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A B S T R A C T

In this paper we present three different models to forecast bird migration. They are species-specific individual- 
based models that operate on a high spatiotemporal resolution (kilometres, 15 min-hours), as an addition to 
radar-based migration forecast models that currently exist. The models vary in complexity, and use GPS-tracked 
location, flying direction and speed, and/or wind data to forecast migration speed and direction. Our aim is to 
quantitatively evaluate the forecasting performance and assess which metrics improve forecasts at different 
ranges. We test the models through cross-validation using GPS tracks of common cranes during spring and 
autumn migration. Our results show that recordings of flight speed and direction improve the accuracy of 
forecasts on the short range (<2 h). Adding wind data at flight altitude results in consistent improvements of the 
forecasts across the entire range, particularly in the predicted speed. Direction forecasts are less affected by 
adding wind data because cranes mostly compensate for wind drift during migration. Migration in spring is more 
difficult to forecast than in autumn, resulting in larger errors in flight speed and direction during spring. We 
further find that a combination of flight behaviours – thermal soaring, gliding, and flapping – complicates the 
forecasts by inducing variance in flight speed and direction. Fitting those behaviours into flight optimisation 
models proves to be challenging, and even results in significant biases in speed forecasts in spring. We conclude 
that flight speed is the most difficult parameter to forecast, whereas flight direction is the most critical for 
practical applications of these models. Such applications could e.g., be prevention of bird strikes in aviation or 
with wind turbines, and public engagement with bird migration.

1. Introduction

Contemporary anthropogenic pressures on ecosystems bring rapid 
changes beyond the historic realm. Hence, conservationists are chal-
lenged to identify and act promptly to undesirable changes to ecosys-
tems. In ecological modelling this means that we need to focus on near- 
term forecasting (Clark et al., 2001; Dietze et al. 2018; Lewis et al. 2023) 
in order to capture ecosystem trends in current time and to provide 
quantitative support for decision making in conservation. Forecasting 
ecosystem changes requires synthesising the state-of-the-art of ecolog-
ical knowledge and process-based models, and testing these against new 

data. The increased volume of automated data collection and sharing 
(Arts et al. 2015; van der Wal and Arts 2015; Keitt and Abelson 2021) 
provides an important opportunity for testing and updating of model 
forecasts (de Koning et al. 2023). Effectively, near-term forecasts can 
provide timely quantitative insights in the uncertainty of model pre-
dictions and inaccuracies.

Ecological forecasting is already fairly common in bird migration 
(Bouten et al. 2005; Fisher et al. 2012; Horton et al. 2021; van Belle et al. 
2007; Van Doren and Horton 2018), due to the extensive variability and 
uncertainty in spatio-temporal scale, but also due to broad public in-
terest. Bird migrations are well-studied and they respond predictably to 

* Corresponding author.
E-mail address: koen.dekoning@wur.nl (K. De Koning). 

Contents lists available at ScienceDirect

Ecological Modelling

journal homepage: www.elsevier.com/locate/ecolmodel

https://doi.org/10.1016/j.ecolmodel.2024.110884
Received 2 February 2024; Received in revised form 27 August 2024; Accepted 16 September 2024  

Ecological Modelling 498 (2024) 110884 

Available online 24 October 2024 
0304-3800/© 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

mailto:koen.dekoning@wur.nl
www.sciencedirect.com/science/journal/03043800
https://www.elsevier.com/locate/ecolmodel
https://doi.org/10.1016/j.ecolmodel.2024.110884
https://doi.org/10.1016/j.ecolmodel.2024.110884
http://creativecommons.org/licenses/by/4.0/


well-monitored environmental drivers such as weather, making bird 
migration an ideal phenomenon to forecast. Bird migration forecasts are 
particularly useful for the legal protection of important migration cor-
ridors (Bradarić 2022; Van Doren and Horton 2018; Horton et al. 2021; 
Kranstauber et al. 2022; Lippert et al. 2022), for example to avoid wind 
turbine collisions or light pollution, or for aviation safety (van Belle et al. 
2007; van Gasteren et al. 2019; Holleman 2008; Ruhe 2008). However, 
current applications focus primarily on large scale patterns, forecasting 
migration intensity in metrics such as expected spatial distribution of 
birds over several hours or days using resolutions of up to several hun-
dred square kilometres. The models are typically trained on radar data 
and therefore generate forecasts of expected reflectivity values around 
specific radar sites. Hence, they cannot be used to track individual flocks 
of migratory birds over continuous space. In fact, the majority of these 
models do not distinguish between bird species, despite that species 
have vastly different migration traits and body sizes, with relevant 
consequences for the risk posed on birds and humans (Metz et al. 2020).

We therefore stress the need for species specific forecasts that focus 
on individual flocks in addition to large-scale radar-based forecasts. 
Some examples of studies that apply the so-called agent-based or 
individual-based approach to model the migration of individuals or 
flocks of birds are on wheatears (Oenanthe oenanthe) (Bulte et al. 2014), 
white storks (Ciconia ciconia) (van Loon 2011; Oloo et al. 2018), on bird 
migration over mountainous terrain (Aurbach et al. 2018), and on 
nocturnal migration of passerines (McLaren et al. 2012). These models 
ultimately focus on emerging patterns and behavioural traits in migra-
tion such as departure decisions (Duriez et al. 2009) and migration 
routes (Aurbach et al. 2018), and are less concerned with individual 
animal movement. Moreover, the aforementioned individual-based 
models (IBMs) of bird migration are used for understanding migration 
dynamics and exploring what drives these dynamics on a population 
level, not for forecasting migrations of individual birds. Whereas in fact 
the individual-based approach in principle allows you to do both: 
tracking individual flocks and emerging patterns on the population 
level. IBMs are however seldomly used for forecasting, but see Randon 
et al. (2022) who use state-space models to predict movements of killer 
whale (Orcinus orca) pods.

