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1.0 Introduction

In the last two decades, a number of biotic indices have been constructed to evaluate

the structural and functional integrity of surface waters using macroinvertebrates

(Johnson 1995). Methods range from relatively simple algorithms or biotic indices, to

combinations of several indices (i.e. multimetric approaches), to relatively complex,

multivariate approaches. The use of multivariate predictive algorithms, often

combined with biotic metrics, show much promise as diagnostic tools in

biomonitoring and impact assessment studies. Since species occur in characteristic

and a limited range of habitats within their geographic range, and tend to be most

abundant around their particular environmental optimum, predictive modeling of

expected taxa occurrence in the absence of stress is being increasingly used to

ascertain reference or ecological target conditions.

A number of modeling techniques are available that can be used to predict taxa

occurrence. For example, terrestrial and aquatic ecologists have used generalized

linear models (e.g. Nicholls 1989), logistic regression (Agresti 1990), Gaussian

logistic regression or the more simplified weighted averaging regression (e.g. ter

Braak and Looman 1986), Bayesian models (e.g. Brzeziecki et al. 1995), partial least

squares regression (Wold 1982), β-functions (Austin et al. 1994), and taxon-specific

(Bio et al. 1998) models to predict taxa occurrence. These generally predict taxa

occurrence directly along single environmental gradients. However, species are

generally being influenced simultaneously by a number of gradients. The predictive

approach developed in the U.K. eloquently solves this dilemma by using discriminant

function models that incorporate several environmental factors (Johnson 2000).

Since the early 1980’s, discriminant function analysis has been used by ecologists for

predicting community structure using sets of environmental data (e.g. Wiegleb 1981).

However, Wright et al. (1984) and Moss et al. (1987) were the first to develop

predictive models of stream macroinvertebrates using classification and discriminant

function analysis (a.k.a. RIVPACS or River InVertebrate Prediction And

Classification System). Modeling approaches in general hold much promise in

assessment of biodiversity, as they de-emphasize the expertise of the individual

investigator (Johnson et al. 1993). Moreover, the predicted taxa occurrence may also
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be used to calculate biotic metrics such as BMWP or acidity scores. This is presently

being done in the U.K., where observed BMWP scores are compared to predicted

scores in national river surveys (e.g. Wright et al. 1988). Wright (1995) provides an

overview of the development and application of this procedure as a means of

assessing the biological condition of stream ecosystems in Great Britain. Since the

advent of RIVPACS (e.g. Wright 1995), this type of predictive approach has gained

widespread recognition. RIVPACS-type models have been developed for predicting

profundal macroinvertebrate communities of Swedish lakes and used to determine the

effects of liming on community composition (Johnson 1995). This technique has also

been implemented in Australia as a standard procedure for assessing the biological

condition of that nation’s running waters (Simpson and Norris 2000), and it has also

been evaluated as a means of detecting effects of logging practices on invertebrate

assemblages in mountainous streams of California (Hawkins et al. 2000) and the

impact of fish on macroinvertebrate communities (Hawkins and Carlisle in press).

Adopting the RIVPACS modeling approach developed in the U.K., the goal of this

project was to develop RIVPACS-type algorithms to be used in the prediction of

macroinvertebrate communities of lakes (littoral assemblages) and streams (riffle

assemblages). We hope that these models will enhance our understanding of the

structural and functional aspects of aquatic biodiversity and integrity, as well as

supply expected reference conditions for biomonitoring. The project consists of two

phases. In the first phase, predictive algorithms were developed using data collected

from minimally impaired reference sites. In the second phase, as one of the goals of

this study is to develop predictive models that are robust and reliable monitoring and

bioassessment tools, steps were taken to test how well these models perform at

detecting or discriminating impact.
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2.0 METHODS
2.1 Data availability

2.1.1 Field sampling

The data sets used in the calibration of predictive models was taken from the national

lake and stream survey done in the autumn of 1995 (e.g. Wilander et al. 1997;

Johnson and Goedkoop 2000). A number of factors indicate that the 1995

macroinvertebrate survey of streams and lakes is a robust data set for establishing

predictive algorithms of lake and stream macroinvertebrate communities. Firstly,

lakes and streams were randomly selected, hence this data set represents an unbiased

selection of the countries lake and stream populations. Macroinvertebrate

communities of 537 lakes and 696 streams relatively evenly distributed across the

country were sampled (Fig. 2.1). Secondly, a number of considerations were taken to

reduce the often confounding natural or operator-induced variability of this data set:

(i) macroinvertebrate sampling for RI95 was stratified temporally (autumn samples)

and spatially (riffle or exposed littoral samples); (ii) samples were collected using

standardized kick-sampling with a handnet with a 0.5 mm mesh size (SS EN 27 828,

European Committee for Standardization 1994); five kick-samples were taken from

each site and pooled to one sample for analysis.

Disclaimer or a cautionary note – As described above, a number of factors were

implemented in the national survey to lower within-site variance and increase the

probability of detecting change. These factors should be considered when using the

SWE[invert]PAC models. Size stratification of lakes included all sizes, but only

streams in catchments less than 250 km2 were sampled. Sampling season, the habitat

sampled and the method used to collect macroinvertebrates are known to affect

sample composition. The data set used here consisted of autumn samples taken from

hard-bottom (riffle or exposed littoral regions), using standardized kick-sampling (i.e.

sample effort consisted of five replicate samples taken from streams [1 m x 60 sec]

and lakes [1 m x 30 sec]). Further, the ranges of the environmental variables used in

the respective models are given below, and we do not recommend the use of these

models outside the universe of these model constraints.
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2.1.2 Identification

Taxonomic identification was done to the lowest taxonomic unit possible and

intercalibrations of taxonomic effort were implemented. The taxonomic resolution

used was decided upon by expert opinion. Factors such as easy of identification and

ecological value (discriminatory power) were two factors considered. Some 500 taxa

were included in the RI95 identification protocol; see Wilander et al. (1997) for a

more thorough description of the invertebrates selected and results from the

intercalibration of laboratories responsible for the identifications.

Invertebrate abundance data were converted to presence/absence form before model

calibration, because we decided from the outset to develop SWEPAC models for

predicting only the occurrence of taxa and not their expected abundance. SWEPACLLI

models for lake littoral assemblages were calibrated using two-levels of taxonomic

resolution (see section 3.1). Models for predicting stream riffle assemblages were

only developed for “species” - level resolution (see section 4.1 below)

2.1.3 Habitat assessment

A substantial amount of environmental data is available for sites sampled in the 1995

national lake and stream survey (Table 2.1). The habitats where samples were

collected were classified according to substrate types, such as the presence and

proportion of inorganic (e.g. stones) and organic (detritus) substratum and vegetation.

Moreover, the riparian zone just adjacent to the sampling sites as well as the whole

catchments were classified according to predominant vegetation and land use.

Finally, water chemistry such as indicators of acidity (pH and alkalinity) and

nutrients (total phosphorus and nitrogen), as well as a number of background

physico-chemical data are also available.
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Table 2.1. Physico-chemical and other habitat, riparian and catchment scale metrics included

in the sampling protocol for the 1995 national survey of lakes and streams.

_________________________________________________________________________

Geographic Habitat/Riparian/Catchment Water chemistry (6)

_________________________________________________________________________

latitude substratum (2) nutrients

longitude vegetation (3) pH/alkalinity/exceedence

altitude riparian (4) water color

ecoregion (1) catchment (5) metals

subecoregion (1)

_________________________________________________________________________

(1) 6 ecoregions according to the Nordic Council of Ministers (Anonymous 1984)

(2) habitat classification of substratum, seven classes: block/boulders, cobbles, pebbles, gravel, sand,

silt/clay, fine and coarse detritus

(3) habitat classification of vegetation, 8 classes: total coverage (%), emergent, floating-leaved,

isoetids, elodeids (fine and broad leaved submerged), Fontinalis, other mosses, filamentous algae

(4) riparian classification, 10 classes: coniferous forest, deciduous forest, mixed forest, clear-cutting,

heath/grassland, arable land, wetland, alpine, urban/construction, shading

(5) catchment classification, as riparian classification, but also including the percentage of surface

water in the catchment and size of the catchment

(6) other: metrics measured for streams but not lakes; slope, velocity, channel width, and depth. Sites

were also recorded if affected by liming or point-source pollution.

2.1.4 Minimally disturbed or least impaired sites

The lakes and streams sampled in the 1995 national survey for macroinvertebrates are

relatively well distributed across the country, and hence should provide good

measures of expected community types (Fig. 2.1). However, these sites are influence

not only by natural, but also by human-induced stressors. To obtain measures of

communities not substantially influenced by pollution, sites affected by point-

sources, acidification, liming and eutrophication or organic pollution, and sampling

bias are excluded from the data set (see Johnson 1998). Removal of sites suspected to
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be affected by non-natural stressors or sampling error results in a population sampled

of 364 lakes (Fig. 2.1b) and 365 streams (Fig. 2.1d). Lastly, preliminary analyses of

lake habitats showed that catchments classified as clear-cut (score > 2) had low taxa

richness, hence these sites (n = 10 lakes) were removed. The remaining sites will be

used to construct predictive models.

Figure 2.1. Distribution of (a) lakes (n = 537) and (c) streams (n = 696) sampled in

the 1995 national survey, and reference (b) lakes (n = 364) and (d) streams (n = 365)

used in model calibrations.
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2.2 Analyses

RIVPACS-type predicted algorithms for lake-littoral and stream-riffle macroinvertebrate

communities were developed by: (i) determination of community types using some form

of clustering technique, (ii) determination of explanatory environmental variables using

constrained ordination and discriminant function analysis, and (iii) prediction of the

probability of taxon occurrence (Table 2.2 and Fig. 2.2). In this last step, the probability

that new sites are members of established groups is established and the probability of taxa

occurrence at a new site is calculated. Models will be validated using internal (cross-

validation) and external (independent sites) procedures.

