 5).

Fig. 2  Maize grain yield: a before introduction of rotations and b) 
after introduction of rotations. Total system energy: c before intro-
duction of rotations and d) after introduction of rotations. Treatment 
abbreviations: CP – conventional practice involving construction of 
ridges, NT- no-tillage system which involved shaping the ridges with-

out remaking them plus retention of crop residues and, CA – no-till-
age with residue retention and crop rotation/ intercropping. Different 
letters on mean maize yield show treatments that are significantly dif-
ferent from each other at 5% probability level

Fig. 3  Crop and treatment inter-
action effects on legume grain 
yields from 2006 to 2019 crop-
ping seasons at the study sites. 
Treatment abbreviations: CP – 
conventional practice involving 
construction of ridges, NT- no-
tillage system which involved 
shaping the ridges without 
remaking them plus retention 
of crop residues and, CA – no-
tillage with residue retention 
and crop rotation/ intercropping. 
Different lower cases above the 
box-plots indicant significantly 
different legume crop yields and 
different upper cases indicate 
significantly different treatments
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3.4  Total system energy

Overall, the results show that treatments, varieties, and 
their interactions had a significant effect on total system 
energy (Table 4). The total system energy ranged between 
41.0—66.0 GJ  ha−1 across the treatments (Fig. 2). Before 

introduction of crop rotations, the interaction of treatments 
and varieties had a significant effect total system energy 
(Table 4). Conservation agriculture and NT treatments had 
higher total system energy than CP. After introduction of 
crop rotations, treatment, variety and their interactions had 
a significant effect on total system energy and as observed 

Fig. 4  Effect of treatments 
and varieties on total system 
protein yield across 13 crop-
ping seasons at study sites in 
central and southern Malawi. 
Treatment abbreviations: CP – 
conventional practice involving 
construction of ridges, NT- no-
tillage system which involved 
shaping the ridges without 
remaking them plus retention 
of crop residues and, CA – no-
tillage with residue retention 
and crop rotation/ intercropping. 
Description of varieties are 
provided in the materials and 
methods. The dots show the sys-
tem protein yield mean and the 
whisker show the 95% confident 
intervals

Fig. 5  Total system protein; a 
before introduction of rotations 
and b) after introduction of rota-
tions. Treatment abbreviations: 
CP – conventional practice 
involving construction of ridges, 
NT- no-tillage system which 
involved shaping the ridges 
without remaking them plus 
retention of crop residues and, 
CA – no-tillage with residue 
retention and crop rotation/ 
intercropping. Different letters 
above the box-plots indicant 
significantly different treat-
ments. Different letters on mean 
yield show treatments that are 
significantly different from each 
other at 5% probability level
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in no rotations, CP treatments had significantly lower total 
system energy than CA and NT (Fig. 2). Variation of total 
system energy was observed across seasons. Under CA, the 
highest system energy was observed with DKC 9053 variety 
while DKC 8053 and DKC 9053 had highest total system 
energy under CP (Fig. 6).

4  Discussion

Improving food and nutrition security in smallholder farms 
in Central and Southern Malawi remains a key challenge 
due to several factors including poor management prac-
tices, mono-cropping, using saved seed, and climate related 
shocks. We examined how management practices (CP, NT 
with rotations of maize and grain legumes, and full CA sys-
tems involving no-till and rotation of maize/legume intercrop 
with sole grain legumes), and varieties influenced maize and 
legume grain yield, total system protein and total system 
energy in central and Southern Malawi smallholder farms. 
The approach to assess the impact of cropping systems using 
total system protein and total system energy has been previ-
ously shown under CA in Eastern Zambia e.g., Mhlanga 
et al. (2021) and in Malawi Komarek et al. (2021). Total 
system protein and energy was higher under CA than CP in 
Zambia and Malawi smallholder farms. We used a similar 
approach in both studies but enhancing the analysis to also 
show effect of maize varieties on overall productivity and 
its interaction with crop management. Our study highlights 
important cropping systems that have potential to reduce 
food and nutrition insecurity, however most smallholder 
farmers have limited resources that might hinder them to 
adopt the cropping systems. To ensure the study is relevant 

in smallholder farms in Malawi we conducted it at on-farm 
sites, and it was managed by both farmers and researcher. 
Farmers were responsible for all agronomic practices includ-
ing weed management, fertilizer application and pest con-
trol; following advices from researchers. Hence, this set-up 
(a real-world) allows us to conclude the cropping systems 
tested in this study are both feasible and attainable in small-
holder farms.