In this study, we demonstrate the first application of individual- 
based forecasting in bird migration, and quantitatively assess the fore-
casting limits (i.e., errors, biases and forecast horizon) of three different 
models that deal with migration forecasts. The three models increase in 
complexity and required data for parameterisation. We compare their 
forecasting performance over various temporal ranges and evaluate the 
implications for developing individual-based bird migration forecasts 
focusing on individual species and individual flocks by performing cross- 
validation on GPS tracks of tagged individuals. Moreover, we illustrate 
the ecological knowledge and data required for such forecasts, and show 
that the process of building a migration forecast model may also reveal 
new insights in bird migration ecology. The common crane (Grus grus), 
an iconic species that uses a combination of soaring and powered flight 
during migration, was used as a model species to forecast daily migra-
tion patterns (migration speed, flight direction) over the Netherlands, 
Belgium, Luxemburg and parts of France and Germany. In contrast to 
statistically-inferred state-space models that often make use of high- 
frequency observation data (e.g., telemetry data), our aim is to 
explore the forecasting potential of mechanistic migration models that 
are more flexible in their data requirement and in the frequency of ob-
servations. The models applied in the present study can also be applied 
to ground observation data from birdwatchers, which allows tracking a 
large number of individuals - not just those equipped with GPS tags - 
covering the complete width of the common crane’s West European 
migration flyway. Applications of timely and precise migration forecast 
can provide for example early warning systems and selective stopping of 
wind turbines to prevent collisions (de Lucas et al. 2012), cost-effective 
land management and protection along the crane migration routes 
(Horton et al. 2021), and public engagement with the crane migration 

by providing useful data and increasing the likelihood of observing 
cranes from the ground1.2

2. Methods

2.1. Study area and data

2.1.1. GPS tracks
Crane GPS location data was derived from individuals captured 

during the period July 2016 until July 2020 (Table 1). A total of 25 
juvenile common cranes were captured and tagged with legmount (N =
24) and backpack transmitters (n = 1) in south-central Sweden 
2016–2020 (59–60◦ N and 15–16◦ E; Ornitela models OT-L40–2GC, OT- 
L40–3GC, OT-R193 G), see Månsson et al. (2013) for details about the 
area. The cranes were hand-captured using a short-distance run from a 
car or a hide. The cranes were marked between 25 June and 27 July at 
an approximate age of 6–8 weeks. The individuals weighed 2150–4200 
gs at the time of tagging. The family groups normally split at the 
wintering grounds in January (Alonso et al. 1984), and we thus assume 
that each juvenile was accompanied by the parental pair and occa-
sionally by one sibling during the first autumn migration study period. 
All captures and tagging fulfilled ethical requirements for research on 
wild animals after approval from the Animal Ethics Committee of central 
Sweden (5.2.18–2830/16 and 5.8.18–09,841/2022).

The dataset contains tracks of autumn migration from 2016 to 2021, 
and spring migration from 2017 to 2021 with a temporal resolution of 
15 min (Fig. 1). The dataset is filtered to contain only migration days, by 
selecting days where cranes moved at least 100 km. I.e.: the geodesic 
distance between the first and the last GPS fix that day is >100 km.3

Within these migration days we filtered the GPS fixes that fall within our 
study area of the Benelux, part of northern France and northwest Ger-
many (latitude=49–54◦ north, longitude=1–9◦ east) (see blue box 
Fig. 1). Next, we classified the GPS fixes on migration days into ‘resting’ 
and ‘flying’ based on speed between two fixes and assigned it to the latter 
fix, with a cut-off value of 10 km per hour (relative to ground). This cut- 
off value is initially chosen manually based on a visual inspection of a 
histogram of ground speeds and subsequently cross-checked by fitting a 
bi-modal distribution, which highlights two distinct distributions for 
resting and flying cranes (Appendix II). There is some overlap in ground 
speed distributions between flying and resting cranes, which is likely 
caused by combined flying and resting behaviour in the 15-minute time 
interval between two GPS fixes. We acknowledge that hidden Markov 
models may provide a more solid and accurate behaviour classification 
(Michelot et al. 2016). Yet, given the clear visual discrepancy between 
the two probability distributions, and the relatively small number of 
observations with ‘hybrid’ behaviour, we decided that this simplified 
procedure would suffice for our further analysis. In our further analysis 
of migration movement metrics (section 2.2.2 and 2.2.3) we included all 
GPS fixes on migration days that are classified as flying.

2.1.2. Weather data
We used hourly weather reanalysis data from ECMWF ERA54

(Hersbach et al. 2023) on pressure levels 950hPa and 975hPa to analyse 
the wind effect on flight patterns (section 2.2.2 and 2.2.3). We down-
loaded the u-component and v-component of wind (metres per second) 
at 950hPa and 975hPa on all migration days for our study area 

1 https://sensingclues.org/craneradar
2 https://www.wur.nl/en/news-wur/show/follow-the-crane-migration-live- 

with-the-crane-radar.htm
3 We acknowledge that this is a rather arbitrary number, especially because 

cranes typically cover much larger distances on migration days. Yet, the 100 
kilometre threshold does distinguish migration days well from resting days.

4 https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis 
-era5-pressure-levels?tab=overview
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(48.875N-54.125 N, 0.875E-9.125E), and extracted the wind data for 
each GPS fix classified as flying (Section 2.1.1) based on location, alti-
tude and time stamp. Time stamp was rounded off two whole hours and 
matched with the corresponding ERA5 wind map. We converted altitude 
to an estimated pressure at that altitude using an online conversion tool 
based on International Standard Atmosphere (ISO 2533:1975), and 
attributed the 975hPa maps to GPS fixes above 967.5hPa and the 

950hPa maps to GPS fixes below 967.5hPa, where the majority of flying 
occurs.

2.2. Model specification

We constructed three models (M1, M2 and M3) to forecast crane 
migration. More specifically, these models predict the location of a 

Table 1 
Summary of the captured individuals included in this study.