Table 2.2. Steps taken in the development of SWEPAC

____________________________________________________________________

Development and application of a RIVPACS model requires 8 main steps:

1. classification of reference sites into biologically similar groups,

2. development of a discriminant model with data collected from “reference sites”

(see below for exclusion criteria to ascertain “reference”) to estimate the probabilities

of a new site belonging to each of the site groups defined in (1),

3. calculation of the probabilities of all taxa in the regional taxa pool occurring

within each reference site group based on presence - absence data,

4. calculation of the probabilities that each taxon will occur at a new site based on

(2) and (3),

5. summation of the estimated probabilities of capture of all taxa to estimate the

number of taxa expected(E) at a new site,

6. calculation of O/E,

7. estimation of model error, and

8. assessing the degree of impairment of a new site given the error in the model.

____________________________________________________________________
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2.2.1 Model calibration

The probabilities of capture of individual taxa was calculated by determining the

probabilities of observing each taxon within each of the biological groups. This is

simply calculated as the number of sites within a group in which a taxon was

observed divided by the total number of sites within a group. Estimates of the

probability of observing each taxon are ‘weighted’ by the probabilities that a new site

will belong to each of the groups. A hypothetical example of how taxon weighted

probabilities of occurrence are calculated is given in Table 2.3. To predict the

macroinvertebrate community at a test site, environmental data for the site are used in

the discriminant functions to calculate the probability of membership to each of the

groups (here shown as four TWINSPAN groups). To calculate the probability of

finding a specific taxa at the test site, the frequency with which each taxon occurs in

each group is calculated as the proportion of sites where it occurs divided by the total

number of sites in the group. Lastly, the probability of finding a specific taxon is

simply the relative group frequency weighted by the probability of membership in

each of the groups.

Table 2.3. Hypothetical example of the calculation of taxon occurrence at a test site.

TWINSPAN

group

Probability that the test

site belongs to group*

Frequency of taxon a

occurrence in group (%)

Probability that

taxa a will occur

(%)

Grp. 1 0.10 0 0

Grp. 2 0 0 0

Grp. 3 0.70 70 49

Grp. 4 0.20 30 6

Weighted probability of finding taxon a at test site 55%.

____________________________________________________________________

* Probability is calculated using a discriminant model.
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Figure 2.2. Schematic diagram showing the steps used in RIVPACS-type predictions

of taxon occurrence.
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Table 2.4 shows actual data taken from a site used in the calibration of region 14

models. From the regional species pool, 25 taxa are predicted to occur when an

inclusion probability of 25% is used (i.e. this cut-level excludes taxa that are

predicted to occur with a probability < 25%). Once a threshold value has been

selected, the expected number of taxa (E) is expressed as the sum of the probability of

occurrence values ≥ the threshold value. The observed number of taxa (O) is then

calculated by summing the number of taxa predicted to occur at the site that were

actually collected. For the example shown in Table 2.4, the expected number of taxa

is12.9 at site 590. As mentioned, the observed number of taxa present is not a

comparison of raw taxa richness, but is a richness value that is constrained to include

only those taxa which are predicted to occur at a site or 13 taxa for site 590. This

results in an O/E ratio of 1.01 for site 590.

Table 2.4. The number of expected (E), observed (O) and O/E for site 590 sampled in

the 1995 national lake survey. An inclusion probability of 0.25 was used. Taxa are

ranked in order of their predicted probabilities of occurrence (E).

____________________________________________________________________

Taxon Observed (O) Probabilities of

occurrence (E)

Chironomidae 1 1.0000

Asellus aquaticus L. 1 0.9285

Oligochaeta 0 0.9233

Leptophlebia spp. 1 0.8139

Caenis spp. 1 0.7345

Heptagenia spp. 1 0.7005

Ceratopogonidae 1 0.6851

Sphaeriidae 0 0.6673

Erpobdella spp. 1 0.6224

Cyrnus spp. 0 0.5751

Mystacides spp. 0 0.5295

Limnephilus spp. 0 0.4168

Sialis spp. 0 0.3971

Cloeon spp. 0 0.3941
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Ephemera spp. 1 0.3740

Oulimnius spp. 1 0.3697

Limnephilidae 1 0.3572

Turbellaria 0 0.3487

Centroptilum spp. 1 0.3431

Helobdella stagnalis (L.) 0 0.3300

Gyraulus spp. 1 0.3159

Hydracarina 0 0.3024

Polycentropus spp. 1 0.2608

Tinodes spp. 0 0.2558

Lepidostoma hirtum (Fabricius) 0 0.2551

Observed number of taxa 13.00

Expected number of taxa 12.90

O:E 1.01

________________________________________________________________________

Johnson and Goedkoop (2000) showed that spatial stratification of sites should result in

more robust predictions. Hence models were developed for the three major biogeographic

regions of Sweden. The biogeographic regions have been described by Illies (1966). We

amalgamated sites in the nemoral, boreonemoral and southern boreal to fit Illies’ region

14, sites in the northern and middle boreal regions were combined to constitute Illies’

region 22, and the arctic/alpine complex constituted Illies’ region 20 (Fig. 2.3). That

ecoregion partitioning of natural variance results in more robust predictive models is also

supported by work done in Australia.
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Figure 2.3.Biogeographic regions of Europe.

2.2.2 Classification

Macroinvertebrate communities were classified using both agglomerative (i.e. using Bray-

Curtis Index and UPGMA, Unweighted Pair-Groups using Arithmetic Averages) and

divisive techniques (using TWINSPAN (Hill 1979, modified by Dr Peter R. Minchin, Feb

1988 - June 1997). TWINSPAN was run using square-root transformed abundance and

invoking the downweighting option for rare species. UPGMA was run on

macroinvertebrate abundance that was transformed to presence-absence data and using

Czekanowski’s association measure (Czekanowski, 1913). Although the underlying

algorithms of these two clustering techniques are quite different, surprisingly only slight

differences were found between the use of TWINSPAN or UPGMA as a grouping

technique. The discriminant models showed about the same amount of “correctly”

classified sites. This finding was not too surprising since the subjective nature of group

identification associated with the classification step is generally not a problem in

RIVPACS-type models. Probabilities of capture are weighted by the probability of new

sites belonging to each group (see below) and small errors in classification would not

therefore result in large errors in predicting the expected number of taxa.
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For both the lake and stream models, the classification of the “reference” sites into

biologically similar groups based on the presence/absence of taxa was done using

TWINSPAN. We used presence/absence data in the classification step since model

calibration was focused on predicting taxon occurrence. We checked the structure of

group integrity by plotting the TWINSPAN-groups in the ordination space of a

Correspondence Analysis based on community composition (presence/absence) data. For

stream models the computer program Twindend version 0.4 (unpublished) was also used

to evaluate the homogeneity of cluster groups.

2.2.3 Development of a discriminant model

Environmental variables are used to predict site affinity and subsequently the

weighted probability of taxon occurrence. A number of steps were taken to obtain a

parsimonious subset of environmental variables that best discriminated among sites

and between the biological groups (step 1). 1. Ordination methods were used to

summarize the main structure of the two species-by-site data sets, and relate structure

to environmental factors. Both indirect (e.g. PCA, Hottelling 1933) and direct

(canonical correspondence analysis [CCA] and redundancy analysis [RDA], ter Braak

1986 and 1989) forms of gradient analysis were used. However, detrended

correspondence analysis showed that gradient lengths were > 2.5 SD indicating that a

unimodal model would best fit the species responses. Hence, canonical

correspondence analysis was used to determine a subset of environmental variables

that best explained the variance in the species data set. CCA ordinations were run

invoking the downweighting option of species presence/absence data, forward

selection of environmental variables and significance testing of the environmental

variables with 999 Monte Carlo permutations. 2. This subset of environmental

variables was further examined using discriminant function analysis to determine

which variables also discriminated best among the biological groups. 3. An internal

test was used to determine the accuracy of the models in discriminating groups. These

variables were then used as predictor variables in the discriminant function models.
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3.0 CALIBRATION AND VALIDATION OF LAKE (LITTORAL)
MACROINVERTEBRATE MODELS

3.1 Taxonomic resolution

SWEPACLLI lake models were calibrated using two-levels of taxonomic resolution

(Appendix 1). “Species”-level resolution consists of 85 taxa and “family”-level

resolution consists of 85 families plus other levels of resolution. Taxa included in the

species-level data set were those that occurred in more than 3% of the total number of

sites, whereas for family-level models all families with at least one observation were

included.

3.2“Species” model calibration

Table 3.1 shows the number of biological groups and environmental variables used in

the development of SWEPACLLI “species”-level models.

Table 3.1. Variables used in SWEPACLLI “species” models.

Region No. of groups Environmental variables

Region 14 (mixed forest) 4 latitude

n= 115 sites longitude

n = 81 active taxa log altitude

cobble

sand

coarse detritus

log chloride

log color

Region 22 (coniferous forest) 4 latitude

n = 168 sites longitude

n = 80 active taxa log altitude

cobble

emergent vegetation

log color
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Region 20 (arctic/alpine) 4 latitude

n = 53 sites longitude

n = 49 active taxa log altitude

log total nitrogen

riparian deciduous

log color

3.2.1 Region 14 (mixed forest region)

Eleven variables were selected in the CCA ordination of 115 sites and 81 “active”

species of region 14. These 11 variables explained 18.5% of the total variance

(unconstrained eigenvalues) and 37.2% of the explained variance. Of these 11

variables, eight were found to discriminate among the four TWINSPAN groups, and

the discriminant model developed from these eight predictor variables was highly

significant (Wilk’s lamda = 0.501, F = 3.379, P < 0.001). Latitude (3.9%), longitude

(5.0%), altitude (14.7%), cobble (22.7%), sand (8.2%), coarse detritus (19.6%),

chloride (9.0%) and color (13.5%) discriminated among the four groups (Fig. 3.1).

The first discriminant factor had an eigenvalue of 0.587, which described a substrate

gradient (color and cobble substratum accounted for much of the variability). The

second axis (eigenvalue = 0.223) was seemingly related to climate, with altitude and

chloride strongly loading on this axis. 52.2% of the sites were classified to the

“correct” group.
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Figure 3.1. Centroid plot of TWINSPAN groups and environmental variables for the

region 14 species-level model. The numbers show the centroid for each group and

circles denote a 95% CI.

