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Abstract

Salmonids, specifically Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus

mykiss), are commonly farmed and their gut microbiota plays important roles for optimal

growth, health, and physiology. However, differences in experimental design, technical

factors and bioinformatics make it challenging to compare the results from different

studies and draw general conclusions about their influence on the fish gut microbiota.

For a more comprehensive understanding of the gut microbiota, we collected all the

publicly accessible 16S rRNA gene sequencing data with clearly stated sample metadata

from freshwater Atlantic salmon and rainbow trout intestinal contents and mucosa

sequenced on the Illumina MiSeq platform. A total of 783 samples from 19 published

studies were included in this meta-analysis to test the impact of the technical, environ-

mental, and host-accociated factors. This meta-analysis revealed that all the tested fac-

tors significantly influenced the alpha and beta diversities of the gut microbiota of

salmon and trout. Technical factors, especially target region and DNA extraction kit,

affected the beta diversity to a larger extent, while host-associated and environmental

factors, especially diet and initial fish weight, had a higher impact on the alpha diversity.

Salmon had a higher alpha diversity and higher abundance of Enterococcus and Staphylo-

coccus than trout, which had higher abundance ofWeissella andMycoplasma. The results

of this meta-analysis fill in a critical knowledge gap that demonstrate technical method-

ologies must be standardized and factors associated with host and environment need to

be accounted for in the future design of salmonid gut microbiota experiments.
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1 | INTRODUCTION

The microbiota describes the collection of the microorganisms, such

as bacteria, fungi, protozoa, and viruses, living in a certain

environment. Microbes play key roles in the development and mainte-

nance of different physiological functions of their eukaryotic host, in

humans as well as other animals. The microbiota residing in the gut

(gastrointestinal tract) within animals contributes to host nutrient
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absorption,1 metabolism,2 aging,3 immune system regulation,4 and

protection against pathogen invasion.5 Meanwhile, the microbial com-

munities are also constantly influenced by host factors, such as devel-

opmental stage,6 health conditions,7 and species,8 as well as

environmental factors, including temperature,9 light,10 and diet.11

In aquaculture, gut microbiota is important to aquatic animals due

to their beneficial effects, especially the production of essential nutri-

ents, for example, short chain fatty acids and vitamins. Studies have

shown that intestinal microbiota are significantly affected by changes

in environmental (abiotic) and host (biotic) factors, and therefore

impair or promote their growth performance and health under differ-

ent conditions.12,13 Moreover, studies have shown impacts of envi-

ronmental factors, including dietary composition, feed ration,

temperature, rearing systems or habitat, as well as host-associated

factors, including fish taxa, age, growth rates, and health status, on

the gut microbiota of cultured fish in a laboratory setting as well as in

the wild.8,12–24 However, fish microbiota studies typically only investi-

gate one or two factors per study, while controlling for several others,

and it is difficult to compare studies with wide ranges in the factors

mentioned above, in addition to differences in technical factors, for

example, DNA extraction, PCR, and bioinformatic methods.

Salmonid fishes, particularly Atlantic salmon (Salmo salar) and

rainbow trout (Oncorhynchus mykiss), are two of the most commonly

farmed fish species and are economically important to the global

aquaculture industry.25 However, there is a lack of research on the

influence of technical, environmental, and host-associated factors on

the salmonid gut microbiota, and the evaluated factors are often study

specific. In this context, a meta-analysis, as a potent systematic

method to re-analyse and summarize the results collected from multi-

ple individual studies in a specific field,26 can be applied to generalize

the results of previous studies and give insights on future research

within the area. To the best of our knowledge, there is no systematic

meta-analysis reviewing studies focusing on the relations between

salmonid gut microbiota and the potential influence of the three kinds

of factors.26

The primary objective of this study was to perform a systematic

meta-analysis on the freshwater salmonid studies to determine the

effect size and rank of each technical, environmental and host-

associated factors that influence the gut microbiota, specifically the

alpha and beta diversities. The secondary aim was to correlate individ-

ual gut microbes with groups of these associated factors. We used

the QIIME2 pipeline and SILVA 138 database to analyse 16S rRNA

gene sequences from 19 studies composed of 783 samples from the

gut of freshwater Atlantic salmon and rainbow trout.

2 | METHODS

2.1 | Systematic literature search

For the selection and collection of raw 16S rRNA sequence data for

the meta-analysis in this study, all peer-reviewed published papers

related to ‘salmonid gut microbiota’ were identified and then

manually checked to ensure the suitability for the meta-analysis

(Figure 1). The potential studies of interest were filtered by Title–

Abstract–Keyword search on SCOPUS using 18 keyword combina-

tions ([‘salmon’, ‘trout’ or ‘char’], [‘gut’ or ‘intestine’], and [‘micro-

biome’, ‘microbiota’ or ‘microbe’]) and Title/Abstract search of

PubMed database using the same combinations. The combined search

from these two databases resulted in 229 full-text research articles

published from 1 January 2011 to 31 December 2022.

Due to the low number of studies using salmonid species other

than Atlantic salmon and rainbow trout, only these two species were

selected for the meta-analysis (Figure 1). In addition, data collection

was limited to in vivo studies sampling intestinal digesta or mucosa

(rather than the whole intestinal tissue) from healthy (not obviously

diseased or infected) non-triploid freshwater salmonids (Atlantic

salmon before smoltification and freshwater-raised rainbow trout)

without selection for any purposes in the meta-analysis to reduce the

complexity and generalize the results for future research in this area.

Moreover, only studies using Illumina MiSeq 16S rRNA gene sequenc-

ing were chosen because it was the most common sequencing plat-

form. After that, 50 studies were checked for data accessibility due to

the necessity of both clearly stated sample metadata and raw 16S

rRNA gene sequencing data required to perform the meta-analysis. As

a result, 19 studies meeting the selection criteria (Table 1) were identi-

fied for further processing and meta-analysis. All the raw 16S rRNA

gene sequencing data and sample metadata were downloaded from

NCBI Sequence Read Archive (SRA; https://www.ncbi.nlm.nih.

gov/sra).