Individual id Capture date Weight when captured 
(g)

Number of fixes Number of autumn migration cycles Number of spring migration cycles Type of transmitters

16,077 05/07/2016 3800 112 4 3 leg mounted
16,078 05/07/2016 NA 12 1 1 leg mounted
16,079 06/07/2016 3950 8 1 0 backpack
17,461 27/07/2017 3000 64 0 1 leg mounted
17,462 05/07/2017 3000 54 0 2 leg mounted
17,463 30/06/2017 2350 109 2 1 leg mounted
17,464 30/06/2017 3750 98 2 1 leg mounted
17,466 30/06/2017 4050 110 2 2 leg mounted
17,467 03/07/2017 2900 137 4 3 leg mounted
17,467 03/07/2017 2900 123 2 2 leg mounted
180,863 11/07/2018 3300 104 2 2 leg mounted
180,864 04/07/2018 2800 81 2 1 leg mounted
180,865 11/07/2018 2150 164 3 2 leg mounted
180,866 11/07/2018 3000 206 3 3 leg mounted
180,867 04/07/2018 2600 162 3 2 leg mounted
191,854 08/07/2019 4200 68 1 2 leg mounted
191,855 27/06/2019 2950 103 2 1 leg mounted
191,856 03/07/2019 3250 147 3 2 leg mounted
191,857 09/07/2019 3450 55 1 1 leg mounted
191,858 09/07/2019 2950 98 3 2 leg mounted
191,859 25/06/2019 3300 38 1 0 leg mounted
201,845 30/06/2020 3100 124 2 1 leg mounted
201,846 03/07/2020 3100 32 1 1 leg mounted
201,847 30/06/2020 3100 51 2 1 leg mounted
201,848 03/07/2020 2250 71 2 0 leg mounted

Fig. 1. The migration route of the GPS-tagged common cranes during autumn migration (left) and spring migration (right). The crane icons indicate important 
stopover sites along the route. The blue box indicates the bounds of our study area.
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flying crane after time Δt since its last observation at a location 
(
x0,y0

)
. 

We consider a discrete-time model that runs at the intervals of 900 s (15 
min), to match the temporal resolution at which we analyse the GPS 
data. We denote the time intervals by i = 0,1,2,…, where i = 0 corre-
sponds to the last observed location and the model predictions are made 
for times Δt = 900i. The models are parameterized in terms of speed and 
direction during flight. The models M1 and M2 utilize GPS data only, 
whereas model M3 utilize weather data as well (Table 2). We next 
describe the models, then describe how their parameters were estimated 
from the data, and finally how we evaluated the predictive performance 
of the models through cross-validation.

The baseline model M1 assumes constant speed and fixed direction 
towards the target. We denote by Vground

̅̅̅̅→ the velocity vector of the crane 

with respect to ground, by v= |Vground
̅̅̅̅→

| its magnitude and hence the 

speed, and by Dground
̅̅̅̅→

=Vground
̅̅̅̅→

/v the unit vector of its direction. We as-
sume that, given the current location (x, y), the direction is towards a 
known target: Lac du Der (48.58 N, 4.76E) in autumn and Hemelsmoor 
(53.24 N, 9.22E) in spring. The predicted location after time Δt = 900i is 
calculated deterministically as 

(
xi, yi

)
=

(
x0, y0

)
+ Δtv Dground

̅̅̅̅→, and the 
parameter vector θ of this model contains only the speed parameter: θ =
(v).

The model M2 allows for variation in both the speed and direction by 
assuming that they are different for each 15 min interval. We assume 
that these vary in a temporally autocorrelated manner, modelling pri-
marily the effect of wind that we will incorporate explicitly in model M3. 
We denote by vi the speed for time interval i (from time point i to i + 1) 
and by ϑ0 − ϑtarget,i the angle between ground direction and target di-
rection. Denoting the speed at time of the observation (and hence also 
for the first 15 min interval) by v0, we assume that the speed converges 
towards its mean vμ as 

vi = vμ +
(
v0 − vμ

)
γi

v, (1) 

where γv models the temporal autocorrelation in flight speed over the 15 
min interval. Similarly, denoting the direction (in degrees, ranging from 
0 to 360, where 0 equals north) at time of the observation by ϑ0, we 
assume that the direction converges towards the target direction ϑtarget as 

ϑi = ϑtarget,i +
(
ϑ0 − ϑtarget,i

)
γi

ϑ, (2) 

where γϑ models the temporal autocorrelation in direction. Note that 
here we have included the index of the time step i to the target direction, 
because that changes depending on to where the crane has been pre-
dicted to move since the time of the observation. The parameter vector θ 
of this model is θ =

(
vμ, γv, γϑ

)
.

The model M3 also assumes that speed and direction vary but models 
them as a function of weather data. We denote the x- and y- components 
of wind for interval i by wx,i and wy,i, and the x- and y- components of air 
speed by qx,i and qy,i, so that the x- and y- components of ground speed 
are rx,i = qx,i + wx,i and ry,i = qy,i + wy,i. We denote speeds and directions 
that can be computed from these by vw,i, vq,i and vr,i and by ϑw,i, ϑq,i and 
ϑr,i. We further denote by ϑw,target,i the angle between the wind and the 
target, the amount of drift by crosswind by ci = vw,isin

(
ϑw,target,i

)
, and the 

amount of headwind by hi = − vw,icos
(
ϑw,target,i

)
. We note that headwind 

slows down the advancement toward the target whereas tailwind 
(negative values of headwind) speeds it up.