3.2.2 Region 22 (coniferous forest region)

Nine variables were selected in the CCA ordination of 168 sites and 80 “active”

species of region 22. These nine variables explained 13.1% of the total variance

(unconstrained eigenvalues) and 32.7% of the explained variance. Six variables were

found to discriminate among the four TWINSPAN groups, and the discriminant

model developed from these six predictor variables was highly significant (Wilk’s

lamda = 0.425, F = 8.8429, P < 0.001). Latitude (14.4%), longitude (10.6%), altitude

(10.5%), cobble (25.1%), emergent vegetation (22.4%) and color (26.0%)

discriminated among the four groups (Fig. 3.2). The first discriminant factor had an

eigenvalue of 0.839, which described a substrate gradient (color and cobble

substratum accounted for much of the variability). The second axis (eigenvalue =

0.171) was also related to substrate (emergent vegetation). 58.9% of the sites were
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classified to the “correct” group. Group 3 had a large number of misclassifications,

only 42.2% (64 sites) of were classified correctly. Group 4, on the other hand, had a

high number of correct classifications (84.6% were classified correctly of n = 26

sites).

Figure 3.2. Centroid plot of TWINSPAN groups and environmental variables for the

region 22 species-level model. The numbers show the centroid for each group and

circles denote a 95% CI.
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Eight variables were selected in the CCA ordination of 53 sites and 49 “active”
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developed from these six predictor variables was highly significant (Wilk’s lamda =

0.350, F = 3.1167, P < 0.001). Latitude (22.1%), longitude (18.0%), altitude (7.5%),

total nitrogen (17.0%), riparian deciduous (17.4%) and color (26.9%) discriminated

among the four groups (Fig. 3.3). The first discriminant factor had an eigenvalue

of1.11, and was related to altitude. The second axis had an eigenvalue of 0.265; total

nitrogen and riparian deciduous were strongly loaded on this axis. 56.6% of the sites

were classified to the “correct” group. Groups 2 and 3 had a large number of

misclassifications (only 28.6 and 45.5% of 14 and 11 sites, respectively, were

classified correctly). Group 1 (n = 12 sites) had a high number of correct

classifications (91.7% were classified correctly).

Figure 3.3. Centroid plot of TWINSPAN groups and environmental variables for the

region 20 species-level model. The numbers show the centroid for each group and

circles denote a 95% CI.
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3.3 “Family” level model calibration

Similar to species models, three models (one for each geographic region) were

developed using “family” level taxonomic resolution. Table 3.2 shows the number of

biological groups and environmental variables used in the development of

SWEPACLLI “family”-level models.

Table 3.2. Variables used in SWEPACLLI “family” models.

Region No. of groups Environmental variables

Region 14 (mixed forest) 4 latitude

n = 115 sites longitude

n = 74 active families log altitude

coarse detritus

sand

log surface area

log chloride

Region 22 (coniferous forest) 4 latitude

n = 167 sites longitude

n = 69 active families log altitude

cobble

log color

Region 20 (arctic/alpine) 3 latitude

n = 53 sites longitude

n = 44 active families log altitude

emergent vegetation

riparian deciduous
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3.3.1 Region 14 (mixed forest region)

Ten variables were selected in the CCA ordination of 115 sites and 74 “active”

families of region 14. These ten variables explained 17.3% of the total variance and

34.3% of the explained variance. Of these ten variables, seven were found to

discriminate among the four TWINSPAN groups, and the discriminant model

developed from these seven predictor variables was highly significant (Wilk’s lamda

= 0.333, F = 6.7055, P < 0.001). Latitude (8.7%), longitude (5.3%), altitude (17.6%),

coarse detritus (27%), sand (25.7%), lake surface area (28.3%) and chloride (19.0%)

discriminated among the four groups (Fig. 3.4). The first and second discriminant

factors had an eigenvalues of 0.979 and 0.349, respectively. Chloride and lake surface

area were strongly loaded on the first axis, while sand and altitude were strongly

correlated with the second axis. 64.3% of the sites were classified to the “correct”

group; classifications ranged from 57.1% for group 1 to 68.1% for group 3.

Figure 3.4. Centroid plot of TWINSPAN groups and enviromental variables for the

region 14 family-level model. The numbers show the centroid for each group and

circles denote a 95% CI.
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3.3.2 Region 22 (coniferous forest region)

Ten variables were selected in the CCA ordination of 167 sites and 69 “active”

familes of region 22. These ten variables explained 14.4% of the total variance and

37.2% of the explained variance. Five variables were found to discriminate among

the four TWINSPAN groups, and the discriminant model developed from these five

predictor variables was highly significant (Wilk’s lamda = 0.570, F = 6.6119, P <

0.001). Latitude (8.9%), longitude (7.6%), altitude (3.2%), cobble (20.75.1%), and

color (25.7%) discriminated among the four groups (Fig. 3.5). The first discriminant

factor had an eigenvalue of 0.609, which described a color and substrate (cobble

substratum) gradient. The second axis (eigenvalue = 0.0705) was related to altitude.

52.1% of the sites were classified to the “correct” group. Groups 2 and 3 high

numbers of misclassifications; 38.8%, n = 85 sites and 42.9%, n = 9 sites, were

classified correctly. Both groups 1 and 4 had correct classifications of 73.5% and

75.0%, respectively.
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Figure 3.5. Centroid plot of TWINSPAN groups and environmental variables for the

region 22 family-level model. The numbers show the centroid for each group and

circles denote a 95% CI.
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3.3.3 Region 20 (arctic/alpine region)

Nine variables were selected in the CCA ordination of 53 sites and 44 “active”

species of region 20. These nine variables explained 28.1% of the total variance and

31.3% of the explained variance. Five variables were found to discriminate among

the three TWINSPAN groups, and the discriminant model developed from these five

predictor variables was highly significant (Wilk’s lamda = 0.300, F = 7.5964, P <

0.001). Latitude (7.9%), longitude (3.9%), altitude (24.4%), emergent vegetation

(21.3%) and riparian deciduous (24.5%) discriminated among the three groups (Fig.

3.6). The first discriminant factor had an eigenvalue of 1.67, and was related to

altitude. The second axis had an eigenvalue of 0.247; emergent vegetation was

strongly (positively) correlated with this axis. 79.2% of the sites were classified to the

“correct” group. Group 1 had the highest percent of correct classifications (88.9%),

followed by group 3 (70.6%) and group 2 (66.7%).

Figure 3.6. Centroid plot of TWINSPAN groups and environmental variables for the

region 20 family-level model. The numbers show the centroid for each group and

circles denote a 95% CI.
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3.4 Inclusion probability

Before an O/E ratio can be calculated one must first decide on what threshold

probability will be used in the calculations. RIVPACS calculates O/E using all

probabilities > 0; based on the assumption that using “rare” taxa provides a more

representative assessment. However, other RIVPACS-type models (e.g. AUSRIVAS

used in Australia) calculates O/E using only those taxa that are predicted to occur

with probabilities > 50%. Here the reasoning was that rare taxa are often

“accidentals” and hence contribute no reliable information to the assessment. In other

words, if these taxa are from viable populations, they cannot be modeled accurately

and thus contribute mainly to model error. Two empirical analyses support this latter

contention (i.e. Simpson and Norris 2000; Hawkins et al. 2000). Cao et al. (1998) and

Cao and Williams (1999) contend, however, that the inclusion of rare taxa in

bioassessment increases statistical power.

To determine what threshold value to use in SWEPACLLI models we compared the

results from a number of calibration runs. For both “species” and “family” models the

number observed and expected taxa increased as the inclusion threshold decreased

(Fig. 3.7). As expected, the lowest values were found in region 20 or the arctic/alpine

complex presumably due to the impoverished regional species pool and/or harsher

environments. Models for region 14 and 22 were similar at the species level, but

family level models for region 22 had lower richness than those for region 14.
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Figure3.7. Means ± standard deviations for observed (O) and expected (E) number of

taxa from reference sites. Probability of occurrence thresholds used were 0.5, 0.25,

0.10 and 0.
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A comparison of inclusion probability thresholds and O/E ratios showed only slight

differences among regions and with varying threshold values (Table 3.3). Threshold

levels of 50% always had lower variance (standard deviations) than other threshold

levels (i.e. thresholds >50%). Species-level models had O/E ratios which ranged from

0.98 – 1.01 for region 14; 1.01 – 1.02 for region 22 and 0.99 – 1.01 for region 20.

Somewhat greater variability was noted for family-level models in region 22.

Table 3.3. Means ± standard deviations for O/E values from reference sites. O/Ex

refers to the probability of occurrence thresholds (i.e. ≥ 0.50, 0.25, 0.10 and 0).

____________________________________________________________________

Model O/E50 O/E25 O/E10 O/E0

____________________________________________________________________

Region 14 species 1.01±0.21 1.00±0.25 0.99±0.28 0.98±0.28

Region 14 family 1.00±0.22 1.00±0.26 0.99±0.28 0.98±0.29

Region 22 species 1.00±0.22 1.02±0.28 1.01±0.32 1.01±0.34

Region 22 family 1.05±0.23 1.08±0.28 1.08±0.31 1.06±0.31

Region 20 species 0.99±0.27 1.01±0.34 1.01±0.33 0.99±0.31

Region 20 family 0.99±0.27 0.99±0.31 0.99±0.33 0.99±0.33

____________________________________________________________________

For lake models we decided to use a threshold level of 25% for SWEPACLLI models.

This decision was based on calibration runs comparing results of observed, expected

and O/E ratios using thresholds of 0, 10, 25 and 50% probabilities, as well as a

compromise between models that predicted fewer taxa but had lower variance

associated with these predictions (e.g. models using a 50% threshold level) and

models that predicted many taxa but had high variance (e.g. models using a 10%

threshold level).
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For the remainder of this study, model validations were only run for species-level

models and using a threshold value (inclusion probability) of 25%.

3.5 Model validation

The error associated with the SWEPACLLI models was estimated using two methods.

First, the distribution of the reference data set (internal error validation) gives a

measure of the error distribution (see Table 3.3). However, a more rigorous measure

of model error is made by treating data from a series of reference sites that were not

used in model construction as test data. Before model calibration, 5% of the reference

sites were randomly removed from the data set. Applying the calculations in steps 3 –

6 (Table 2.2) these sites provide a second and independent measure of model error.

The distribution of O/E values should exhibit a near-normal frequency distribution

with values centered on 1, and the spread of these O/E values represents model error.