All the factors that potentially affected the gut microbiota were

compiled and categorized for all the studies while evaluating them no

matter if they were specifically addressed in the original study. After

the final 19 studies (Table 1) were selected, only the 15 factors clearly

stated in more than half of the studies (at least 10 studies) were ana-

lysed in this meta-analysis.

2.1.1 | 16S rRNA gene sequence data processing

All raw 16S rRNA sequence data generated by the Illumina MiSeq

platform were processed by the next-generation microbiome bioinfor-

matics platform QIIME242 (https://qiime2.org/) version 2022.2 fol-

lowing the tutorials provided by the QIIME2 team (https://docs.

qiime2.org/2021.11/tutorials/). Raw sequences were imported into

QIIME2, demultiplexed, end-joined, and denoised with chimera

removal using QIIME2 built-in DADA2 method. To include most sam-

ples without compromising the quality of the data, the sequences

were trimmed to maintain a minimum quality score of Q25. Samples

with <2000 reads and taxa with fewer than 10 reads in that individual

study were discarded to focus on higher abundant taxa in the meta-

analysis. After that, the samples without enough replicates (n < 5) or

proper control groups were also excluded. Then the sequences were

taxonomically classified using the classifier pre-trained by RESCRIPT43

on the full-length 16S rRNA gene SILVA v138 database44 with a 99%

confidence provided by QIIME2 (https://docs.qiime2.org/2023.5/
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data-resources/#public-microbiome-data). Classified sequences were

taxonomically filtered to remove mitochondria, chloroplast, Archaea,

and Eukaryotes. After that, all the pre-processed sequence and sample

metadata were merged using QIIME2 merge commands for the fol-

lowing combined processing.

2.1.2 | Combined sequence data processing across
studies

A phylogenetic tree was generated by QIIME2 built-in fast tree com-

mand using the merged data. The merged files were then piped to R45

version 4.2.0 for further analysis. The data were cleaned and then fil-

tered to discard the Amplicon Sequence Variants (ASVs) unclassified

on phylum level. or with a prevalence lower than 3 throughout the

whole dataset including all the samples using R tidyverse46 ver1.3.1,

stringr47 ver1.4.0, and dplyr48 ver1.0.9 packages. A phyloseq49 (ver-

sion 1.40.0) object was built and then all the samples were rarefied to

2838 sequences (the lowest number of sequences over 2000

sequences in one sample) to reduce the influence of sampling depths.

The taxa were agglomerated on genus level for beta diversity analysis

as not all the ASVs were classified on the lower level.

2.2 | Meta-analysis

Alpha diversity indexes and beta diversity distance matrixes were gen-

erated by R picante50 ver1.8.2 and R vegan51 ver2.6-2 and then visu-

alized via ggplot252 ver3.3.6 and ggpubr53 ver0.4.0 packages.

Shapiro–Wilk normality tests54 were used to evaluate the normality

of the distribution of alpha diversity values, whereas non-parametric

Kruskal–Wallis tests55 were used to evaluate significance of the

influencing factors on alpha diversity. Post hoc tests were done by

Dunn tests56 using Benjamini–Hochberg method57 to determine pair-

wise differences between the groups. Faith phylogenetic diversity

values were also regressed in generalized linear mixed-effects models

by R lme458 and car59 packages to analyse the contribution of the

factors. Permutational Multivariate Analysis of Variance

(PERMANOVA)60 (9999 permutations were performed) with

weighted Unifrac distance were used to evaluate significance of the

influencing factors on beta diversity. The p-values <0.05 were consid-

ered as significant. Pairwise PERMANOVA was performed on all the

factors with more than two subgroups to learn the differences

between every two subgroups. Multivariate homogeneity of groups

dispersions was tested by PERMDISP61 in which both ANOVA (dis-

tances to centroids were calculated) and permutational analysis

(999 permutations) were performed. Linear discriminant

analysis Effect Size (LEfSe)62 analysis results were generated by R

microbiomeMarker63 ver1.2.2 to determine the differentially abun-

dant genera associated with a specific subgroup of a factor. Kruskal–

Wallis cutoff of 0.05 and Linear Discriminate Analysis (LDA) cutoff of

2 were applied. The p-values were corrected by Benjamini–Hochberg

method57 to account for multiple comparisons, and q values lower

than 0.05 were regarded as significant. All the results were visualized

by ggplot252 and ggpubr53 packages.

A total of 15 factors were analysed in this meta-analysis: paper/

study, species, fish initial weight (large salmon/LS: ≥40 g; small

salmon/SS: <40 g; large trout/LT: >80 g; small trout/ST: ≤80 g),

F IGURE 1 Flow chart illustrating the systematic literature search and data selection processes. The values in brackets indicate the total
number of studies excluded next to each sub-criteria used.
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TABLE 1 Studies of interest with accessible data used for the meta-analysis on the freshwater salmonid gut microbiota.