We assume that the crane adjusts its air speed by increasing the air 
speed in case of headwind or decreasing it in case of tailwind 
(Hedenström and Alerstam 1995; Newton 2010). For simplification 
reasons we ignore the fact that birds also increase their speed to 
compensate for drift (Liechti et al. 1994; Liechti 1995), which is 
modelled by a change in direction. Due to these adjustments, the speed 
and the direction of the crane are modelled as functions of 

vq,i = vq(b1, b2, hi), ϑr,i = f
(
a, ci, vq,i

)
, (3) 

where b1 and b2 are parameters of the power curve (Pennycuick 1978) 
that map the headwind into the crane’s air speed.5 a is a parameter that 
describes to what extent the crane compensates for drift. Given the fact 
that air speed vq,i depends on heading ϑq,i and vice versa, these variables 
are determined sequentially in a recurring function, initialised at vq,i =

18ms− 1 and looped 3 times. After testing this function under various 
wind conditions it was found that it quickly results in equilibrium values 
for ϑq,i and vq,i. Furthermore, in M3 we include a similar adjustment in 
direction ϑi as in M2, based on measured direction ϑ0 and the temporal 
autocorrelation in direction 

ϑi = ϑr,i +
(
ϑ0 − ϑr,i

)
γi

ϑ. (4) 

The parameter vector θ of this model is θ = (a, c1, c2, γϑ), out of which 
a is assumed to be different for spring and autumn.

2.3. Parametrisation

2.3.1. Speed
Ground speed vμ in M1 and M2 is parametrised based on ground 

displacement and time interval between subsequent GPS fixes, by taking 
the mean ground speed in the training data set of GPS fixes. Temporal 
autocorrelation in flight speed γv in M2 is determined by the Pearson 
correlation coefficient between ground speed measured at i and ground 
speed measured at i+ 1.

The coefficients c1 and c2 that determine air speed in M3 are derived 
from the relationship between inferred air speed vr and the amount of 
headwind h. We assume that cranes maximise their range (relative to 
ground) per unit energy (Pennycuick 1978). Hence, we parametrise the 
model describing the relationship between air speed and head wind (or 
tail wind) with a function that assumes maximum range speed.6 We 
denote δ as 

δ =
(
vq(b1, b2, hi) − h

)2
+ h2, (5) 

where b1 and b2 are the regression coefficients of a linear regression with 

Table 2 
Key features of the different models used in our analysis.

Models Features M1 
(benchmark)

M2 M3

Speed autocorrelation – X –
Direction 

autocorrelation
– X X

Wind data – – X
Drift Not applicable Not 

applicable
0 %, 10 %, 20 %, 
30 %

5 In our study we assume a simplified quadratic function of the power curve, 
i.e., the power needed for flight increases quadratically with air speed. This fits 
with the assumption that the power curve is U-shaped, although we acknowl-
edge that air resistance is in fact a cubic function of speed according to the laws 
of aerodynamics (Liechti 1995, Rayner 1999) and that the power curve is not 
necessarily u-shaped (Rayner 1999). However, after experimenting with 
various hypothetical power curves we concluded that the quadratic approxi-
mation works particularly well in the domain between the minimum power 
required for flight (vq at minimal metabolic power) and the maximum range 
speed for vw = 0. This reflects the domain of tailwinds and correspondingly the 
air speeds at which cranes are predominantly flying. Moreover, it is much easier 
to find an analytical solution for the relationship between vq and vw when we 
assume the power curve is parabolic.

6 We acknowledge that migratory birds could adopt different strategies in 
flight speed, e.g. minimizing migration time or minimizing energy expenditure. 
However, distinguishing between flight speed that maximises range or mini-
mises migration time will be quite challenging in practice as the difference are 
expected to be small (Alerstam & Hedenström 1998).
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δ as dependent variable and h as independent variable, fitted on training 
data. Modelled air speed vq,i is then determined by 

vq,i =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
b1 + b2 ∗ h + h2

√
+ h. (6) 

2.3.2. Heading
Temporal autocorrelation in flight direction, γϑ in M2 and M3, is 

parametrised in a similar way as autocorrelation in flight speed. We first 
determine the difference between measured flight direction ϑr,i and 
target direction ϑtarget,i for all subsequent GPS fixes in the training data, 
and then assess the correlation between the difference measured at i and 
the difference measured at i + 1 using a circular version of the Pearson 
correlation coefficient (Jammalamadaka and Sarma 1988). We assume 
that γϑ is the same for M2 and M3, as the individual variation in track 
direction is much larger than the variation in wind direction along the 
route.

In M3, we determine a by the degree cranes adjust their heading in 
order to compensate for wind drift. If and to what extent they do so is 
represented by three possible strategies illustrated in Appendix I: full 
drift, full compensation and partial compensation/partial drift. In case 
of full drift (a = 1) then crane heading ϑq equals ϑtarget , and track di-
rection ϑr equals ϑtarget in case of full compensation (a = 0). We deter-
mine a by denoting α as the angle between ϑq and ϑr, and plotting ϑq and 
ϑr against α under various wind conditions. Based on Green and Aler-
stam (2002) we estimate the regression coefficient between α and ϑr, 
and between α and ϑq in order to establish the amount of drift and 
compensation respectively. a is directly represented by the coefficient 
for ϑr as function of α, which ranges between 0 for full compensation and 
1 for full drift. Whereas a can also be found by a − 1; the coefficient for 
ϑq as function of α, which ranges between − 1 for full compensation and 
0 for full drift. We use method 1 in Green and Alerstam (2002), where we 
aggregate the mean of ϑq and ϑr for 36×10-degree bins of wind di-
rections ϑw. For comparison, we also apply a disaggregated method 
based on the same principles but in this case we plot ϑq,target and ϑr,target , 
defined respectively as direction and heading relative to the target, 
against α. This allows us to estimate the regression coefficients based on 
all individual GPS fixes in the training data. Note that this method can 
only be applied when the target is known, which is the case for the 
cranes in our study area.