Internal validation showed that error estimates (here expressed as the 95% CI) for

O/E values were for region 14; mean = 0.997, upper CL = 1.044 and lower CL =

0.950, for region 22; mean = 1.016, upper CL = 1.059 and lower CL = 0.973, and for

region 20; mean = 1.011, upper CL = 1.104 and lower = 0.9185. Bootstrapping and

Efron’s percentile (Efron 1979) of O/E values by region was used to confirm these

error estimates. Bootstrapped estimates obtained from 1000 iterations were similar to

those obtained by conventional parametric statistics; for region 14; mean O/E =

0.997, upper CL = 1.037 and lower CL = 0.958, for region 22; mean O/E = 1.015,

upper CL = 1.051 and lower CL = 0.977, and for region 20; mean O/E = 1.009, upper

CL = 1.084 and lower = 0.9347 (Fig. 3.8). Bootstrapped error estimates will be used

here after, unless mentioned otherwise.

Although the number of sites used for external validation are too few for obtaining

robust estimates of model error (5% of the total number of reference sites), these sites

provide nonetheless some measure of expected model error. Not surprisingly,

variance estimates are much larger for external-reference than the internal-reference

validations. No differences were found between internal and external validations for

regions 14 and 22, but region 20 had somewhat higher values (Fig. 3.8). These

differences are presumably due to the few number of sites used in this validation step.

For region 14, six sites were used in the second validation step (mean O/E = 1.087,
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upper CL = 1.259 and lower CL = 0.898). Eight sites were used in the external

validation of region 22 sites (mean O/E = 0.946, upper CL = 1.083 and lower CL =

0.789). For region 20 only three sites were used; (mean O/E = 1.449, upper CL =

1.821 and lower CL = 1.179). Lastly, sites that were considered as impacted and not

included in model calibration had lower O/E values than reference. This

discriminatory power is described in greater detail below.

Fig. 3.8. Bootstrapped O/E values and error estimates of internal (reference or

calibration data set), external (reference or 5% of original data set), and external

(sites deemed to be impacted and hence removed before the model calibration)

validations. Mean O/E values ± 95% confidence interval.
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3.5 Assessment of ecological quality

Inferences of impairment need to be made in context of model error. Ideally threshold

levels to be set with a priori knowledge of type I (false positive) and II (false

negative) error estimates. A banding scheme is commonly used to classify degrees of

impairment. The number of bands ideally should be broached by determining the

error associated with estimates of expected (see Clarke et al. 1996). A number of

studies have, however, shown that four bands can often be reliably distinguished for

models that produce standard deviations of reference site O/E values of about 0.2.

Further, since one of the goals of this project is to develop a classification scheme

that is harmonized with the EU Water Framework Directive (EU WFD), we decided

to create a banding scheme based on 4 bands that lie outside the threshold value. In

other words, a total of five quality classes are recognized. Adopting the terminology

of the EU WFD, these five quality classes would range from high to poor ecological

quality, with high consisting of sites that are (i) within the 95% CI or (ii) within the

10 and 90 percentile distribution. Simply put, sites above the threshold value (e.g. the

lower 95% CL) are deemed as not deviating significantly from reference.

Both parametric (95% CI) and non-parametric (percentile distribution) were used to

established a five-band ecological quality classes. Values below the lower 95% CL or

10 percentile were used to create four impairment-bands (good, moderate, poor and

bad). This was done, for example, simply by dividing the interval from O/E = zero to

O/E = threshold value (lower 95% CL) into a series of equal length bands. Sites with

O/E values above the upper 95% CL (i.e. sites with more taxa than expected) are

placed in a separate band (denoted as X). On the one hand, it has been argued that

large O/E values may occur if the effect of certain habitat features were not captured

by the model (Wright et. al. 1996); these habitat features may be unique to the site

and hence create sites of potentially high conservation value. Simpson and Norris

(2000), on the other hand, offer an alternative interpretation for high O/E values.

Namely, in the initial stages of eutrophication, mild nutrient enrichment may cause an

increase in population densities without a loss of taxa. Although an increase in

population densities should not affect models based on presence/absence data, an

increase in “rare” taxa may increase the probability of their capture (i.e. sampling

may have underestimated rare taxa).
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To test how well model predictions are at detecting deviations or impairment, a

second external validation step was performed. Sites deemed to be impacted were

excluded from the calibration data set. These were sites that had exceedence of S

critical load > 0, sites situated in catchments with > 20% arable, and sites classified as

affected by clear-cutting. Sites that were considered as limed or affected by liming or

sampling error (Västernorrland) were also omitted, but these sites will not be

considered here.

3.5.1 Quality bands

Ecological quality bands were calculated for taxa richness O/E as described above.

Error estimates were obtained by bootstrapping (1000 iterations) of O/E values for

reference (or least impaired) sites and by using the percentile distribution (e.g. the

25th or10th to 90th percentile = high) of reference O/E values. The three approaches to

determining quality bands gave very different results (see Tables 3.4 to 3.9 and Fig.

3.9). Using the lower 95% CL means that 5% of the sites fall below this threshold,

whereas using the 10-percentile means that 10% of the sites fall below the threshold.

Use of the 95% CI produced a banding scheme that was less prone to type II errors

(i.e. not detecting changes if change has occurred). For example, for region 14

banding using the 95% CL resulted in O/E values < 0.958 being classified as good to

poor, whereas using the 10th percentile resulted in O/E values < 0.653. Also, the

system used to “anchor” the bands affected classification. Here two approaches were

used: (i) use of the upper threshold and zero as anchors and (ii) use of the upper

threshold and minimum observed O/E ratio as anchors. In both cases, 4 equidistant

bands were created by equally dividing the difference between these values.

Obviously, the “corrected” banding scheme should consider both the frequency of

type I and II errors. Banding systems that are conservative will err on the side of

caution and allow a higher frequency of false positives.
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3.4. Ecological quality classes for O/E taxon richness in region 14 (mixed forest

region). Anchor-values for establishing ecological bands are upper threshold (band

A) and zero.

____________________________________________________________________

Class and band Threshold value by:

Lower 95 CL 25th Percentile 10th Percentile

____________________________________________________________________

Very high, X 1.037 1.33 1.33

High, A 0.958 0.830 0.653

Good, B 0.719 0.623 0.490

Moderate, C 0.480 0.415 0.327

Poor, D 0.241 0.208 0.163

Bad, E < 0.241 < 0.208 < 0.163

____________________________________________________________________

Table 3.5. Ecological quality classes for O/E taxon richness in region 22 (coniferous

forest region). Anchor-values for establishing ecological bands are upper threshold

(band A) and zero.

____________________________________________________________________

Class and band Threshold value by:

Lower 95 CL 25th Percentile 10th Percentile

____________________________________________________________________

Very high, X 1.05 1.37 1.37

High, A 0.978 0.827 0.651

Good, B 0.733 0.620 0.489

Moderate, C 0.489 0.414 0.326

Poor, D 0.245 0.207 0.163

Bad, E < 0.245 < 0.207 < 0.163

____________________________________________________________________
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Table 3.6. Ecological quality classes for O/E taxon richness in region 20

(arctic/alpine region). Anchor-values for establishing ecological bands are upper

threshold (band A) and zero.

____________________________________________________________________

Class and band Threshold value by:

Lower 95 CL 25th Percentile 10th Percentile

____________________________________________________________________

Very high, X 1.08 1.52 1.52

High, A 0.935 0.803 0.511

Good, B 0.701 0.602 0.383

Moderate, C 0.467 0.402 0.256

Poor, D 0.233 0.201 0.128

Bad, E < 0.233 < 0.201 < 0.128

____________________________________________________________________

Table 3.7. Ecological quality classes for O/E taxon richness in region 14 (mixed

forest region). Anchor-values for establishing ecological bands are upper threshold

(band A) and minimum value from reference data set.

____________________________________________________________________

Class and band Threshold value by:

Lower 95 CL 25th Percentile 10th Percentile

____________________________________________________________________

Very high, X 1.037 1.33 1.33

High, A 0.958 0.830 0.653

Good, B 0.790 0.694 0.561

Moderate, C 0.622 0.558 0.469

Poor, D 0.453 0.421 0.377

Bad, E < 0.453 < 0.421 < 0.377

____________________________________________________________________
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Table 3.8. Ecological quality classes for O/E taxon richness in region 22 (coniferous

forest region). Anchor-values for establishing ecological bands are upper threshold

(band A) and minimum value from reference data set.

____________________________________________________________________

Class and band Threshold value by:

Lower 95 CL 25th Percentile 10th Percentile

____________________________________________________________________

Very high, X 1.05 1.37 1.37

High, A 0.978 0.827 0.651

Good, B 0.782 0.669 0.537

Moderate, C 0.587 0.511 0.423

Poor, D 0.391 0.353 0.309

Bad, E < 0.391 < 0.353 < 0.309

____________________________________________________________________

Table 3.9. Ecological quality classes for O/E taxon richness in region 20

(arctic/alpine region). Anchor-values for establishing ecological bands are upper

threshold (band A) and minimum value from reference data set.

____________________________________________________________________

Class and band Threshold value by:

Lower 95 CL 25th Percentile 10th Percentile

____________________________________________________________________

Very high, X 1.08 1.52 1.52

High, A 0.935 0.803 0.511

Good, B 0.797 0.698 0.479

Moderate, C 0.659 0.593 0.447

Poor, D 0.520 0.487 0.414

Bad, E < 0.520 < 0.487 < 0.414

____________________________________________________________________
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Figure 3.9. Quality bands derived using the lower 95% CL (a) and 10th percentile (b)

as threshold values. Anchor-values for establishing ecological bands are upper

threshold (band A) and zero or minimum values.
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3.5.2 Discriminatory power

Sites in region 14 that had exceedence of S critical load > 0, but not limed or affected

by agriculture (< 20% of catchments classified as agriculture) were used to evaluate

how well the banding schemes classified perturbed sites (n = 23 sites) (Table 3.10

and 3.11). Of the 6 sites that had pH < 5.0 (one measure taken during the 1995

National Lake Survey), 2 were classified as poor, 2 as moderate and 2 as good using

the lower 95% CL threshold value. All 6 sites were classified as moderate or better

using the 10th percentile threshold approach. Of the 10 sites with pH > 5.5, 4 were

classified as moderate, 4 as good and 2 as very high ecological status according to the

95% banding scheme. Using the 10th-percentile, 3 were classified as good and 7 as

high ecological status. Using the minimum observed reference O/E value as the lower

threshold to set the four bands (B - E) resulted in 1 site being classified as bad, 2 as

poor, 1 as moderate and 2 as good for the 7 sites with pH < 5.0 (Table 3.11).