4.1  Maize and legume grain yields

Conventional practices had lower yields when compared to 
NT and CA systems. No till and CA treatments had higher 
yields than CP due to addition of crop residues. Retention 
of crop residues enhance water infiltration and retention in 
the soil. This is important during the prolonged dry spells 
that are commonly experienced in the study sites. Conven-
tional practices based on ridge tillage have several detri-
mental effects including high soil, water and nutrient losses 
(Bunderson et al., 2017; Thierfelder et al., 2016a) hence 
lower crop yields are obtained in these systems under the 
Malawian context. Ploughing disrupts soil structure and 
natural ecosystem that contributes to soil fertility decline. 
Also limited crop residue retention and soil fertility amend-
ment reduces soil organic matter content, hence crop yields 
decline in this system. Rickson et al. (2015) reported that 
decline in soil organic matter content reduces nutrient 
retention, which has a negative effect on crop yields. The 
CA treatment had slightly higher maize yields, which were 
slightly higher than in NT treatment. This might be due to 
the fact that a legume in a maize intercrop system enhances 
soil fertility build-up through biological nitrogen fixation 
(BNF) and addition of organic matter that increase the maize 

Fig. 6  Effect of treatments and 
varieties on total system energy 
across 13 cropping seasons at 
study sites in central and south-
ern Malawi. Treatment abbre-
viations: CP – conventional 
practice involving construction 
of ridges, NT- no-tillage system 
which involved shaping the 
ridges without remaking them 
plus retention of crop residues 
and, CA – no-tillage with 
residue retention and crop rota-
tion/ intercropping. Description 
of varieties are provided in the 
materials and methods. The dots 
show the system energy yield 
mean and the whisker show the 
95% confident intervals
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yields (Vanlauwe et al., 2019). Maize yields in NT were 
higher than CP before introduction of crop rotations involv-
ing grain legumes. These results agree with Mupangwa et al. 
(2019) and Michael et al. (2021), who reported that appli-
cation of 30–80 kg N  ha−1, under NT and retention of crop 
residues (2—5 t  ha−1) increased the maize grain yields under 
good agronomic practices. However, there is a potential 
nitrogen (N) lock-up problem in this system (Michael et al., 
2021) if no-tillage with crop residues are practiced without 
integration of leguminous crops (Gentile et al., 2011). This 
explains why introduction of crop rotations with grain leg-
umes in CA and NT overall improved maize yields as the 
additional N from the legumes eased N lockup in the studied 
soils. Maize yield in NT was higher after introduction of the 
rotational crop than CA because the more diversified CA 
system had a competing companion crop, which resulted 
in a slight depression of yield. In addition, growing a legu-
minous intercrop in CA meant that the row spacing in CA 
had to be widened from 75 to 90 cm to allow the legume 
to proliferate. Maize could not compensate for this, hence 
yields in CA where overall lower after introducing rotations 
as compared to NT.

Crop rotations have several advantages to the cropping 
system including increasing soil organic carbon (SOC) and 
reducing pests, diseases and weed pressure which gives 
crops a competitive advantage (Sapkota et al., 2017; Thier-
felder et al., 2013; Weisberger et al., 2019). Previous stud-
ies have shown that increasing crop diversity suppresses 
weeds more in NT and CA systems than CP practices (Lee 
& Thierfelder, 2017; Nichols et al., 2015), this could help 
explain why CP yields were still low even when crop rota-
tions were practiced (Weisberger et al., 2019). Also after 
13 years of good agronomic practices, there is a build-up 
of organic matter in the soil which improves soil quality 
in the CA and NT systems whereas in the CP (Hussain 
et al., 2021), decomposition is high due to increased con-
tact between active microbial populations and crop residues, 
and less build-up takes place (Ni et al., 2016). In this cur-
rent study, CP was subjected to drastic soil disturbance as 
ridges are annually split and rebuild in the furrow which is 
the traditional practice in Malawi (Bunderson et al., 2017). 
This not only leads to destruction of the pore system but 
also enhances oxygen intake into the subsurface leading to 
faster decomposition (Lupwayi et al., 2004). Higher yields 
under CA and NT could also be related to less disturbance of 
soil macro and micro-organisms that enhances the ecologi-
cal benefits and soil water properties including soil moisture 
content and soil water infiltration (Mhlanga & Thierfelder, 
2021; Muoni et al., 2019).