2.4. Cross-validation

To validate each model’s forecasting performance under various 
forecasting ranges, we run a cross-validation experiment using various 
time lags ranging from fifteen minutes up to four hours and fifteen mi-
nutes. We used lag 2, 3, 4, 5, 6, 8, 10, 12, 15, and 18, indicating the 
number of GPS fixes (with a fifteen-minute interval) that were included 
in each forecast. Lag 2 indicates 2 GPS fixes and a forecasting range of 15 
min, lag 18 indicates 18 GPS fixes and a forecasting range of 255 min, 
etcetera. The first GPS fix was used as a starting point for each forecast, 
and the comparison (predicted minus observed) was made only with the 
last GPS fix, comparing the angle and speed between the first and the last 
observation/prediction using the shortest geodesic distance between 
these points.

We selected unique combinations of crane individuals and migration 
days (henceforth: individual migration events) over our study area. This 
yields 42 individual migration events during spring migration 
(February-March) and 51 individual migration events during autumn 
migration (October-November). Of each individual migration event we 
selected GPS fixes classified as flying (Section 2.1.1), and split them into 
N/lag subsets, where N represents the number of GPS fixes in each in-
dividual migration event. Forecasts were done for all subsets that fitted 
in a lag, using discrete steps corresponding with the time intervals be-
tween GPS fixes in the subsets. Table 3 presents a summary of the 
experiment.

We perform leave-one-out cross validation, where the training data 
to parametrise models 1–3 excluded the migration events corresponding 
to the respective subsets. We used root mean squared error (RMSE) and 
prediction bias for both flight speed and direction as performance 
metrics to evaluate the three models’ forecasting performance.

In defining the parameter space for a in M3, we must note that 
finding the exact amount of drift is not trivial (Green and Alerstam 
2002). We therefore test M3 several times with multiple values of drift: 
0 %, 10 %, 20 %, and 30 %. For 0 % drift it is easy to determine α. 
However, for any amount of drift higher than 0 % and lower than 100 % 
(i.e., in case of partial drift and partial compensation), there is no 
analytical solution for α. Hence, α must be estimated by careful weighing 
of equation A1 and equation A2 (Appendix I) depending on ratio be-
tween ci, vq,i and hi, and the amount of drift a. We decided to simplify the 
calculation of α so that it resembles that of full compensation (equation 
A2 in Appendix I) because: (1) compensation has the upper hand in our 
model parameters as well as in our analysis of GPS data (0–30 % drift, 
70–100 % compensation); (2) the majority of the measured values of α 
are between − 63◦ and +63◦ (yielding relatively marginal differences 
between the sin and tangent of α), and (3) cranes are typically found to 
restrict their migration to favourable wind conditions that allow little 
drift (see results Section 3.1). We believe that this simplification for 
finding α is justifiable since any forecasting errors produced by un-
certainties about the ecological process of migration are several orders 
of magnitude larger than any errors caused by mathematical 
imprecisions.

3. Results

3.1. Speed

3.1.1. GPS analysis
The average flight speed (v in M1 and vμ in M2) of the cranes differed 

by 0.3m s-1 between spring and autumn. Mean ground speed was 14.3m 
s-1 during spring migration and 14.6m s-1 during autumn migration, 
with standard deviations of 5.8m s-1 and 4.3m s-1 respectively in spring 
and autumn. The correlation coefficient measuring temporal autocor-
relation in flight speed, γv in M2, was high: 0.79. This indicates that 
ground speed is rather persistent per individual migration event.

In M3 we established the contribution of wind on ground speed per 
migration event. Here, cranes are found to adjust their air speed 
depending on the strength of headwinds or tailwinds; they fly slower in 
tailwinds and faster in headwinds. Fig. 2 shows a continuous increase in 
airspeed as a function of headwind, which accelerates when headwinds 
become stronger. In this domain it makes sense to spend more energy by 
flying faster to achieve maximum range relative to the energy spent on 
flying against the wind (Newton 2010). In the opposite domain birds can 
take advantage of tailwinds by flying slower and conserving energy. 
However, there is a limit to how slow birds can fly, otherwise they would 
require more power to generate enough lift to remain airborne. This 

Table 3 
Summary of the number of forecast steps, forecasting range, and number of 
subsets (= number of forecasts) per lag.

Lag Number of steps 
in forecast

Forecasting range 
(minutes)

Number of 
subsets autumn

Number of 
subsets spring

2 1 15 440 430
3 2 30 326 274
4 3 45 213 214
5 4 60 219 168
6 5 75 163 131
8 7 105 131 89
10 9 135 78 68
12 11 165 62 49
15 14 210 48 36
18 17 255 32 25
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Fig. 2. Crane air speed as function of tailwind/headwind with a model prediction (line) based on the ‘power curve’ in Pennycuick (1978). Raw data is shown in grey 
and orange dots indicate the mean air velocity for 1ms− 1 bins of headwind during spring migration (triangles) and autumn migration (circles).

Fig. 3. Crane air speed as a function of descend/climb. Line indicates model predictions based on linear regression.
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relationship is described by the ‘power curve’ in Pennycuick (1978), 
which shows the relationship between a bird’s air speed and the power 
needed for flight. The power curve can be used to hypothesise an opti-
mum flight speed where the flight range is maximised and the total 
metabolic cost is minimised. Fig. 2 illustrates predictions of where this 
optimum lies based on the cranes’ GPS data. Particularly noticeable is 
the fact that cranes only seem to follow this predicted optimum during 
autumn migration, whereas they fly considerably slower than the pre-
dicted optimum in spring. On average they fly 1.2 metres per second 
below the predicted optimum, which is approximately 10 % slower than 
expected.

Air speed is also affected by climbing/descending (Fig. 3), whereby 
air speed decreases with altitude gain and increases with altitude loss. It 
seems that the relationship is not exactly linear, as there seems to be a 
negative prediction bias in the centre of the climbing/descending range 
and a positive prediction bias towards both extremes.

3.1.2. Model forecast
The RMSEs of M2 and M3 in predicted ground speed are much lower 

than M1 (Fig. 4, left panel). In M1 and M2 there is also a distinct dif-
ference in RMSE values between seasons; the prediction error of speed is 
generally larger in spring than in autumn, indicating that flight speed in 
spring has more variance which is unaccounted for in M1 and M2. M3 on 
the other hand has little differences in RMSE values between spring and 
autumn. It seems that by including wind data, M3 accounts for the larger 
variance in flight speed in spring.

