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1 INTRODUCTION

 
1. INTRODUCTION 
 

 
The toxic effects of Aluminium (Al) on fauna and flora are central to the acidification 
issue.  Aluminium is a very strong buffer (Driscoll and Postek 1996; Skyllberg 1999; 
Simonsson 2000), therefore if water in a catchment falls from circum-neutral to lower 
pH due to acidification many of these excess hydrogen ions will displace Aluminium 
from the soil.  The adverse effects of elevated Al in freshwaters have been shown in 
many studies, however the level of toxicity posed by Al is heavily dependant on the 
form it takes.  Therefore when monitoring Al in freshwaters it is important to be able 
to differentiate between potentially toxic forms of Al and more benign forms.  
Speiciating Al in the laboratory for each sample taken is obviously the most effective 
method of quantifying the toxic and non-toxic forms of Al, however due to 
complexity and cost this is not a standard analysis in routine environmental 
monitoring.  This report presents the results from a project evaluating computer 
software which can be used to speciate Al, and how well they can model Al speciation 
undertaken in the laboratory.   
 
 
1.1 BASIC ALUMINIUM CHEMISTRY AND SPECIATION 
A basic understanding of Al chemistry is required to help interpret the results 
presented in this report.  The table below shows a simple schematic breakdown of 
common Al-complexes in freshwaters. 
 
 
 
 
 
 
 
 
 
 
 
 

Organically 
bound Al (Alo)

In-organically 
bound Al (Ali)

Hydroxy-complexes e.g. Al(OH)2
+

Flourine-complexes e.g. AlF2+

Sulphate-complexes e.g. Al(SO4)+

Free Aquo Al (Al3+) 

Total Al 

Figure 1. Schematic diagram of Aluminium speciation 
 
 
It is commonly held that the cationic, inorganic forms of Al are the most toxic, due to 
example to their interaction with the negatively charged surfaces of fish gills.  
Therefore the aspects of Al speciation of most interest here are the division of Altot 
into Alo and Ali, followed by a breakdown of Ali in to cationic, neutral and anionic 
forms.  This second stage is based thermodynamic and kinetic data (van Hees et al. 
2001), and can therefore can be calculated with a reasonable degree of accuracy.  The 
more difficult speciation is between Alo and Ali.  There are many laboratory methods 
proposed for this division, however the one of the most dominant are based on the 
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2.  PROJECT DESCRIPTION 

method propose by Driscoll (1984), where the sample is passed through a cation 
exchange column and the cationic inorganic Al is retained in the column and the 
neutrally charged and anionic ions (mainly Alo) Al passes freely through.  It is this 
stage which has proved so difficult to model, mainly due to the large variability in the 
binding properties of organic matter (Tipping et al. 1991).  As Alo can account for 30 
to 75% of Al in Swedish freshwaters (van Hees et al. 2001), it is critical that any 
speciation method can reliably differentiate between organic and inorganic Al. 
 
 
 

2.   PROJECT METHODS 
 
 
 
Known Al speciation data from 3 data sources have been used to calibrate and assess 
the effectiveness of two mechanistic models in determining Al.   
 
 
2,1 COMPUTER MODELS 
Two mechanistic, equilibrium computer modelling programs have been used in this 
study, The Windermere Humic Aqueous Model (WHAM) 6,01 and Visual MINTEQ2 
2.22.  WHAM is the result of research by Tipping and co-workers to describe specific 
and non-specific binding of cations by humic substances.  Visual MINTEQ is based 
on the US Environmental Protection Agengy’s MINTEQA2 4,03 software.  Further 
development of the program and the addition of the Stockholm Humic Model (SHM) 
allow for organic and inorganic speciation.  
 
Both models work by calculating the amount of Al bound to each available ligand.  
The binding of Al to inorganic ligands is more clearly understood, and it is the Al 
binding to organic ligands which is the more difficult and critical part of the model.  
The problem arises due to the extreme heterogeneous nature of organic molecules 
making it hard to present a generalised binding capacity for a “typical organic 
molecule”. 
 
Pervious work with WHAM has shown success in replicating laboratory batch 
titrations involving Aluminium in organic soil (Tipping et al. 1995; de Wit et al. 
1999), however in a study by De Wit et al. (de Wit et al. 2001) where WHAM was 
used to simulate field data the results were poor.  It seems the application of models is 
heavily dependant on both the quality and quantity of calibration data.  As the scope 
of this study is to apply these models to large data sets the issue of calibration will be 
central. 
  
Both models assume that Humic Substances (HS) consist of humic acids (HA) and 
fulvic acids (FA).  By definition, HA are not soluble, therefore in this experiment HS 
are assumed to consist solely of FA.  The samples were measured for Total Organic 

                                                 
1 WHAM website - http://www.windermere.ceh.ac.uk/Aquatic_Processes/index.html 
2 Visual MINTEQ website - http://www.lwr.kth.se/english/OurSoftware/Vminteq/index.htm
3 EPAs MINTEQA2 4.0 website - http://epa.gov/ceampubl/mmedia/minteq/index.htm
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2,1 COMPUTER MODELS

Carbon (TOC), and in water samples this is assumed to be present as Dissolved 
Organic Carbon (DOC).  HS are commonly assumed to be 50% carbon by weight; 
therefore HS are equal to twice the TOC values.  The model can then be calibrated by 
adjusting the fraction of these HS which are “active” in binding cations e.g. Al. 
 