Hence, preliminary studies of comparing “impacted” sites with the two banding

schemes lend support to using a more conservative threshold value. Adopting the

contention that it is better to err on the side of committing false positives or type I

errors, the 95% CL appears to be the more robust approach of the two tested here.

However, further tests are required using “dirty” sites to test this assumption more

adequately. For example, it is well relatively well established that richness metrics are

good at detecting impact (e.g. Johnson 1998; Sandin and Johnson 2000), and taxon

richness O/E ratios performed well here. However, since SWEPACLLI models predict

the expected taxonomic composition at a site, they also provide information on the

expected presence/absence of specific taxa. If the sensitivities of taxa to different

stressors are known, this information can result in diagnostics that are better able to

detect human-induced change. For example, Johnson (1998) showed that pollution-

specific metrics had high power to detect change.
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Table 3.10. “Impacted” sites used to test the discriminatory power of the region 14

SWEPACLLI model. Sites having an exceedence of S critical load are included, but

limed sites and sites with >20% catchment agriculture not included. Anchor-values

for establishing ecological bands are upper threshold (band A) and zero.

____________________________________________________________________________

Site pH class Exceedence O/E Classification
meq/m2 yr 95% CL 25th

percentile

10th

percentile

R1042 pH < 5.0 57 0.422 poor moderate moderate

R1246 pH < 5.0 36 0.479 poor moderate moderate

R1044 pH < 5.0 47 0.655 moderate good high

R1029 pH < 5.0 18 0.599 moderate moderate good

R1122 pH < 5.0 20 0.888 good high high

R1123 pH < 5.0 11 0.949 good high high

R1152 5<pH≤5.5 27 0.693 moderate good high

R905 5<pH≤5.5 18 0.787 good good high

R662 5<pH≤5.5 34 0.826 good good high

R1031 5<pH≤5.5 13 1.294 very high high high

R246 5<pH≤5.5 33 0.713 moderate good high

R655 5<pH≤5.5 15 0.507 moderate moderate good

R959 5<pH≤5.5 44 0.441 poor moderate good

R1028 pH>5.5 15 0.571 moderate moderate good

R751 pH>5.5 22 0.993 high high high

R965 pH>5.5 26 0.611 moderate moderate good

R1171 pH>5.5 5 0.691 moderate good high

R749 pH>5.5 28 0.65 moderate good good

R628 pH>5.5 3 1.032 high high high

R364 pH>5.5 8 0.98 high high high

R1013 pH>5.5 4 1.217 very high high high

R907 pH>5.5 4 0.97 high high high

R638 pH>5.5 18 1.19 very high high high

____________________________________________________________________________
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Table 3.11. “Impacted” sites used to test the discriminatory power of the region 14

SWEPACLLI model. Sites having an exceedence of S critical load are included, but

limed sites and sites with >20% catchment agriculture not included. Anchor-values

for establishing ecological bands are upper threshold (band A) and minimum value

from reference data set.

____________________________________________________________________________

Site pH class Exceedence O/E Classification
meq/m2 yr 95% CL 25th

percentile

10th

percentile

R1042 pH < 5.0 57 0.422 bad poor poor

R1246 pH < 5.0 36 0.479 poor poor moderate

R1044 pH < 5.0 47 0.655 moderate moderate high

R1029 pH < 5.0 18 0.599 poor moderate good

R1122 pH < 5.0 20 0.888 good high high

R1123 pH < 5.0 11 0.949 good high high

R1152 5<pH≤5.5 27 0.693 moderate moderate high

R905 5<pH≤5.5 18 0.787 moderate good high

R662 5<pH≤5.5 34 0.826 good good high

R1031 5<pH≤5.5 13 1.294 very high high high

R246 5<pH≤5.5 33 0.713 moderate good high

R655 5<pH≤5.5 15 0.507 poor poor moderate

R959 5<pH≤5.5 44 0.441 bad poor poor

R1028 pH>5.5 15 0.571 poor moderate good

R751 pH>5.5 22 0.993 high high high

R965 pH>5.5 26 0.611 poor moderate good

R1171 pH>5.5 5 0.691 moderate moderate high

R749 pH>5.5 28 0.65 moderate moderate good

R628 pH>5.5 3 1.032 high high high

R364 pH>5.5 8 0.98 high high high

R1013 pH>5.5 4 1.217 very high high high

R907 pH>5.5 4 0.97 high high high

R638 pH>5.5 18 1.19 very high high high

____________________________________________________________________________
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4.0 CALIBRATION AND VALIDATION OF STREAM (RIFFLE)
MACROINVERTEBRATE MODELS

4.1 Taxonomic resolution

SWEPACSRI models were calibrated using an adjusted taxonomic resolution for each

region separately. For region 14, 174 taxa were included in the model, for region 20,

a total of 70 taxa were included in the model, and for region 22, 146 taxa were

included in the model (Appendix 2).

4.2 Model calibration

Table 4.1 shows the number of biological groups and environmental variables used

in the development of the SWEPACSRI running water models.

Table 4.1. Variables used in SWEPACSRI running water models.

Region No. of groups Environmental variables
Region 14 (mixed forest) 5 latitude

n= 126 sites longitude

n = 173 active taxa log altitude

stream velocity

depth

amount of sand

highest coastline

Region 22(coniferous forest) 6 latitude

n = 186 sites longitude

n = 146 active taxa log altitude

stream velocity

emergent vegetation

heath in riparian zone

alpine veg. in catchment
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Region 20 (arctic/alpine) 4 latitude

n = 30 sites longitude

n = 72 active taxa log altitude

depth

log Cl

amount of algae in stream

forest in catchment

catchment area size

4.2.1 Region 14 (mixed forest region)

One TWINSPAN classification was tested including six groups with 7, 13, 18, 19,

31, and 38 sites in each group. Nine variables (i.e. latitude, longitude, altitude, stream

velocity, depth, amount of sand, cobble and mosses in the stream, and whether or not

the site was found above the highest coastline of the last glaciation) were chosen as

candidate predictors for the classification of the six TWINSPAN groups. These were

chosen from a discriminant function analysis using forward selection of

environmental variables with the computer program CANOCO vs. 4.0 (ter Braak &

Smilauer 1998). Using all nine environmental variables and all 126 sites to build the

model, 79 out of the 126 (62.7 %) sites were classified into the correct group. Using

cross-validation, where one site at a time was removed from the model-building, and

only that site was predicted, 65 out of the 126 sites (51.6 %) were correctly

classified. In a minimum model that only included altitude, longitude and latitude, 36

out of 126 (28.6 %) sites were correctly classified using all data for model building,

whereas 32 out of 126 (25.4 %) were correctly classified using cross-validation.

After evaluating the model, we chose to use five TWINSPAN groups (i.e. adding the

groups containing seven and 19 sites together). Seven environmental variables from

the discriminant analysis (i.e. latitude, longitude, altitude, stream velocity, depth,

amount of sand in the stream, and whether or not the site was found above the

highest coastline of the last glaciation) were included in the model (Fig. 4.1). This

model could predict 80 out of the 126 (63.5 %) sites into the correct groups using all
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sites in model building, whereas 68 out of 126 (54.0 %) were correctly classified

using cross-validation.
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Figure 4.1. Centroid plot of five TWINSPAN groups and seven environmental

variables included in the region 14 model. The numbers show the centroid for each

group and circles denote a 95% CI.

4.2.2 Region 22 (coniferous forest region)

Three TWINSPAN classifications were tested. The first included five groups (with

19, 25, 39, 50 and 54 sites in the different cluster groups).  The second model had

eight groups (with 19, 19, 20, 23, 25, 26, 27 and 28 sites in the different cluster

groups). The third classification consisted of 12 groups (with 4, 5, 6, 9, 10, 13, 16,

20, 23, 26, 27, and 28 sites in the different cluster groups). Ten variables (i.e.

latitude, longitude, altitude, stream velocity, amount of algae, Fontinalis and gravel

in the stream, the amount of heath in the riparian zone and forest and freshwater in
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the catchment) were chosen as candidate predictors for the classification of five

TWINSPAN groups. Using all ten environmental variables and all 187 sites to build

the model 117 out of the 187 (62.6 %) of the sites were classified into the correct

group. Using cross-validation, 105 out of the 187 sites (56.1 %) were correctly

classified. In a minimum model that only included altitude, longitude and latitude, 71

out of 187 (38.0 %) sites were correctly classified using all data for model building,

whereas 67 out of 187 (35.8 %) were correctly classified using cross-validation.

For the model including eight TWINSPAN groups, ten variables (i.e. latitude,

longitude, altitude, stream velocity, amount of cobble in the stream, width of the

stream, the amount of heath and the amount of alpine vegetation and freshwater in

the catchment) were chosen as candidate predictor variables. Using all ten

environmental variables and all 187 sites to build the model, the model predicted 94

out of the 187 (50.3 %) of the sites into the correct group, whereas 87 out of 187

(46.5 %) were correctly classified using cross-validation. Using a minimum model

that only included altitude, longitude and latitude, 62 out of 187 (33.2 %) were

correctly classified using all data for model building, whereas 57 out of 187 (30.5 %)

were correctly classified using cross-validation.

For the model including 12 TWINSPAN groups, the same ten variables were chosen

as for the model using eight groups (i.e. latitude, longitude, altitude, stream velocity,

vegetation cover and amount of cobble in the stream, width of the stream, the amount

of heath in the riparian zone, the amount of alpine vegetation and freshwater in the

catchment). Using all ten environmental variables and all 187 sites to build the

model, 82 out of the 187 (43.9 %) of the sites were classified into the correct group,

whereas 59 out of 187 (31.6 %) were correctly classified using cross-validation.

Using a minimum model that only included altitude, longitude and latitude, 50 out of

187 (26.7 %) were correctly classified using all data for model building, whereas 44

out of 187 (23.5 %) were correctly classified using cross-validation.