Reference Country

Number

of
samplesa Species

Target

hypervariable
region

Intestinal
region

Rearing
system

DNA
extraction kit

Accession
number

Leeper et al.14 Iceland 54/54 Salmo salar V3–V4 Proximal and

distal

intestine

NA QIAamp

PowerFecal

Pro

PRJNA732903

Bruni et al.27 Italy 10/11 Oncorhynchus

mykiss

V3–V4 Proximal

intestine

Flow-

through

QIAamp Fast

Stool Mini

PRJNA703401

Rimoldi et al.28 Italy 35/36 Oncorhynchus

mykiss

V3–V4 Proximal and

distal

intestine

Flow-

through

DNeasy

PowerSoil

PRJEB28677

Weththasinghe

et al.29
Norway 77/78 Salmo salar V3–V4 Distal

intestine

Recirculation QIAamp Fast

Stool Mini

PRJNA762510

Terova et al.30 Italy 12/12 Oncorhynchus

mykiss

V3–V4 Proximal and

distal

intestine

Flow-

through

DNeasy

PowerSoil

PRJEB38845

Terova et al.31 Italy 24/24 Oncorhynchus

mykiss

V3–V4 Proximal and

distal

intestine

Flow-

through

DNeasy

PowerSoil

PRJEB28677

Webster

et al.32
UK 48/48 Salmo salar V3–V4 Proximal and

distal

intestine

Flow-

through

and wildb

DNeasy

PowerSoil

PRJEB30953

Bugten et al.15 Norway 38/60 Salmo salar V4 Distal

intestine

Recirculation QIAamp DNA

Mini

PRJEB48548

Huyben et al.33 Sweden 63/72 Oncorhynchus

mykiss

V4 Distal

intestine

Flow-

through

QIAamp DNA

Mini

PRJNA351922

Huyben et al.34 Canada 10/10 Oncorhynchus

mykiss

V3–V4 Distal

intestine

Flow-

through

QIAamp Fast

Stool Mini

PRJNA767341

Rudi et al.35 Norway 38/40 Salmo salar V3–V4 Distal

intestine

NA LGC Mag Midi PRJNA413667

Wang et al.36 Norway 16/16 Salmo salar V1–V2 Distal

intestine

NA QIAamp Fast

Stool Mini

PRJNA660116

Li et al.37 Norway 103/103 Salmo salar V1–V2 Distal

intestine

NA QIAamp Fast

Stool Mini

PRJNA730696

Krogdahl

et al.38
Norway 27/27 Salmo salar V1–V2 Distal

intestine

Recirculation QIAamp Fast

Stool Mini

PRJNA539907

Huyben et al.39 Sweden 46/46 Oncorhynchus

mykiss

V4 Distal

intestine

Flow-

through

QIAamp Fast

Stool Mini

PRJNA454155

Huyben et al.16 Sweden 95/96 Oncorhynchus

mykiss

V4 Distal

intestine

Flow-

through

QIAamp Fast

Stool Mini

PRJNA408116

Biasato et al.40 Italy 12/12 Oncorhynchus

mykiss

V4 Proximal and

distal

intestine

Flow-

through

DNeasy

PowerSoil

PRJEB51166

Hines et al.41 USA 15/40 Oncorhynchus

mykiss

V4 Proximal and

distal

intestine

Recirculation DNeasy

PowerSoil

PRJNA750741

Baumgartner

et al.17
UK 60/60 Salmo salar V1–V2 Distal

intestine

Recirculation QIAamp DNA

Mini

PRJNA800661

aThe number before the slash indicated the number of samples that were included in the meta-analysis that passed quality filtering, while the number after

the slash was the original number of gut samples collected.
bIt is a trans-location study in which half of the wild and farmed fish were transferred to a farmed or wild environment while the other half were kept in

the same environment as before. All the listed DNA extraction kits except LGC Mag Midi were manufactured by the global provider Qiagen.

Abbreviation: NA, not available.
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specific growth rate (SGR; high: >1.2, otherwise considered as low),

feed conversion ratio (FCR; high: >2, otherwise considered as low),

weight gain (high: >140 g, otherwise considered as low), rearing sys-

tem, daylight, temperature (high: >15�C, low: <13�C, other tempera-

tures considered as mid), water flow rate (high: >8 L/min, otherwise

considered as low), diet, target hypervariable region, intestinal seg-

ment, DNA extraction kit, and DNA polymerase.

3 | RESULTS

3.1 | Systematic literature search

Among all the 229 unique full-text studies after the combined

search we excluded 49 studies using species other than Atlantic

salmon and rainbow trout, 7 in vitro studies, 58 studies using

sequencing platforms other than Illumina MiSeq, 15 seawater studies,

6 studies that only collected entire gut tissue samples, 15 studies

using special fishlines, and 29 studies focusing on non-relevant topics.

As a result, 50 studies were further checked for data accessibility.

Among these, 23 studies were excluded for the absence of clearly

labelled raw sequence data even after requesting assistance from the

authors. Another eight studies including only sequence data of low

quality (i.e., <Q25) or abundance (i.e., <2000 sequences) after proces-

sing by the uniform method described in the methods section. Only

19 studies met our requirements (Tables 1 and S1) and were included

in the meta-analysis. The filtered studies included 783 samples that

were represented by 7190 ASVs across 554 genera and 23 phyla.

Among all the samples, 96.8% were from Europe, while only 3.2%

of the samples were collected in North America. Among the European

countries, Northern European countries including Norway (38.2%),

Sweden (26.1%), and Iceland (6.9%) provided 71.1% of all the samples.

Exactly 58.9% of the samples were unsmoltified freshwater Atlantic

salmon while 41.1% were rainbow trout. A total of 73.2% of all the

F IGURE 2 (A–D) Relative abundance of 783 gut microbiota samples from 19 freshwater salmonid studies. (A,C) phylum level. (B, D) genus
level. Only the phyla more abundant than 1% and the genera with abundance values higher than 2% are shown in all four plots. The values beside
the bars in plot A and B show the relative abundance of the corresponding phylum or genus. The unassigned is a collection of the genera
unclassified on genus level from all the phyla.

CAO ET AL. 1607
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samples were distal intestine samples, whereas 25.5% were from both

proximal and distal intestine and 1.3% were from the proximal intes-

tine. As for the target hypervariable regions, 39.3% of the samples tar-

geted V3–V4 region, followed by 34.4% of them targeting V4, while

samples targeting region V1–V2 consisted of 26.3% of all the

samples.

3.2 | General microbiota characteristics

Among the 23 phyla present in the samples, three phyla dominated

the salmonid gut microbiota with a total relative abundance of over

95.8% (Figure 2). Firmicutes contributed about 58.7% of the abun-

dance as the most abundant phylum, followed by Proteobacteria that

accounted for �25.5% and Actinobacteria consisted of around 11.6%

of the abundance. The alpha diversity indices were calculated after

the ASVs were rarefied to 2838, which reduced the library size differ-

ences among the samples from different studies to facilitate alpha

diversity comparisons.

Shapiro–Wilks test indicated Faith phylogenetic diversity (Faith

PD) of the samples was not normally distributed (W = 0.966,

p < 0.001), so non-parametric Kruskal–Wallis tests were performed to

identify the significance of the factors. According to the Kruskal–

Wallis tests, all 15 factors had significant effects on Faith PD

(Table 2). Intestinal microbiota in Atlantic salmon had significantly

higher Faith PD than the rainbow trout counterpart (p < 0.001, chi-

squared = 375.1; Table 2 and Figure 3a). Furthermore, initial weight

did not differentiate the Faith PD of either Atlantic salmon subgroups

or rainbow trout subgroups significantly even though separated the

species (p < 0.001, chi-squared = 369.4; Table 2 and Figure 3c).