Varieties showed significant effect on maize grain yield. 
This could be due to differences among yield potentials of 
the varieties which are associated with their genetic make-
up. No-till and CA systems with crop residue retention 

reduce soil temperature which encourages root growth, 
nutrient, and water uptake as compared to CP (Hlatywayo 
et al., 2016). Open pollinated varieties ZM 309 and ZM 523 
had lower yields than hybrids as expected. However, OPVs 
have been reported to be more stable than hybrids and suit 
smallholder farmers who struggle to purchase seed every 
season (Lana et al., 2017). Unlike hybrids, OPVs can be 
recycled for 3–4 cropping seasons without major yield pen-
alty. In these trials, replacement of varieties with improved 
ones were done to maintain the genetic gains that are asso-
ciated with release of improved varieties; however, each 
community had the same variety per season. To address the 
errors that arise due to changes in the varieties, manage-
ment practices and legume crops, locations were included 
as a random factor in our analysis (Schielzeth et al., 2020).

CA and NT had higher legume grain yields than CP. Sev-
eral reasons could contribute to this: a) as CA systems are 
planted on the flat and are not restricted to the ridge and 
75 cm row spacing, they can be planted at optimal plant 
population, covering the whole available soil area. In these 
trials, legumes were planted at 37.5 cm rows which exploited 
the available soil area much more efficiently than planting 
under CP. In addition, improved conservation of resources in 
CA systems, as well as increased BNF under such cropping 
systems (Torabian et al., 2019) may increase legume yields. 
In summary, a higher plant population, increased BNF com-
bined with high moisture conservation and improved bio-
logical activity resulted in higher legume grain yield in CA 
and NT when compared to CP.

4.2  Total system energy and protein

Total system energy was higher in CA and NT treatments 
compared to CP treatments. This might be due to minimum 
soil disturbance and retention of crop residues under these 
systems that helps with moisture and soil conservation, as 
well as improved soil and biological activity (Mhlanga et al., 
2020; Muoni et al., 2019; Thierfelder & Wall, 2009). With 
increased total system energy in smallholder farms, farm-
ers have opportunity to diversify their food production by 
growing a wider range of crops that contributes to a more 
balanced and nutritious diet for their households. This fur-
ther results in a more diverse and resilient agricultural sys-
tem that can withstand the impacts of climate change, thus 
CA and NT have potential to alleviate food and nutrition 
insecurity in Malawi smallholder farms. The CA treatment 
had an additional benefit of the legumes that were grown as 
intercrops that also contributed to the total system energy. 
There was no clear pattern of cropping systems and varieties 
on total system energy. However, the total system energy 
was at least 30 GJ  ha−1, which is expected to meet the basic 
caloric requirements per household per year (Harttgen & 
Klasen, 2012). Hence, improved varieties plus improved 
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management practices have potential to alleviate food secu-
rity challenges faced by smallholder farmers.

Overall, NT and CA systems had high protein yield when 
compared to CP systems. This could be related to higher 
crop yields obtained in these systems than under CP. Maize 
grain has approximately 10% protein. The CA treatments 
which included grain legumes had better protein yield 
because grain legumes are a rich source of proteins (Wat-
son et al., 2017). This suggests CA systems results in high 
protein production that contributes to better overall health 
outcomes and reduce the risk of malnutrition in smallholder 
farmers’ households. In this study, we observed increased 
total system protein yield across treatments after introduc-
tion of crop rotations with grain legumes. Higher protein 
yield was observed under CA where maize/legume intercrop 
was rotated with maize. Hence, increasing crop diversity in 
smallholder farming systems, coupled with minimum soil 
disturbance and retention of crop residues makes the system 
more nutritious.

5  Conclusions

Improved agricultural practices that enhance crop yields, 
total system energy and protein are crucial in Malawi small-
holder farms. Here we studied the contribution of improved 
varieties and cropping systems to maize and legume grain 
yield, protein yield, and total system energy. Conservation 
agriculture, particularly minimum tillage and crop rota-
tions of maize and grain legumes, significantly enhances 
productivity in smallholder farms in Malawi. The adoption 
of NT and CA systems leads to higher maize and legume 
yields compared to CP. Furthermore, incorporating more 
diverse cropping systems, such as intercropping maize with 
legumes, improves overall nutrition. While maize varieties, 
including hybrids and OPVs, perform differently across 
treatments, emphasizing the adoption of improved varieties 
alongside advanced cropping systems like CA is essential for 
sustainable smallholder farming. We recommend farmers to 
utilize energy gains to invest in practices that increases the 
resilience of their agricultural systems to climate change. 
These practices include diversifying their cropping systems 
by growing a wider range of crops that contributes to a more 
balanced and nutritious diet for their households.
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