To test how many environmental variables to include in the model, all possible

models using 6 – 10 environmental variables were constructed and tested with the

TWINSPAN classification of four groups. Latitude, longitude, altitude and stream
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depth were included in all models, and all possible combinations of the remaining six

variables were tested. Models were built both by including all 30 sites and using

cross-validation (see above). The best predictor model included eight environmental

variables where 28 out of 30 variables were correctly predicted using all data and 23

out of 30 using cross-validation (Fig. 4.2).
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Figure 4.2. Testing a model with 8 cluster groups, using different numbers of

predictor variables. Latitude, longitude, altitude and stream velocity was included in

all models. The percent of correct classified sites for a model built on all data (filled

circles) and cross-validation (open squares) are shown for models including

different numbers of predictor variables.

The difference in number of correctly classified sites depending on the number of

included environmental variables in the model was also compared between the model

built on eight and 12 TWINSPAN groups, respectively. The model including eight

groups, always had a higher percent correctly classified sites (i.e. it differed 6 – 9 %

in a model built using all variables and 6 – 15 % using cross-validation) (Fig. 4.3).
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The best predictor model included seven environmental variables (i.e. latitude,

longitude, altitude, stream velocity, the amount of freshwater in the catchment, the

amount of heath in the riparian zone, and the amount of vegetation cover in the

stream). Using this model, 96 out of 187 (51.3 %) sites were correctly classified

using all data and 88 out of 187 (47.1 %) sites using cross-validation.
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Figure 4.3. Comparison of the ratio of correctly classified sites. The model including

8 groups is the upper line, whereas the model including twelve groups is the lower

line.

After evaluating these models (i.e. including five, eight and 12 TWINSPAN groups,

respectively), we decided to test a model including six groups. The seven best

predictor environmental variables were: latitude, longitude, altitude, stream velocity,

heath in the riparian zone, alpine vegetation and freshwater in the catchment. A

model including these seven environmental variables predicted 105 out of 187

(56.1%) correctly and using cross-validation 99 out of 187 (52.9 %) were correctly
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classified. The number of correctly classified sites within each group varied between

35.2 % and 75.0 % for the model including six TWINSPAN groups. The

discriminant model developed from these seven predictor variables (Fig. 4.4) was

highly significant (Wilk’s lamda = 0.165, F = 11.2865, P < 0.001).
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Figure 4.4. Centroid plot of six TWINSPAN groups and seven environmental

variables for the region 22 model. The numbers show the centroid for each group

and circles denote a 95% CI.

4.3.3 Region 20 (arctic/alpine region)

Two TWINSPAN classifications were tested, one including four groups (with 2, 7, 8,

and 13 sites in the different cluster groups) and one model with 6 groups (with 2, 4,

4, 5, 7, and 8 sites). Ten variables (i.e. latitude, longitude, altitude, depth, Cl, Mg,

amount of algae and Fontinalis in the stream, amount of forest in the catchment area,

and catchment area size) were chosen as candidate predictors for the classification of
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four TWINSPAN groups. These were chosen from a discriminant function analysis

using forward selection of environmental variables in CANOCO. Using all ten

environmental variables and all 30 sites to build the model 28 out of the 30 (93.3 %)

of the sites were classified into the correct group. Using cross-validation 22 out of

the 30 sites (73.3 %) were correctly classified. In a minimum model that only

included altitude, longitude and latitude, 22 out of 30 (73.3 %) sites were correctly

classified using all data for model building, whereas 20 out of 30 (67.7 %) were

correctly classified using cross-validation.

For the model including six TWINSPAN groups, ten variables (i.e. latitude,

longitude, altitude, depth, Cl, Mg, amount of algae, CPOM and Fontinalis in the

stream, and amount of alpine vegetation in the riparian zone) were chosen as

candidate predictor variables. Using all ten environmental variables and all 30 sites

to build the model predicted 26 out of the 30 (86.7 %) of the sites into the correct

group. Using a minimum model that only included altitude, longitude and latitude, 27

out of 30 (56.7 %) were correctly classified using all data for model building,

whereas 14 out of 30 (46.7 %) were correctly classified using cross-validation.

To test how many environmental variables to include in the model, all possible

models using 6 – 10 environmental variables were constructed and tested with the

TWINSPAN classification of four groups. Latitude, longitude, altitude and depth of

the stream were included in all models, and all possible combinations of the

remaining six variables were tested. Models were built both by including all 30 sites

and using cross-validation (see above). The best predictor model included eight

environmental variables where 28 out of 30 variables were correctly predicted using

all data and 23 out of 30 using cross-validation (Fig. 4.5).
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Figure 4.5. Testing all possible predictive models, using different numbers of

predictor variables. Latitude, longitude, altitude and depth were included in all

models. The best ratio of correct classified sites for a model built on all data (filled

circles) and cross-validation (open squares) are shown for models including

different numbers of predictor variables.

The best eight variables were: latitude, longitude, altitude, depth, Cl, amount of algae

in the stream, amount of forest in the catchment area and size of the catchment area.

The discriminant model developed from these eight predictor variables (Fig. 4.6) was

highly significant (Wilk’s lamda = 0.044, F = 4.4795, P < 0.001). Using this model,

23 out of 30 (76.7 %) of the sites were classified to the correct group. Group 4 had

the highest percent of correct classifications (92.3%), followed by group 2 (87.5%),

group 1 (50.0 %), whereas 42.9 % of the sites in group 3 were correctly classified.
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Figure 4.6. Centroid plot of four TWINSPAN groups and eight environmental

variables for the region 20 model. The numbers show the centroid for each group

and circles denote a 95% CL.

4.4 Inclusion probability

To determine what threshold value to use in the SWEPACSRI models we compared

the results from a number of calibration runs. For all models the number of observed

and expected taxa increased as the inclusion threshold decreased (Fig. 4.7a-c). As

expected, the lowest values were found in region 20 or the arctic/alpine complex

presumably due to the impoverished regional species pool and/or harsher

environments. Models for region 14 and 22 had similar taxon richness.

A comparison of inclusion probability thresholds and O/E ratios showed only slight

differences among regions and with varying threshold values. Threshold levels of

50% always had lower variance (standard deviations) than other threshold levels (i.e.

thresholds < 50%). Models had O/E ratios which ranged from 0.95 – 0.98 for region

14; 1.02 – 1.11 for region 22 and 1.00 – 1.01 for sites in region 20 (Table 4.2).
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Fig 4.7a-c. Mean number of observed (left) and expected (right) taxa for different

probability of occurrence thresholds in regions 14, (a), 22 (b) and 20 (c).
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Table 4.2. Means ± standard deviations for O/E values from reference sites. O/Ex

refers to the probability of occurrence thresholds (i.e. ≥ 0.50, 0.25, 0.10 and 0).

____________________________________________________________________

Model O/E50 O/E25 O/E10 O/E0

____________________________________________________________________

Region 14 0.98±0.22 0.96±0.28 0.96±0.30 0.95±0.29

Region 22 1.02±0.25 1.05±0.30 1.07±0.32 1.11±0.37

Region 20 1.01±0.18 1.01±0.23 1.00±0.26 1.00±0.26

____________________________________________________________________

Another way to test which of the probability of occurrence thresholds to use is to

look at the correlation between the observed number of taxa and the expected

number of taxa, since analyzing only at the mean values of observed and expected

values for each region might give a somewhat different picture than the actual values

given by the model (Table 4.3).

Table 4.3. Results of linear regression of expected against observed number of taxa

for different threshold values (or inclusion probabilities).

Region Threshold r2 p-value

14 0.0 0.27 < 0.001

14 0.1 0.36 < 0.001

14 0.25 0.48 < 0.001

14 0.5 0.68 < 0.001

22 0.0 0.20 < 0.001

22 0.1 0.30 < 0.001

22 0.25 0.40 < 0.001

22 0.5 0.50 < 0.001

20 0.0 0.71 < 0.001

20 0.1 0.77 < 0.001

20 0.25 0.71 < 0.001

20 0.5 0.74 < 0.001
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We decided to use a threshold level of 25% for SWEPACSRI models. These decisions

were based on calibration runs comparing results of observed, expected and O/E

ratios using thresholds of 0, 10, 25 and 50% probabilities. This decision was based

on the results discussed above, as well as a compromise between models that

predicted fewer taxa but had lower variance associated with these predictions (e.g.

models using a 50% threshold level) and models that predicted many taxa but had

high variance (e.g. models using a 10% threshold level).

4.5 Model validation

The error associated with the SWEPACSRI models (0.25 inclusion probability) was

estimated using two methods. First, the distribution of the reference data set (internal

error validation) gives a measure of the error distribution (see Table 4.2). However, a

more rigorous measure of model error is made by treating data from a series of

reference sites that were not used in model construction as test data. Before model

calibration, 5% of the reference sites were randomly removed from the data set.

Applying the calculations in steps 3 – 6 (Table 2.2) these sites provide a second and

independent measure of model error. The distribution of O/E values should exhibit a

near-normal frequency distribution with values centered on 1, and the spread of these

O/E values represents model error.

Internal validation showed that error estimates (here expressed as the 95% CI) for

O/E values were for region 14; mean = 0.962, upper CL = 1.012 and lower CL =

0.913, for region 22; mean = 1.051, upper CL = 1.095 and lower CL = 1.008, and for

region 20; mean = 1.011, upper CL = 1.044 and lower = 0.978. Bootstrapping and

Efron’s percentile (Efron 1979) of O/E values by region was used to confirm these

error estimates. Bootstrapped estimates obtained from 1000 iterations were similar to

those obtained by conventional parametric statistics; for region 14; mean O/E =

0.962, upper CL = 1.000 and lower CL = 0.919, for region 22; mean O/E = 1.051,

upper CL = 1.088 and lower CL = 1.014, and for region 20; mean O/E = 1.011, upper

CL = 1.083 and lower = 0.935.

Although the number of sites used for external validation are too few for obtaining

robust estimates of model error (5% of the total number of reference sites), these
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sites provide nonetheless some measure of expected model error. Not surprisingly,

variance estimates (using bootstrapping) were larger for external-reference than the

internal-reference validations (Fig. 4.8). For region 14, seven sites were used in the

second validation step (mean O/E = 0.776, upper CL = 0.958 and lower CL = 0.607).