Regarding rearing systems, the recirculating system showed signifi-

cantly higher Faith PD compared with both wild and flow-through

counterparts, while the flow-through system had the lowest alpha

diversity (p < 0.001, chi-squared = 357.5; Table 2 and Figure 4d). The

samples collected from the mid-temperature (p < 0.001, chi-

squared = 126.5; Table 2 and Figure 4b; Data S1) or high water flow

rates (p < 0.001, chi-squared = 220.9; Table 2 and Figure 4c) had sig-

nificantly higher Faith PD values than the others. As for the target

hypervariable regions, primers targeting V1–V2 allowed for signifi-

cantly higher phylogenetic diversity than V3–V4 and V4, whereas V4

alone gave the lowest phylogenetic alpha diversity (p < 0.001, chi-

squared = 208.2; Table 2 and Figure 5b; Data S1).

In addition, Faith PD values were analysed by generalized linear

mixed-effects models. In the best-fit model with the lowest Bayesian

Information Criterion (BIC) value,64 factor paper/study was consid-

ered as a random effect variable, while all other factors as fixed effect

factors. The factors with low significance (p > 0.05) were removed

one by one to find the factors making big impacts on Faith PD values.

After the factors were selected, the interactions among the factors

were also investigated. According to the ANOVA results (Table 4 and

Data S1), species (chi-squared = 6.57, p-value = 0.01) and intestinal

region (chi-squared = 8.19, p-value = 0.02) had significant influence

on Faith PD, whereas all the other factors in the model were not

significant.

Similar to alpha diversity, PERMANOVA also showed significant

influences of all 15 factors on weighted UniFrac distances. Apart from

that, group dispersions of all the factors except for factor species

showed significant inhomogeneities in betadisper results (Figure S1).

The PERMANOVA of weighted UniFrac distances revealed a sig-

nificant association between the microbiota of the gut samples and all

TABLE 2 The impact of the influencing factors on the alpha diversity of gut microbiota in freshwater salmonid fishes using Faith phylogenetic
diversity.

Factor Factor type Sample size p-value Chi-squared

Paper/study Mixed 783 <0.0001 609.08

Species Host-associated 783 <0.0001 375.10

Initial weight Host-associated 706 <0.0001 369.36

Rearing system Environmental 572 <0.0001 357.53

Flow rate Environmental 406 <0.0001 220.93

FCR Host-associated 315 <0.0001 209.05

Target hypervariable region Technical 783 <0.0001 208.17

Daylight Environmental 549 <0.0001 205.48

SGR Host-associated 356 <0.0001 192.67

Weight gain Host-associated 193 <0.0001 135.44

Diet Environmental 745 <0.0001 132.63

DNA extraction kit Technical 783 <0.0001 127.98

Temperature Environmental 680 <0.0001 126.48

Intestinal region Host-associated 783 <0.0001 114.35

DNA polymerase Technical 713 <0.0001 55.76

Note: The p-values and chi-squared values were generated from Kruskal–Wallis tests.

Abbreviations: FCR, feed conversion ratio; SGR, specific growth rate.

1608 CAO ET AL.
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the technical factors including scientific paper/study, target hypervari-

able region, DNA extraction kit, and DNA polymerase. Technical fac-

tors explained most of the variation in data with significant

inhomogeneities. Paper/study was the dominant factor explaining

over 60% of the variance of the beta diversity (Table 3), which is more

than twice the value for the primer target hypervariable region in the

second place. In the weighted UniFrac beta diversity PCoA plot

(Figure 6), PC1 explained 52.3% of the variation and the data points

from each study were clustered together with half the studies over-

lapping while the other half clustered separately. Similarly, the target

hypervariable region was also an important driver of the clustering of

the intestinal microbiota (Figure 7f).However, in the best-fit general-

ized linear mixed-effects model, no technical factors was included

(Table 4). In order to reveal which taxa that was most associated with

the different technical factors, LEfSe at 0.05 significance level was

applied. The LEfSe identified diverse microbial genera associated with

different target hypervariable regions (Figure 8). High Lactobacillus

abundance was significantly associated with region V1-V2 (Figure 8f

and Table S2), while an enrichment of Staphylococcus instead was

related to the V3–V4 region. In the samples targeting region V4,

Mycoplasma, Pseudomonas, and Weissella were significantly more

abundant.

3.3 | Environmental influence on salmonid gut
microbiota

Among the other factors, the environmental factors explained more

variance of the beta diversity than the host-associated factors. The

most explanatory environmental factor was diet accounting for over

18.6% of the total beta diversity variance, while the rearing system,

water flow rate, daylight, and the intestinal region explained around

11.6%–15.2% of the beta diversity variance (Table 3). Several abun-

dant genera were identified using LEfSe that were associated with dif-

ferent dietary types. Mycoplasma was associated with plant-based

diet, whereas the fish without extra feed supply related to high abun-

dance of Candidatus_Bacilloplasma and Brevinema (Table S2). Marine-

based feeds with different substitutes or supplements were also

related to diverse bacterial groups. Enterococcus, Weissella and Staphy-

lococcus, and Pseudomonas were enriched in the samples fed marine-

based feeds with inclusion of insects, yeasts, and other ingredients

not originally in the feeds, respectively (Table S2). The second most

explanatory environmental factor was rearing system (Table 3 and

Figure 7b) that showed recirculating aquaculture (RAS) and flow

through systems (FTS) as separate clusters but with some overlap.