In terms of RMSE values over time, we see that M2 has the lowest 
RMSE in the short forecast range (<1 hour). This makes sense, since this 
model uses information of flight speed at t, and there is a strong auto-
correlation in flight speed between t and t + 1 hour. In the longer 
forecasting range (>1 hour) M3 outperforms M2. Where RMSE values in 
M1 and M2 are fairly constant over different forecast ranges, RMSE 
values in M3 gradually decrease with increasing forecasting range. 
Hence, the inclusion of wind data in M3 improves the forecast horizon of 

flight speed in comparison to both M1 and M2. The result that RMSE 
decreases may seem contradictory to the general principle that fore-
casting errors increase with increasing forecasting range. This principle 
holds when we would look at RMSE of absolute distance travelled. Yet, 
the total variance in (observed and predicted) flight speed actually de-
creases because it is averaged over a longer time spent flying.

In terms of prediction bias, the most notable result is the positive bias 
in flight speed in M3 in spring (Fig. 4, right panel). This shows how our 
observation, that cranes are flying much slower than expected in spring 
(Section 3.1.1), propagates into forecasts that are biased by more than 
five kilometres per hour. We found that this bias is resolved when the M3 
is trained separately for each season (see: Appendix III). Furthermore, 
where RMSE values of M3 seems to be independent of the drift param-
eter, model bias seems to be more sensitive to the amount of drift: the 
prediction bias of M3 tends to be more positive with higher amounts of 
drift. This can be explained by the fact that cranes will achieve a further 
range when they accept more drift. Hence, a trade-off may exist between 
compensating for drift to stay on track or allowing some drift to cover 
more distance and getting closer to target (Liechti 1995).

3.2. Heading

3.2.1. GPS analysis
Temporal autocorrelation in track direction with respect to the 

target, γϑ in M2, was lower than temporal autocorrelation of flight 
speed: 0.62. This indicates that there is indeed some directional persis-
tence in flight direction when looking at tracks of individual migration 
events. Yet, there is also randomness in that cranes change their direc-
tion regularly between the 15-minute time intervals, making it hard to 
forecast their direction for hours in advance.

Estimating the amount of drift in M3 based on GPS data proves to be 
a challenging topic, yielding inconsistent results depending on the 
chosen method (Fig. 5). The Green and Alerstam method to analyse drift 
on aggregated data (Fig. 5, left panels) shows that cranes experience 15 

Fig. 4. Performance of models 1–3 in predicting ground speed over time during spring and autumn migration. The panel on the left shows root mean squared error 
(RMSE) and the panel on the right shows the prediction bias. Shapes vary in size according to number of observations – larger shapes represent more observations.
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% drift during autumn migration and 28 % during spring migration, 
which is considerably more in spring. However, on the disaggregated 
data with a presumably known target destination (Fig. 5, right panels) 
we find that cranes drift much more during autumn migration than 
during spring migration (23 % versus 12 % respectively).

It also seems that there is much more uncertainty in the estimated 
amount of drift in spring than in autumn, indicated by a much bigger 
spread in track and heading angles in spring (Fig. 5, bottom panels). The 
two estimates yielded by the different methods are also further apart in 
spring than in autumn. Nonetheless, with a share of at least 72 % and at 
most 88 % according to our results, compensation has a much bigger 
share of a crane’s migration strategy than drift (at least 12 % and at most 
28 %), both in autumn and in spring.

3.2.2. Model forecast
Looking at the performance of our models in predicting flight 

heading, a few things stand out. Firstly, the differences in RMSE values 
between the three models are largest in the shorter forecasting range 
(<2 h), in particular because M1 has very high RMSE values. These 
values steadily decline as forecasting range increases (Fig. 6, left panel). 
The fact that RMSE declines with increasing forecasting range can pri-
marily be attributed to the fact that the variance in track direction de-
creases with increasing flight distance, similar to what we saw in RMSE 
of flight speed. In the short time span the flight direction of cranes is 

much more variable, which is not accounted for in the forecasts of M1, 
whereas it is accounted for in the forecasts of M2 and M3. M2 and M3 
have much lower RMSE values in the shorter forecast range since fore-
casts are based on flight headings observed at t and temporal autocor-
relation between heading at t and heading at t+ Δt. Secondly, RMSE 
values are consistently higher in spring than in autumn in all models, 
indicating that flight heading is a lot more unpredictable in spring than 
in autumn. Thirdly, M2 and M3 hardly differ in prediction performance 
in particular in spring, which suggests that adding wind data does not 
contribute much to forecasting cranes’ flight heading. This makes sense 
in case of full compensation, as cranes are then supposed to fly straight 
towards their intended target, same as in M2 that excludes wind data. 
When the amount of drift in M3 increases, we do see that it reduces the 
RMSE in particular in autumn, which suggests that part of the variance 
in flight heading in autumn can indeed be explained by wind drift.

Lastly, we see that there is a consistent negative bias in forecasted 
heading in spring in all models (Fig. 6, right panel). A negative predic-
tion bias means that the observed flight directions are more towards the 
right of the predicted flight directions. This bias may be caused by the 
fact that the model assumes only a single possible migration route via 
Bremen-Hemelsmoor-Hamburg to cross the Baltic Sea at Rügen. 
Whereas our GPS dataset also contains cranes with a more southeasterly 
route via Frankfurt and Magdeburg.