Ten sites were used in the external validation of region 22 sites (mean O/E = 0.829,

upper CL = 0.995 and lower CL = 0.657). For region 20 only three sites were used;

(mean O/E = 0.820, upper CL = 1.014 and lower CL = 0.634).
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Figure 4.8. Error estimates of internal (Int) (reference or calibration data set),

external (Ext) (reference or 5% of original data set), validations. Median O/E values

and interquartile range (75 % and 25 %, respectively) is given within the boxes.

The region 14 model was used as an example to test how well the models could

detect the effects of perturbation. Stream sites with a total phosphorous content > 100

µgl-1 were deemed as impacted and used as “affected”. Predicted taxa lists were

calculated for these sites and compared to the internal and external references.

Comparing the O:E ratios (number of taxa) between the internal (model) references

and the affected sites, showed that there was significant differences between the two

for all inclusion probabilities (p < 0.003). The explained variance were rather low
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(r2= 0.067-0.131) with the highest explained variance for the model with an inclusion

probability of 0.5.

Comparing O:E ratios (number of taxa) between the external references and the

affected sites, showed however, no significant differences (p > 0.05) for all four

inclusion probabilities. This might be a results of the low power for these tests

(always <0.1) and thus a larger number of external references (a new test data set)

would be needed to truly evaluate the capability of the model to detect human

influenced perturbation.
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Figure 4.9. Error estimates of the O:E ratio of number of taxa. Internal (reference or

calibration data set), external (reference or 5% of original data set), and affected

(stream sites with a total phosphorous content > 100 µgl-1) sites. Median O/E values

and interquartile range (75 % and 25 %, respectively) is given within the boxes.

Another way to use the model is to calculate indices based on the observed and

expected taxa lists. It is then possible to calculate the O:E ratio between the observed

and expected index value. This was done using the region 14 model and the Average

Score per Taxon (ASPT) a “clean water index” mainly indicating the presence of

sensitive groups (high values) and insensitive ones (low values) (Armitage et al.
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1983). This O:E ratio (only calculated for the 0.25 inclusion probability) clearly

distinguished between the internal (model) references (mean = 0.945; upper CL =

0.980; lower CL = 0.910) and the affected sites (mean = 0.839; upper CL = 0.902;

lower CL = 0.777) with a t-test (p<0.005). There was also a clear difference when

comparing the external references (mean = 0.977; upper CL = 1.108; lower CL =

0.885) and the affected sites (mean = 0.839; upper CL = 0.896; lower CL = 0.783)

with a t-test (p < 0.02) (Fig. 4.10).
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Figure 4.10. Error estimates of O:E ratios of the Average Score per Taxon (ASPT)

index. Internal (reference or calibration data set), external (reference or 5% of

original data set), and affected (stream sites with a total phosphorous content > 100

µgl-1) sites. Median O/E values and interquartile range (75 % and 25 %, respectively)

is given within the boxes.
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Appendix 1. Two levels of taxonomic resolution used in SWEPACLLI lake-model

calibrations.

____________________________________________________________________

“Species” “Families”

1 Turbellaria Spongillidae

2 Nematoda Hydrozoa

3 Bithynia tentaculata (L.) Turbellaria

4 Lymnaea stagnalis (L.) Nematoda

5 Radix spp. Neritidae

6 Physa fontinalis (L.) Viviparidae

7 Bathyomphalus contortus (L.) Valvatidae

8 Gyraulus spp. Hydrobiidae

9 Acroloxus lacustris (L.) Lymnaeidae

10 Sphaeriidae Physidae

11 Oligochaeta Planorbidae

12 Glossiphonia spp. Ancylidae

13 Helobdella stagnalis (L.) Unionidae

14 Erpobdella spp. Sphaeriidae

15 Hydracarina Oligochaeta

16 Argyroneta aquatica (Clerk) Hirudidae

17 Asellus aquaticus L. Piscicolidae

18 Gammarus spp. Glossiphoniidae

19 Ameletus inopinatus Eaton Erpobdellidae

20 Baetis spp. Hydracarina

21 Centroptilum spp. Araneae

22 Cloeon spp. Asellidae

23 Heptagenia spp. Gammaridae

24 Leptophlebia spp. Collembola

25 Ephemera spp. Siphlonuridae

26 Caenis spp. Baetidae

27 Nemoura spp. Heptageniidae

28 Capnia spp. Leptophlebiidae

29 Diura spp. Ephemeridae
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30 Coenagriidae Caenidae

31 Coenagrion spp. Taeniopterygidae

32 Erythromma najas (Hansem.) Nemouridae

33 Zygoptera Leuctridae

34 Aeshna spp. Capniidae

35 Cordulia spp. Perlodidae

36 Somatochlora spp. Platycnemididae

37 Libellula spp. Coenagriidae

38 Leucorrhinia spp. Agriidae

39 Anisoptera Gomphidae

40 Gerris spp. Cordulegasteridae

41 Notonecta spp. Aeshnidae

42 Corixidae Corduliidae

43 Micronecta spp. Libellulidae

44 Cymatia spp. Anisoptera

45 Callicorixa spp. Gerridae

46 Sigara spp. Nepidae

47 Haliplus spp. Notonectidae

48 Dytiscidae Corixidae

49 Hygrotus spp. Haliplidae

50 Hydroporus spp. Dytiscidae

51 Agabus spp. Gyrinidae

52 Ilybius spp. Hydrophilidae

53 Potamonectes spp. Helodidae

54 Nebrioporus spp. Dryopidae

55 Gyrinus spp. Elminthidae

56 Oulimnius spp. Chrysomelidae

57 Sialis spp. Sialidae

58 Plectrocnemia spp. Rhyacophilidae

59 Polycentropus spp. Polycentropodid

60 Holocentropus spp. Psychomyiidaeae

61 Cyrnus spp. Hydropsychidae

62 Ecnomus tenellus Ramb. Hydroptilidae

63 Tinodes spp. Phryganeidae
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64 Lype spp. Limnephilidae

65 Oxyethira spp. Molannidae

66 Phryganea spp. Leptoceridae

67 Agrypnia spp. Goeridae

68 Limnephilidae Lepidostomatida

69 Limnephilus spp. Brachycentridaee

70 Glyphotaelius pellucidus Retz. Sericostomatida

71 Nemotaulius punctatolineatus Retz. Tipulidaee

72 Potamophylax spp. Dixidae

73 Molanna spp. Chaoboridae

74 Molannodes tinctus Zett. Culicidae

75 Athripsodes spp. Ceratopogonida

76 Mystacides spp. Chironomidaee

77 Oecetis spp. Simuliidae

78 Lepidostoma hirtum (Fabricius) Stratiomyidae

79 Tipulidae Empididae

80 Chaoboridae Dolichopodidae

81 Ceratopogonidae Tabanidae

82 Chironomidae Syrphidae

83 Empididae Muscidae

84 Tabanidae Cylindrotomidae

85 Limoniidae Limoniidae

____________________________________________________________________
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Appendix 2. Taxonomic resolution used in SWEPACSRI stream-model calibrations.

Region 14

1 Acilius canaliculatus (Nicolai) 23 Caenis luctuosa-macrura

2 Acroloxus lacustris (L.) 24 Caenis rivulorum Eaton

3 Aeshna sp. 25 Callicorixa sp.

4 Agabus sp. 26 Calopteryx sp.

5 Agapetus sp. 27 Capnia sp.

6 Agrypnia sp. 28 Centroptilum sp.

7 Amphinemura borealis (Morton) 29 Ceratopogonidae

8 Amphinemura standfussi-sulcicollis 30 Chaoborus sp.

9 Ancylus fluviatilis (Müller) 31 Cheumatopsyche lepida Pictet

10 Aphelocheirus aestivalis (F.) 32 Chimarra marginata L.

11 Asellus aquaticus L. 33 Chironomidae

12 Astacus astacus (L.) 34 Cloeon sp.

13 Athripsodes sp. 35 Coenagrion sp.

14 Baetis fuscatus group 36 Collembola

15 Baetis muticus L. 37 Cordulia aenea (L.)

16 Baetis niger-digitatus 38 Cordulegaster boltonii (Donovan)

17 Baetis rhodani Pict. 39 Corixa sp.

18 Bathyomphalus contortus (L.) 40 Culicidae

19 Bithynia tentaculata (L.) 41 Cymatia sp.

20 Brachyptera sp. 42 Cyrnus flavidus McL.

21 Brachysera 43 Cyrnus insolutus McLachlan

22 Caenis horaria L. 44 Cyrnus trimaculatus Curtis

45 Dicranota sp. 71 Helobdella stagnalis (L.)

46 Dinocras cephalotes (Curtis) 72 Heptagenia dalecarlia Bengtsson

47 Diura nanseni (Kempny) 73 Heptagenia fuscogrisea Retz.

48 Dolichopodidae 74 Heptagenia sulphurea Müll.

49 Donacia sp. 75 Hesperocorixa sp.

50 Dryops sp. 76 Hexatominae

51 Dytiscus sp. 77 Holocentropus dubius Rbr.

52 Ecnomus tenellus Ramb. 78 Holocentropus picicornis

53 Elmis aenea (Müller) 79 Hydropsyche angustipennis Curtis

54 Empididae 80 Hydropsyche nevae Kolenati
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55 Ephemerella aurivillii Bengtsson 81 Hydropsyche pellucidula Curtis

56 Ephemera danica Müll. 82 Hydropsyche saxonica McLachlan

57 Ephemerella mucronata Bengtsson 83 Hydropsyche siltalai Döhler

58 Ephemera vulgata L. 84 Hydropsyche silvenii Ulmer

59 Erpobdellidae 85 Hydracarina

60 Erythromma najas (Hansem.) 86 Hydraena sp.

61 Gammarus lacustris Sars 87 Hydroptilidae

62 Gammarus pulex (L.) 88 Hydroporus sp.

63 Gerris sp. 89 Hygrotus sp.

64 Glossiphonia /Batracobdella 90 Ichnura elegans (Linden)

65 Glossosoma sp. 91 Ilybius sp.

66 Gomphidae 92 Isoperla sp.

67 Gyraulus sp. 93 Ithytrichia sp.

68 Gyrinus sp. 94 Laccophilus sp.

69 Haemopsis sanguisuga (L.) 95 Lepidostoma hirtum (Fabricius)

70 Haliplidae 96 Lepidoptera

97 Leptophlebia sp. 123 Ophiogomphus sp.

98 Leuctra fusca-digitata-hippopus 124 Orectochilus villosus (Müller)

99 Libellula sp. 125 Orthetrum sp.

100 Limnius volckmari (Panzer) 126 Oulimnius sp.

101 Limnephilidae 127 Oxyethira sp.

102 Limoniidae 128 Paraleptophlebia sp.

103 Lymnaea stagnalis (L.) 129 Pasifastacus leniusculus (Dana)

104 Lype sp. 130 Pediciinae

105 Micrasema setiferum Pictet 131 Pericoma sp.

106 Micronecta sp. 132 Perlodes dispar (Rambur)

107 Molanna angustata Curtis 133 Philopotamus montanus Don.

108 Molannodes tinctus Zett. 134 Phryganea bipunctata Retz.

109 Muscidae 135 Physa fontinalis (L.)

110 Mystacides sp. 136 Piscicola geometra

111 Myxas glutinosa (Müller) 137 Planorbis sp.

112 Nematoda 138 Platambus maculatus (L.)

113 Nematomorpha 139 Platycnemis pennipes (Pallas)

114 Nemoura sp. 140 Plectrocnemia sp.

115 Nemurella pictetii Klapalek 141 Polycentropus flavomaculatus Pictet

116 Nepa cinerea L. 142 Polycentropus irroratus Curtis
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117 Neureclipsis bimaculata L. 143 Polycentropus sp.