Moreover, diet, temperature, and rearing system were also included in

F IGURE 3 (A) Boxplots of Faith phylogenetic (alpha) diversity of 783 gut microbiota samples from 19 freshwater salmonid studies (host-
associated factors). (B) Weight gains higher than 140 g are regarded as high, otherwise considered as low. (C) ‘LS’ stands for large salmon
weighing at least 40 g while small salmon weighing lower than 40 g are labelled as ‘SS’. ‘LT’ stands for large trout weighing more than 80 g while
small trout weighing not more than 80 g are labelled as ‘SS’. (D) specific growth rates higher than 1.2 are considered as high, otherwise regarded
as low. (E,F) Feed conversion ratios higher than 2.0 are considered as high, otherwise considered as low. The table below the plots provides the p-
values and chi-squared values from Kruskal–Wallis tests.
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the best-fit model, though without any significance (Table 4). ANOVA

(Data S1) showed that no feed diet (co-efficient = 2.06,

t-value = 1.84) and mid-temperature (co-efficient = 2.78, t-

value = 0.94) had higher impacts on Faith PD. Several abundant gen-

era were identified using LEfSe that were associated with different

rearing systems. Mycoplasma, Weissella, and Pseudomonas were

enriched in the gut samples collected from the FTS, whereas Bacillus

and Enterococcus were significantly more abundant in RAS (Figure 8d).

There are also some genera related to the wild environment, such as

Candidatus_Bacilloplasma, Aeromonas, Brevinema, and unassigned gen-

era in Enterobacterales (Figure 8d).

Most of the abundant genera associated with diet and rearing

system were also related to other environmental influencing factors

including water flow rate (Figure 8e), daylight (Table S2), intestinal

region (Table S2), and water temperature (Figure 8b). Unlike diet and

rearing system, these factors only explained <14.2% of the beta diver-

sity variance (Table 3). Mycoplasma and Pseudomonas were abundant

in fish living in low flow rate water, while Weissella, Candidatus_Bacil-

loplasma, Lactobacillus, Brevinema, and Streptococcus were associated

with high water flow rate (Figure 8e). Staphylococcus, Enterococcus,

and Oceanobacillus were related to continuous daylight, whereas

Weissella and Pseudomonas were abundant in the fish living in

environments with periodic light (Table S2). Pseudomonas was found

associated with the distal intestine, while Mycoplasma and Candida-

tus_Bacilloplasma were abundant in the entire gut samples (Table S2).

Many genera were related to the proximal intestine, such as Oceano-

bacillus, Lactobacillus, Phyllobacterium, and Enterococcus (Table S2).

High temperature was associated with Mycoplasma and Pseudomonas,

whereas Staphylococcus were abundant in the samples collected from

the fish living in environments of the low temperatures below 13�C

(Figure 8b).

3.4 | Host-associated influence on salmonid gut
microbiota

Host-associated factors, such as initial weight and species, only had

minor influences on beta diversity. The most explanatory host-

associated factor was initial weight and only accounted for 16.0% of

the variation, whereas the other host factors (i.e., SGR, FCR, species,

and weight gain) explained <11.0% of the beta diversity variation

(Table 3). However, host-associated factors species (chi-

squared = 6.57, p-value = 0.01; Table 4) and intestinal region (chi-

squared = 8.19, p-value = 0.02; Table 4) had significant influence on

F IGURE 4 (A) Boxplots of Faith phylogenetic diversity of 783 gut microbiota samples from 19 freshwater salmonid studies (environmental
factors). (B) Temperatures lower than 13�C are considered as low temperature, while ‘High’ indicates temperatures higher than 15�C. All other
temperatures are considered as mid temperatures. (C) Water flow rates higher than 8 L/min were categorized as high, otherwise considered as
low. (D) ‘RAS’ stands for recirculating aquacultural system, while ‘wild’ indicate a wild-like environment, and ‘FTS’ is the flow-through system.
(E) ‘M’ stands for marine-based feeds. ‘MI’, ‘MY’, and ‘MO’ indicate marine-based feeds with inclusions of insects, yeasts, and other nutrient
sources such as other prebiotics or oils. ‘P’ indicates plant-based feeds, whereas ‘NF’ indicates a wild-like environment without any feed
provided. The table below the plots provides the p-values and chi-squared values from Kruskal–Wallis tests.
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Faith PD. Moreover, trout showed the highest impact among all the

subgroups, with a co-efficient of �8.05 and t-value of �2.56

(Data S1), followed by both proximal and distal intestinal region (co-

efficient = �5.97, t-value = �2.17; Data S1). Large salmon was asso-

ciated with Lactobacillus, Oceanobacillus, and Corynebacterium, while

Staphylococcus was abundant in small salmon (Table S2). In contrast to

F IGURE 5 Boxplots of Faith phylogenetic diversity of 783 gut microbiota samples from 19 freshwater salmonid studies (technical factors).
(A,B) ‘Mini’ and ‘Midi’ indicate the products designed for the extraction of microbial DNA from small amounts of samples. ‘FFM’ stands for the
DNA fast extraction kit designed for small amounts of faecal samples, while ‘FP’ indicates the method designed for faecal samples with a built-in

bead-beating step. ‘SPD’ stands for the DNA extraction kit designed for soil samples with a built-in bead-beating step and an addition of DNase.
(C) ‘Q5’, ‘Phu’, and ‘Taq’ indicate Q5, Phusion, and Taq DNA polymerases followed by ‘HS’ or ‘HF’ which stands for hot start or high-fidelity
characteristics. The numbers only show products from different companies. The table beside the plots provides the p-values and chi-squared
values from Kruskal–Wallis tests.

TABLE 3 The impact of the influencing factors on the beta diversity of gut microbiota in freshwater salmonid fishes using weighted UniFrac
and PERMANOVA.

Factor Factor type Sample size p value R squared Variance explained (%) Pseudo-F

Paper/study Mixed 783 <0.001 0.618 61.8 68.57

Target hypervariable region Technical 783 <0.001 0.244 24.4 125.90

DNA extraction kit Technical 783 <0.001 0.191 19.1 46.00

Diet Environmental 745 <0.001 0.187 18.7 29.75

DNA polymerase Technical 713 <0.001 0.173 17.3 32.46

Initial weight Host-associated 706 <0.001 0.160 16.0 37.02

Rearing system Environmental 572 <0.001 0.152 15.2 46.41

Flow rate Environmental 406 <0.001 0.141 14.1 64.26

Daylight Environmental 549 <0.001 0.123 12.3 54.48

Intestinal region Host-associated 783 <0.001 0.116 11.6 51.26

SGR Host-associated 356 <0.001 0.110 11.0 48.10

FCR Host-associated 315 <0.001 0.090 9.0 38.16

Species Host-associated 783 <0.001 0.081 8.1 68.45

Temperature Environmental 680 <0.001 0.075 7.5 20.98

Weight gain Host-associated 193 <0.001 0.061 6.1 25.51

Note: 9999 permutations were performed in each of the PERMANOVA tests to obtain the p value, R square, and pseudo-F values.