Fig. 5. The relationship between track and heading used for estimating the amount of drift in autumn (top panels) and spring (bottom panels). The left panels show 
estimated drift with aggregated data based on the proposed method of Green and Alerstam (2002), whereas the right panels show estimated drift with disaggregated 
data and a presumably known target location.
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4. Discussion

4.1. Factors that improve predictions

In this paper we explored the performance of three different models 
forecasting the speed and direction of cranes migrating over the Bene-
lux, western Germany and northern France. The observation data 
required to parametrise these models varied between GPS fixes only (M1 
and M2), and a combination of GPS fixes and ERA5 reanalysis data of 
wind at 950hPa and 975hPa (M3). Furthermore, all three models assume 
a known target direction in spring (Hemelsmoor, Germany) and autumn 
(Lac du Der, France). Once parameterised, M1 needs a latitude, a 
longitude and a timestamp of a flock of cranes in order to forecast their 
migration route. M2 additionally needs an observation of speed relative 
to the ground, and of flying direction relative to the target. M3 needs the 
same as M1, and additionally an observation of flying direction and a 
forecast of wind speed and direction at flying altitude (e.g., at the 
950hPa pressure level).

4.1.1. Observations of speed and direction
Our results show that M2 predicts flight speed and direction much 

better than M1, particularly in the first hours of the forecasts. As ex-
pected, the performance metrics of M1 and M2 tend to converge with a 
longer forecasting horizon, since the autocorrelation in speed is negli-
gible after two hours. In other words, the inclusion of temporal auto-
correlation benefits the short-range forecasts of the crane migration. 
However, it does require measurements of flight direction and speed. 
Acquiring these estimates from ground observations, e.g., citizen science 
data from birdwatchers, is fairly easy for flight direction. Yet, reliable 
speed estimates require much more laborious approaches, following 
individual flocks, or expensive equipment such as radar tracking devices 
(Bruderer and Steidinger 1972). Moreover, it needs to be considered that 
speed and heading in our models are based on 15-minute intervals while 

field observations will correspond more to instantaneous measurements 
which add more variance to the observed speed and heading.

4.1.2. Wind forecasts at flight altitude
Comparing M3 with the predictions of M1 and M2, we saw that 

adding wind data resulted in a more consistent improvements in the 
forecasts of speed over the entire temporal range. Although in the first 
hour M2 predicted speed better than M3, the forecasts of M3 improved 
with respect to the other two models as the forecast range increased. 
Wind data are thus a valuable addition in forecasting migration over 
longer time spans. The advantage of wind forecasts (M3) compared to 
flight speed (M2), is that there are openly accessible wind forecasts at 
flight altitude available.7 In terms of flight direction, we however found 
that adding wind data did not improve the forecasting performance of 
M3. This is not surprising, since cranes were found to mostly compensate 
for wind drift and so wind has less impact on flight direction. In fact, 
compensation for drift was hard-wired in M3 based on these observa-
tions. One exception is that M3 was more accurate in autumn when we 
assumed more drift, particularly in the long forecasting range, whereas 
in spring such improvement was not found in M3. For birds that drift 
more during migration, such as juveniles (Thorup et al. 2003; Sergio 
et al. 2022) or nocturnal migrants (Van Doren et al. 2016), adding wind 
data might still be a valuable addition to flight direction forecasts.

4.1.3. Altitude changes
Climbing/descending was also an important factor in determining 

flight speed, but this was not included in our prediction models for two 
reasons. First, soaring and gliding cycles of cranes are in the order of a 
few minutes (Pekarsky et al. 2024), whereas the intervals in our GPS 
data are 15 min. The sections between two fixes therefore cannot be 

Fig. 6. performance of models 1–3 in predicting flight direction over time during spring and autumn migration. The panel on the left shows root mean squared error 
(RMSE) and the panel on the right shows the prediction bias. Shapes vary in size according to number of observations – larger shapes represent more observations.

7 https://dataplatform.knmi.nl/group/weather-forecast
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classified into two discrete modes of flight that drive altitude changes. 
Secondly, for forecasting purposes any observations of past altitude 
gains/losses would hardly be useful, since the independent variable 
‘climbing/descending’ would have to be forecasted as well. It would 
only be useful if this variable can be linked with other environmental 
features that are either fixed or for which a reliable forecast is available. 
Future work can focus on forecasts for soaring behaviour based on 
thermal and orographic uplift velocities, derived from weather forecasts 
and elevation maps (Bohrer et al. 2012; Scacco et al. 2019). Yet, these 
predictions would then rather address flight speed indirectly through 
predicted altitude gains and losses depending on the atmospheric con-
ditions for soaring.

4.1.4. Known destination of migration
Another factor that positively affected the forecasting ability was the 

target destination. Our approach is based on known stopover sites that 
the cranes are very likely to visit. However, this is not generally the case 
for migrants, in many cases individuals passing in a specific area do not 
have a fixed destination as the cranes. However, we think the model can 
reasonably be generalised for other species by assuming an average 
migration direction or destination area. The consequences of such a 
generalisation for the accuracy of the model will vary on a case by case 
basis and should be evaluated.

4.2. Spring migration more challenging to forecast than autumn migration

In general, we found that spring migration was harder to predict than 
autumn migration. First of all, there was a consistent bias in flight speed 
predictions in M3. Despite the overall higher prediction accuracy of M3, 
we found that cranes flew much slower in spring than M3 predicted. 
When correcting for wind, cranes flew faster in autumn than in spring. 
Kemp et al. (2010) found that nocturnal migratory birds in Western 
Europe migrate faster during spring than autumn, supported by weather 
patterns that favour migration speed. However, they also found that air 
speeds were slower in spring than in autumn, consistent with our find-
ings and the hypothesis that birds fly faster in headwinds and slower in 
tailwind to optimise their energy expenditure rather than migration 
speed. Yet, this would not explain why the cranes were flying slower 
than expected under the energy-optimisation hypothesis. Possibly, this 
seemingly sub-optimal behaviour could be explained by the fact that all 
of the studied cranes were inexperienced juveniles, still following their 
parents in autumn whereas they migrate independently during spring 
(Alonso et al. 1984). Another explanation could be a higher use of 
thermal soaring due to more favourable thermal conditions in spring 
compared to autumn, affecting the average air speed (Swanberg 1987; 
Newton 2010). An F-test on the variance in altitude gains and losses 
revealed that there is more variance in altitude in spring compared to 
autumn (F = 0.67745, num df = 1481, denom df = 1249, p < 0.001), 
which hints on more use of thermal soaring in spring if we assume 
altitude variations in our GPS data are reliable proxy for soaring 
behaviour.