118 Notonecta sp. 144 Potamopyrgus antipodarum Quoyi & Ga.

119 Odontocerum albicorne (Scopoli) 145 Protonemura meyeri (Pictet)

120 Oecetis testacea Curtis 146 Psychomyia pusilla Fabricius

121 Oligostomis reticulata L. 147 Psychodidae

122 Oligochaeta 148 Ptychopteridae

149 Radix peregra/ovata 162 Siphonoperla burmeisteri (Pictet)

150 Rantus sp. 163 Somatochlora sp.

151 Rhithrogena sp. 164 Sphaeriidae

152 Rhyacophila fasciata 165 Stagnicola palustris (Müller)

153 Rhyacophila nubila-obliterata 166 Stenelmis canaliculata (Gyllenhal)

154 Segmentina nitida (Müller) 167 Tabanidae

155 Sericostomatidae 168 Taeniopteryx nebulosa (L.)

156 Setodes argentipunctellus McLachlan 169 Tipulidae

157 Sialis fuliginosa-group 170 Trichostegia minor Curtis

158 Sialis lutaria-group 171 Turbellaria

159 Sigara sp. 172 Valvata macrostoma Mörch

160 Silo pallipes (Fabricius) 173 Valvata piscinalis (Müller)

161 Simuliidae 174 Wormaldia subnigra McL.
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Region 20
1. Hydrozoa 36. Dinocras cephalotes (Curtis)

2. Turbellaria 37. Siphonoperla burmeisteri (Pictet)

3. Radix peregra/ovata 38. Corixidae

4. Physa fontinalis (L.) 39. Hydraena sp.

5. Gyraulus acronicus-albus-laevis 40. Elmis aenea (Müller)

6. Sphaeriidae 41. Sialis fuliginosa-group

7. Glossiphonia sp. 42. Rhyacophila fasciata

8. Hydracarina 43. Glossosoma sp.

9. Gammarus lacustris Sars 44. Agapetus sp.

10. Oligochaeta 45. Philopotamus montanus Don.

11. Gammarus pulex (L.) 46. Polycentropus flavomaculatus Pictet

12. Collembola 47. Hydropsyche pellucidula Curtis

13. Ameletus inopinatus Eaton 48. Hydropsyche saxonica McLachlan

14. Baetis rhodani Pict. 49. Hydropsyche siltalai Döhler

15. Baetis muticus L. 50. Hydropsyche silvenii Ulmer

16. Acentrella lapponica Bengtsson 51. Rhyacophila Nubila/Obliterata

17. Nigrobaetis niger-digitatus 52. Limnephilidae

18. Centroptilum luteolum Müll. 53. Apatania sp.

19. Heptagenia sulphurea Müll. 54. Chaetopteryx-Anitella

20. Heptagenia fuscogrisea Retz. 55. Ceraclea sp.

21. Heptagenia dalecarlia Bengtsson 56. Hydroptila sp.

22. Leptophlebiidae 57. Lepidostoma hirtum (Fabricius)

23. Ephemerella aurivillii Bengtsson 58. Micrasema gelidum McL.

24. Baetis fuscatus group 59. Sericostoma personatum (Spence)

25. Baetis Vernus group 60. Tipulidae

26. Taeniopteryx nebulosa (L.) 61. Ecclisopteryx dalecarlica Kol.

27. Brachyptera risi (Mort.) 62. Psychodidae

28. Protonemura meyeri (Pictet) 63. Potamophylax sp

29. Amphinemura sp. 64. Dixidae

30. Nemoura sp. 65. Chaoborus sp.

31. Leuctra fusca-digitata-hippopus 66. Ceratopogonidae

32. Capnia sp. 67. Chironomidae

33. Diura nanseni (Kempny) 68. Simuliidae

34. Isoperla sp. 69. Empididae

35. Arcynopteryx compacta (McLachlan) 70. Limoniidae
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Region 22
1. Turbellaria 25. Baetis muticus L.

2. Nematoda 26. Baetis macani Kimm.

3. Valvata sp. 27. Baetis fuscatus group

4. Radix peregra/ovata 28. Baetis Vernus-group

5. Planorbis planorbis (L.) 29. Baetis niger-digitatus

6. Oligochaeta 30. Centroptilum luteolum Müller

7. Bathyomphalus contortus (L.) 31. Cloeon sp.

8. Gyraulus acronicus-albus-laevis 32. Heptagenia sulphurea Müller

9. Ancylus fluviatilis (Müller) 33. Heptagenia fuscogrisea Retz.

10. Sphaeriidae 34. Heptagenia dalecarlia Bengtsson

11. Glossiphonia /Batracobdella 35. Leptophlebia sp.

12. Helobdella stagnalis (L.) 36. Paraleptophlebia sp.

13. Haemopsis sanguisuga (L.) 37. Ephemerella ignita Poda

14. Erpobdella sp. 38. Ephemerella aurivillii Bengtsson

15. Hydracarina 39. Ephemerella mucronata Bengtsson

16. Argyroneta aquatica (Clerk) 40. Ephemera vulgata L.

17. Asellus aquaticus L. 41. Ephemera danica Müller

18. Gammarus sp. 42. Caenis horaria L.

19. Pallasea quadrispinosa Sars 43. Taeniopteryx nebulosa (L.)

20. Collembola 44. Brachyptera risi (Mort.)

21. Siphlonurus sp. 45. Protonemura meyeri (Pictet)

22. Ameletus inopinatus Eaton 46. Amphinemura sp.

23. Metretopus borealis Eaton 47. Nemurella pictetii Klapalek

24. Baetis rhodani Pict. 48. Nemoura sp.

49. Leuctra nigra (Olivier) 50. Hydraena sp.

51. Leuctra fusca-digitata-hippopus 52. Elmis aenea (Müller)

53. Capnia sp. 54. Limnius volckmari (Panzer)

55. Capnopsis schilleri (Rostock) 56. Oulimnius sp.

57. Diura bicaudata (L.) 58. Chrysomelidae

59. Diura nanseni (Kempny) 60. Sialis lutaria-group

61. Isoperla sp. 62. Sialis fuliginosa-group

63. Arcynopteryx compacta (McLachlan) 64. Rhyacophila septentrionis McLachlan

65. Dinocras cephalotes (Curtis) 66. Rhyacophila fasciata

67. Siphonoperla burmeisteri (Pictet) 68. Rhyacophila nubila/obliterata

69. Coenagrion sp. 70. Glossosoma sp.
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71. Erythromma najas (Hansem.) 72. Agapetus sp.

73. Calopteryx virgo (L.) 74. Philopotamus montanus Don.
75. Onychogomphus forcipatus (L.) 76. Wormaldia subnigra McL.

77. Cordulegaster boltonii (Donovan) 78. Chimarra marginata L.
79. Aeshna sp. 80. Neureclipsis bimaculata L.

81. Cordulia aenea (L.) 82. Plectrocnemia sp.
83. Somatochlora sp. 84. Polycentropus flavomaculatus Pictet

85. Leucorrhinia sp. 86. Polycentropus irroratus Curtis
87. Gerris sp. 88. Holocentropus sp.

89. Notonecta lutea O.F. Müller 90. Cyrnus trimaculatus Curtis
91. Pleidae 92. Cyrnus flavidus McL.

93. Corixidae 94. Psychomyiidae
95. Haliplidae 96. Hydropsyche Sp.

97. Dytiscidae 98. Hydropsyche pellucidula Curtis
99. Gyrinus sp. 100. Hydropsyche angustipennis Curtis

101. Hydropsyche saxonica McLachlan 102. Silo pallipes (Fabricius)
103. Hydropsyche siltalai Döhler 104. Lepidostoma hirtum (Fabricius)

105. Hydropsyche silvenii Ulmer 106. Micrasema sp.
107. Hydropsyche nevae Kolenati 108. Brachycentrus subnubilus Curtis

109. Cheumatopsyche lepida Pictet 110. Sericostoma personatum (Spence)
111. Arctopsyche ladogensis Kolenati 112. Lepidoptera

113. Agraylea sp. 114. Tipulidae
115. Ithytrichia sp. 116. Limonia sp.

117. Oxyethira sp. 118. Dicranota sp.
119. Phryganea bipunctata Retz. 120. Pediciinae

121. Agrypnia sp. 122. Eriopterinae
123. Oligostomis reticulata L. 124. Hexatominae

125. Limnephilidae 126. Psychodidae
127. Molanna angustata Curtis 128. Ptychoptera sp.

129. Molanna albicans Zett. 130. Dixidae
131. Molannodes tinctus Zett. 132. Ceratopogonidae

133. Beraeodes minutus (L.) 134. Chironomidae
135. Athripsodes sp. 136. Simuliidae

137. Mystacides sp. 138. Empididae
139. Triaenodes bicolor 140. Atherix sp.

141. Oecetis sp. 142. Tabanidae
143. Ceraclea sp. 144. Muscidae

145. Goera pilosa (Fabricius) 146. Limoniidae