Abbreviations: FCR, feed conversion ratio; SGR, specific growth rate.
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salmon, different bacterial groups were found enriched in trout. Large

trout were associated with Pseudomonas and Weissella, whereas

Mycoplasma and Shewanella were abundant in small trout. For host-

associated factors including specific growth rate (SGR), feed conver-

sion ratio (FCR), and weight gain (WG), only a few genera were found

to differ in abundance among the subgroups. Shewanella and Myco-

plasma were associated with high SGR, while Pseudomonas was abun-

dant in low SGR fish guts (Table S2). Mycoplasma, Pseudomonas, and

Aeromonas were related to high FCR, while Weissella were identified

as enriched groups associated with low FCR (Table S2). High WG was

associated with Shewanella and Mycoplasma, while Pseudomonas,

Oceanobacillus, and Corynebacterium were abundant in the fish with

low WG (Table S2). Species only explained <8.1% of the variance but

drove the separate clustering of gut microbiota between Atlantic

salmon and rainbow trout in two directions in the PCoA plot (Table 3

and Figure 7a). As for the abundant microbial genera associated with

these two species, Mycoplasma and Weissella were highly related to

rainbow trout, while Staphylococcus and Enterococcus were associated

with Atlantic salmon samples (Figure 8a).

4 | DISCUSSION

In this meta-analysis, we comprehensively collected all the available

16S rRNA gene sequence data from Atlantic salmon and rainbow

trout from the literature, and then we filtered the data based on pre-

defined criteria, e.g. high quality, well labelled and available data. The

selected data were re-analysed using a standard set of parameters

and the same bioinformatics tools were used for all the studies to min-

imize the bias arising from the experimental and analytical procedures.

Our aim was to determine the contribution of technical, environmen-

tal, and host-associated factors that influenced the gut microbiota of

salmonid fishes. In all the 783 samples from 19 studies, a dominant

presence of Firmicutes, Proteobacteria and Actinobacteria on the

phyla level indicated a core microbiota (Figure 2), which has been

identified as dominant phyla in other salmonid (Salmonidae family)

and ray-finned (Sparidae family) fish species, for example, Arctic

charr11 and gilthead sea bream, respectively.65 In contrast, the gut

microbiota of cyprinid (Cyprinidae family) fish species has been domi-

nated more by Proteobacteria than Firmicutes, such as in Nile

tilapia,66,67 or dominated by Fusobacteria, for example, in common

carp.68,69 The differences in the core microbiota between genetic

families of fish species are highly related to the host conditions

(e.g. genetic and physiological divergences), the disparate environment

they live in (e.g. water microbiota),70 as well as the long-playing

co-evolution between the host species/genus/family and their gut

microbiota.71

Our meta-analysis indicated that paper/study is the overall most

dominant factor that affects both the alpha and beta diversity of gut

microbiota in freshwater salmonids (Table 3 and Figure 6). In addition,

all the factors that were evaluated in this meta-analysis had a signifi-

cant effect, which was similar to previously reported factors in the

meta-analysis on the microbiota of shrimp.72 A meta-analysis on

the gut microbiota of 1046 healthy humans from around the world

found that most factors influenced the beta diversity similar to the

present study, specifically the environment (e.g. diet and housing)

explained up to 20% of the variation whereas host effects

(e.g. ancestry) had minor affects.73 Aside from the paper/study, tech-

nical factors including target hypervariable region and DNA extraction

kit were also dominant factors in shaping the beta diversity of

F IGURE 6 Principal coordinate analysis (PCoA) plot of weighted UniFrac distance of 783 gut microbiota samples from 19 freshwater
salmonid studies (beta diversity). The studies are represented by different colours. Circles represent 95% confidence intervals.
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salmonid gut microbiota, but not in shaping the alpha diversity coun-

terpart (Figures 5 and 7; Tables 2 and 3). In the studies testing the

effects of target hypervariable regions and DNA extraction kits using

the stool samples from humans and mice, significant shifts of micro-

biota composition related to experimental conditions were also

found.74 In addition, DNA extraction kits have been found to change

the microbial compositions in faeces between zebrafish, horses, dogs,

cats, and mice.75 Hart et al.75 suggested that the size of zebrafish and

their intestine compared with the faecal biomass could change the

yield of microbial DNA extracted using commercial kits since smaller

intestines would have a higher proportion of host compared to

bacterial DNA. These authors also mentioned that the fibre content in

the diet, time post feeding and digestive enzymes could change the

amount of faecal biomass and consequently the amount of DNA to be

extracted. The variation in the amount of microbial DNA could bias

the amplification efficiency of either target hypervariable region dur-

ing PCR and sequencing of 16S rDNA. Therefore, the DNA extraction

kit and target region would influence more of which microbes are

identified rather than their diversity. In contrast, a study on human

faeces found that DNA extraction method had little effect on micro-

bial communities, while the target region had an immense impact.76

The results shown in the present study revealed that both DNA

F IGURE 7 (A–F) Principal coordinate analysis (PCoA) plots of weighted UniFrac distances of 783 gut microbiota samples from 19 freshwater
salmonid studies (beta diversity). Samples grouped by the host-associated factor (species), environmental factors (rearing system, daylight, water
temperature, and sampled intestinal region), and technical factors (target hypervariable region). Circles represents 95% confidence intervals. ‘RAS’
stands for recirculating aquaculture system, while ‘Wild’ indicates a wild-like environment, and ‘FTS’ stands for flow-through system.
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extraction kit and target region had a high impact on beta diversity of

salmonid gut microbiota, in line with the findings of the studies on

other animals. Therefore, we suggest that these technical factors

should be standardized across studies in order to improve compari-

sons of the microbiota between studies. If not, the influence of these

technical factors should be considered when comparing the results

from future studies.