Secondly, all models had a higher RMSE in flight direction forecasts 
in spring compared to autumn. We believe that this is mostly due to the 
fact that flight directions varied more in spring. This could again be 
explained by the cranes’ inexperience, but also by differences in desti-
nations. Where cranes consistently targeted Lac-du-Der in autumn, in 
spring they follow various routes towards and across the Baltic Sea, 
leading to incorrect assumptions in the models about the cranes’ target 
direction. To make our models more flexible on the assumed target di-
rection, Bayesian state-space models could be used in the future (Pirotta 
et al. 2018). However, such models would require more sophisticated 
observation approaches, tracking individual flocks for an extended 
period of time.

4.3. Mixed flight modes by cranes may complicate migration optimization

It is noteworthy to mention that optimality assumptions of adjust-
ments in flight heading and speed, as modelled by Liechti (1995) and 
Alerstam (1979), are based on powered flights (i.e., wing flapping). 
Cranes and other soaring migrants have an additional strategy that these 
models do not account for which may add complexity to migration 
optimization, namely the use of thermals to gain altitude and generate 
more potential energy. It has been shown that, by combining soaring, 
gliding and powered flights, cranes are highly variable in their flight 
speed, and optimal flight speeds are seldom maintained for long 
(Pennycuick et al. 1979). These observations suggest that the variance in 
flight speed and direction of our cranes may have been caused by 
behavioural changes during migration which our models did not ac-
count for. The great variance of environmental conditions along the 
route make it difficult to fit flight metrics into any of the theoretically 
optimal behaviours (Hedenström and Alerstam 1995). In other words: 
even with well-parameterised mechanistic models describing optimal 
flight strategies, based on power curves and glide polars, there is a limit 
to the forecastability of migration patterns. Limited by the resolution 
and accuracy of weather forecasts and by random variations in the 
behaviour of the cranes. Local variability and low predictability in 
weather conditions pose a demand on cranes to be flexible in adjusting 
their flight strategy during migration when conditions change along the 
route. The question remains whether adding complexity to the models 
presented here would improve forecasting performance, as it would also 
require more complexity in environmental data, forecasts of additional 
weather metrics in combination with optimisation models addressing 
various flight modes.

5. Conclusion

In this study we demonstrated the accuracy of models forecasting 
bird migration, with a focus on single species and even individual flocks 
instead of large-scale bird migration patterns that are already addressed 
in radar studies (Van Doren and Horton 2018; Horton et al. 2021; 
Kranstauber et al. 2022). The models presented here are flexible in that 
they can combine ground observations, for example using 
citizen-science based observations from birdwatchers, with other data 
such as GPS telemetry. Another unique aspect about our study is that we 
quantitatively assessed the prediction performances over different 
forecast ranges, thereby providing an actual test of the models’ fore-
casting capabilities. These kind of analyses shed light on the perfor-
mance limits of forecast models, which has important implications for 
model-based decision making in ecology.

Our analysis illustrates that weather forecast models significantly 
can improve the forecast horizon for predicting the migration routes of 
individual flocks of birds. At the same time we shed light on the 
remaining variance that our models cannot address (yet). Eliminating 
the remaining uncertainty opens new avenues for fundamental research 
in migration ecology. We conclude that the uncertainty in flight speed 
(RMSE between 2.5 m s-1 and 5.0 m s-1) is larger than the uncertainty in 
flight direction (RMSE between 7 and 17◦, corresponding to 1.7–4.2m s-1 

drift from the expected flight direction). Yet, we also argue that the 
uncertainty in direction is more problematic than the uncertainty in 
speed in the majority of applications. Errors in the forecasted flight 
speed impact the estimated timing of arrival on a particular site, 
whereas errors in direction impacts our estimation of the location and 
routes where cranes will pass. In the proposed applications of our 
models, errors in direction forecasts imply directing birdwatchers to the 
wrong locations or worse: stopping the wrong wind turbines. Leading to 
economic losses and possibly still risking deadly collisions. Speed fore-
casts on the other hand only affect the time window of the expected 
likelihood of collisions. Hence, we stress that flight direction should be a 
standard metric to record in order to facilitate migration forecasts, 
particularly in the short range. For longer forecast horizons, our models 
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could benefit from a better understanding of the factors that determine 
the variance in flight direction, apart from wind drift and target desti-
nation. Further research in migration ecology should therefore investi-
gate what drives cranes, and other migratory birds, to fly in certain 
directions and to follow certain migration routes.
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Bradarić, M. (2022). On the radar: weather, bird migration and aeroconservation over 
the North Sea.

Bruderer, B., & Steidinger, P. (1972). Methods of Quantitative and Qualitative Analysis 
of Bird Migration with a Tracking Radar. NASA, Washington Animal Orientation and 
Navigation.

Bulte, M., McLaren, J.D., Bairlein, F., Bouten, W., Schmaljohann, H., Shamoun- 
Baranes, J., 2014. Can wheatears weather the Atlantic? Modeling nonstop trans- 
Atlantic flights of a small migratory songbird. Auk: Ornithol. Adv. 131 (3), 363–370.

Clark, J.S., Carpenter, S.R., Barber, M., Collins, S., Dobson, A., Foley, J.A., Wear, D., 
2001. Ecological forecasts: an emerging imperative. Science (1979) 293 (5530), 
657–660.

de Koning, K., Broekhuijsen, J., Kühn, I., Ovaskainen, O., Taubert, F., Endresen, D., 
Grimm, V., 2023. Digital twins: dynamic model-data fusion for ecology. Trends Ecol. 
Evol. (Amst.).
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