The environmental and host-associated factors across the

19 studies had a large impact on the alpha diversity of salmonid gut

microbiota (Figures 4 and 5). Among these factors, the environmental

factor of diet ranked fourth place in explaining the variance of the

beta diversity (Table 3) and this was visualized by the clustering of sal-

monid gut microbiota per diet (Figure S1). Aside from the large signifi-

cant effects on beta diversity, diet only had a significant and

moderate impact on alpha diversity (Figure 4e). The alpha diversity of

the insect-fed salmonids was numerically higher than the fish fed with

commercial marine-based feeds (Figure 4e), which aligns with a previ-

ous meta-analysis on fish fed with black soldier fly larvae (Hermetica

illucens).77 Previous studies have suggested that the presence of chitin

in diets containing insects leads to an enrichment of chitinase-

producing bacteria that would not normally be present, hence increas-

ing microbiota richness.39 Yeast based diets have been found to have

beneficial effects on the gut health and microbiota of rainbow trout,16

so it was unexpected to see the low level of alpha diversity

(Figure 4e). Alpha diversity of the samples collected from the fish fed

plant-based diets was significantly lower than in all the other groups,

probably due to higher levels of antinutritional factors, such as phy-

tate and saponins, that reduce microbial growth as previously

reported.78 Diet has also had similar effects on alpha and beta diver-

sity in other non-salmonid fish species.79,80

Interestingly, environmental factors of rearing system, water flow

rate and daylight were the next most impactful factors on beta diver-

sity after diet (Table 3). In contrast to diet, these three factors showed

large effects on alpha diversity rather than beta diversity (Figure 4).

Daylight may be conflated with season and life-stage of the fish since

young fry and fingerlings tend to receive continuous daylight while

older broodstock may require shorter periods of daylight to stimulate

breeding events. Higher alpha diversity in recirculation systems

(Figure 4d) was expected since the bacterial load in the water entering

the rearing tanks of recirculation systems is much higher than the

counterpart in flow-through systems.81 The higher hydraulic retention

time without ozone or UV disinfection in the recirculation system

results in a higher possibility that slow-growing microbes may stay

longer and even grow after the initial disinfection.21,82 In addition, the

maturity of the biofilter can play a role in modulating the microbiota

in recirculation systems.83 Water temperature is better controlled in

recirculation systems, resulting in different microbial communities

compared to flow-through systems vulnerable to seasonal changes in

temperature. However, the effect of temperature was one of the low-

est factors influencing beta diversity in this meta-analysis (Table 3).

This may be explained by the relatively low water temperatures sal-

monid fishes are typically reared compared with warm water fishes,

for example, tilapias and carps.

Among the host-associated factors, initial weight, which was

largely correlated by the life stage or the age of the fish, had a smaller

impact on beta diversity compared with the top five factors that were

environmental or technical (Table 3), although it was very similar to

the effect of diet. Notably, limited to only freshwater samples, the

salmon before smoltification were younger and therefore smaller than

the trout counterpart, thus different weight ranges were applied while

translating weight values into categories (large salmon: not lower than

40 g, large trout: higher than 80 g) based on the general condition of

the fish weights. The effect of life-stage (weight or age) has been

found previously to be a more influential factor than location or rear-

ing system and water temperature for wild Atlantic salmon and Chi-

nook salmon (Oncorhynchus tshawytscha).22,84 Previous studies on

Atlantic salmon have also found that alpha diversity decreases as the

fish ages due to their reduced ability to filter microbial communities as

they mature.65,84,85

In the best-fit generalized linear mixed model, all seven fixed

effects were either host-associated or environmental factors, which is

also in line with our finding that environmental factors have larger

impacts on alpha diversity while technical factors impact beta diver-

sity to a larger extent (Tables 2 and 3). Among the seven fixed effects,

host-associated factors of species and intestinal region showed signif-

icant effects on shaping Faith PD of fish gut microbiota. It was

expected that the factor of species has a significant influence on alpha

diversity as previously reported,86 and the statistics on Faith PD

(Table 2) also supported this. However, according to the Kruskal–

Wallis tests (Table 2), the intestinal region had the lowest chi-squared

value among all the host-associated and environmental factors. The

difference may be caused by the other factors in the model, such as

random effect of paper/study or other fixed effects. Moreover, inter-

actions among the factors were also investigated. All possible interac-

tion effects between the seven fixed effects were tested, but no

significant interactions were found. That did not mean these factors

did not interact with each other, it is still possible that there are signif-

icant interactions between the factors not included in the best-fit

model, or that the interactions were hidden by the simple linear

regression. Regarding beta diversity analysis, significant

TABLE 4 The significance of the top influencing factors in the
best-fit generalized linear mixed-effects model.

Factor Chi-squared d.f. p-value

Species 6.57 1 0.01

Intestinal region 8.19 2 0.02

Diet 7.24 6 0.30

Temperature 2.17 3 0.54

Weight gain 0.22 2 0.90

Rearing system 0.19 2 0.91

SGR 0.01 2 1.00

Note: Type 3 ANOVA was performed to obtain the p-values and chi-

squared values.

Abbreviations: d.f.: degree of freedom; SGR, specific growth rate.
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F IGURE 8 (A–F) Linear discriminant analysis Effect Size (LEfSe) results of abundant genera for 783 gut microbiota samples from
19 freshwater salmonid studies. The y-axis shows the enriched genera associated with different subgroups while the x-axis indicates the linear
discriminant analysis (LDA) score (log10). High levels of classification were used for the genera not classified on lower levels (labelled with a _U
suffix). Only the genera with an LDA score no lower than 2.0 are presented in the plots. The q values adjusted by Benjamini–Hochberg method
lower than 0.05 are considered significant. ‘Candidatus_B’ is short for ‘Candidatus_Bacilloplasma’.
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heterogeneities of the beta diversity data were observed except for

the factor of species, which may be a reason why all the factors

showed significant influences on beta diversity. PERMANOVA was

used due to its superior statistical power and insensitivity to hetero-

geneity in dispersions of comparisons with Analysis of similarities

(ANOSIM) and the Mantel test,87 although it is still possible that the

PERMANOVA results we found were correlated between factors to

some extent.

Regardless of the influencing factors, on the genus level, a core

microbiota of Mycoplasma, Pseudomonas, Lactobacillus, Corynebacte-

rium, Weissella, Oceanobacillus, Staphylococcus, and Enterococcus was

found in the gut of Atlantic salmon and rainbow trout (Figure 2).

Although, Mycoplasma and Pseudomonas were either found in very

high abundance in half the studies and very low abundance in the

other half, while the other genera were found more consistently

(Figure 2). Previous studies have reported that these eight dominate

genera in this meta-analysis are common in other freshwater fish spe-

cies, such as grass carp (Ctenopharyngodon idellus)88 and zebrafish

(Danio rerio).89 The dominant genus Mycoplasma accounted for over

14.8% abundance and was commonly found in both faeces and

mucosa in the salmonid gut. A higher load of Mycoplasma in diseased

Atlantic salmon90 has made Mycoplasma a proxy for poor salmonid

health, while its function is still not clear. A recent study has found

that Mycoplasma produces the essential amino acid arginine91 and

may not only be associated with disease. Lactobacillus and Weissella

were widely distributed across the gut microbiota of salmonids and

these are usually considered as beneficial microorganisms due to their

probiotic functions,92,93 yet some of them have been reported as

pathogens in salmonids.94,95 Many species belonging to Pseudomonas,

Corynebacterium, Staphylococcus, and Enterococcus are widely consid-

ered multidrug-resistant pathogens and opportunistic pathogens in

fish as well as other animals,96–99 and thus may be responsible for

some differences in fish performance. Oceanobacillus is a relatively

rare genus in freshwater fish species and little knowledge has been

gained about them except their presence in fish. Oceanobacillus spe-

cies are commonly distributed in seawater, but have also been found

in a wastewater treatment system100 and on rainbow trout skin.101 A

previous study performed on Beluga sturgeon (Huso huso)102 indi-

cated that fish feed with a higher inclusion of fishmeal resulted in gut

microbiota more enriched in Oceanobacillus, therefore the fishmeal

inclusion in marine-based diets may be responsible for the high abun-

dance of this genus.

This meta-analysis for the first time presents a systematic re-

analysis of all freshwater salmonid gut microbiota studies that pro-

vided 16S rRNA gene raw sequencing data generated by the Illumina

MiSeq platform, but with some improvable limitations. At the very

beginning of the meta-analysis, all possible influential factors were

included, however, only the factors clearly indicated in at least half of

the studies remained in the final analysis to generate meaningful

results summarized across at least 10 out of the 19 studies. As a result,

some factors of interest and importance, such as the pH and dissolved

oxygen of the water, feeding frequency and fish density, were dis-

carded. The lack of information on all these factors in the 19 studies

resulted in their exclusion, while they may have significant impacts on

the fish gut microbiota. Another limitation is the complexity of the

influencing factors that overlap with each other, thus future improve-

ment in the design of meta-analyses need to be performed. However,

it is possible to control confounding effects by statistical analysis103 or

bioinformatics handling given adequate data104 and the information

about how each factor is generated. Apart from that, many studies of

interest were also excluded before the final analysis due to inaccessi-

bility of the authors and the raw data with clearly stated sample meta-

data. It would be very beneficial to promote publications with open

access data and to include as much information as possible in future

studies, which allows more secondary studies to compare and re-

analyze the data to answer future questions. Only samples sequenced

by the Illumina MiSeq platform were studied in this meta-analysis due

to its high use in previous studies of interest and to avoid more com-

plexity in analysing the results. Other more powerful Illumina sequenc-

ing platforms, such as HiSeq, and NovaSeq, provide higher resolutions

and coverages, but also require higher computing capacity and longer

time to process and analyse. Apart from Illumina, longer regions, such

as full length 16S rRNA (all nine regions), can be sequenced on using

Oxford Nanopore, Pacific Biosciences, Element Biosciences and other

platforms to get more accurate representation of microbial composi-

tions of the samples down to the species and strain level. Thus, a more

in-depth systematic review should be performed in the future when

there are sufficient sequence data and metadata on the gut microbiota

of salmonid fishes, especially with future advancements in DNA

extraction methodologies, sequencing technologies, microbial

sequence databases, bioinformatic and meta-analysis tools.

5 | CONCLUSIONS

Overall, our findings indicate that all the factors mentioned in this

study significantly influenced alpha and beta diversity indices of sal-

monid gut microbiota. PERMANOVA revealed that technical factors,

such as paper/study, target hypervariable region and DNA extraction,

heavily influenced the beta diversity and clustering of gut bacteria,

whereas their impact on alpha diversity was not as strong. Paper/

study was expected to be the most influential since the combination

of different kinds of factors are combined for each individual study.

Previous studies on humans and livestock animals agreed with our

meta-analysis on salmonids that found target hypervariable region

and DNA extraction kit highly impact gut microbiota results. Com-

pared with the technical factors, host-associated and environmental

factors influenced alpha diversity to a larger extent. Also, some of

them, such as diet and initial weight, are much more explanatory than

others in influencing beta diversity. The environmental factors led by

diet impacted the beta diversity and clustering of gut bacteria among

the host-associated and environmental factors. Aside from that, host-

associated factors only contributed to the variance of beta diversity

and clustering of gut bacteria to a minimal extent and fish initial

weight was the most dominant host-associated factor, which was

again supported by previous studies. These findings show three types

1616 CAO ET AL.

 17535131, 2024, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/raq.12913 by Sw

edish U
niversity O

f A
gricultural Sciences, W

iley O
nline L

ibrary on [29/10/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://onlinelibrary.wiley.com/action/rightsLink?doi=10.1111%2Fraq.12913&mode=


of factors influence the gut microbiota of salmonids, which further

demonstrate that technical methodologies must be standardized and

factors associated with host and environment need to be accounted

for in the experimental design of future studies.
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