Calibration was undertaken by systematically varying the percentage of FA assumed 
“active” and recording the subsequent Al speciation.  Optimised values were 
obtaining by minimising the root of mean squared deviation (RMSD) between the 
measured and calculated inorganic cationic Al (Ali+), according to: 
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2,2 DATA SETS 
Two main data sets have been used to calibrate and test the models; the results from 
Riksinventering national survey of lakes in both1995 and 2000 and smaller scale but 
intensive sampling of Kryklan catchment in Northern Sweden.   
 
The national survey (Riksinventering abv. RI) undertaken in 1995 sampled ca. 4100 
lakes and in 2000 sampled ca. 3400 lakes.  The Institution for Environmental 
Assessment, SLU undertook analysis except for Aluminium speciation which was run 
by the Institute of Applied Environmental Research (ITM).  Aluminium fractionation 
used a cation exchange column coupled to an auto-analyser.  For full information on 
analytical methods and techniques refer to Riksinventering 1995 and 2000 reports 
(Wilander et al. 1998; Wilander et al. 2003) 
 
The Krycklan catchment is located ~60km inland from the Baltic Sea in Northern 
Sweden (64º14´N, 10º46´E).  Streamwater samples where taken during the 
springflood 2003 using the grab-sample method at 16 sites located throughout the 
catchment.  The sampling was intensive during the spring flood period and the sites 
where selected at the more easily available access points.  The sites represent both low 
and high order streams and varied land type.  Sampling was intensive during the peak 
flow of the spring flood with larger spacing as the flow receded.  In total 160 samples 
from 14 sites and 14 dates where used in this study.  
 
Table 1. Analysis techniques employed during Kryklan survey, spring 2003. 

Parameter Sampling instrument & laboratory 
Flow On-site stage height measured and the flow (l/s) calculated from 

the height using a rating curve 
TOC Shimadzu TOC-V Total Organic Carbon Analyzer - Örebro 

universitet 
PH Measured same day as sampling using Orion pH meter 
Anions / 
Cations 

Anions (Stockholm Univ, Geosciences) : Ion Chrom 
Cations (Stockholm Univ, Geosciences): ICP-OES 

Fluorine Orion F-selective electrode after treatment with TISAB buffer – 
IMA, Uppsala 

Aluminium Cation-exchange column direct coupled to ICP-OES – IMA 
Uppsala 
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2.3 SUMMARY OF PROJECT 

 
 
2.3 SUMMARY OF PROJECT 
The models have been calibrated and tested in a systematic order to examine their 
accuracy in predicting Al speciation from basic water chemistry parameters.  Below is 
a schematic layout showing the various stages of testing along with a short 
description.  A full description of methods is presented alongside the results for each 
stage. 
 
1. Sensitivity Analysis Aim – to determine which chemical parameters are 

important in determining Al speciation 

2. Influence of site type Aim - how the vegetation cover of a site influences 
the Al speciation 

3. Up-scaling to national 
level 

Aim –validating if the models can accommodate 
variations in lake chemistry from RI lakes. 

4. Al categorisation Aim – If modelled Al speciation is to be used in 
environmental assessment (e.g. assessment of 
liming needs) then the most important is how well 
the models can place each target in Al categories. 

5. Calibration sample size Aim – to assess how stable the models are when the 
calibration data sets are increased and decreased. 
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3- PROJECT RESULTS

 
3.    PROJECT RESULTS 

 
 
 
The results of this project have been subdivided into five separate fields, these each 
cover separate topics and therefore will discussed in turn.  To facilitate this, both the 
presentation of results and subsequent discussion, have been grouped together for 
each field. 
 
 
3.1 SENSITIVITY ANALYSIS 
The sensitivity analysis was undertaken to identify the chemical parameters important 
in controlling Al speciation and in particular Ali.  It is critical to understand which 
chemical parameters are required to effectively model Ali from both a scientific and a 
practical viewpoint.  Scientifically identifying these parameters help to identify 
dominant ligands in Al binding, and practically it is important to know the minimum 
chemical analysis required to perform a modelled Al speciation. 
 
The sensitivity analysis was run individually on each data set by compiling the data to 
form a mean sample.  This sample was then modelled with each chemical parameter 
systematically varied to represent the highest and lowest observed values.  The 
resulting modelled Ali was then compared to the laboratory observed values of Ali.  
Parameters showing the largest changes in Ali are those which are most critical in 
modelling Al speciation. 
 
All the data sets showed consistent results, with the most important parameters 
controlling Ali being Altot, pH, TOC and F.  Fe and to a lesser extent Ca also showed 
some importance. 
 

 
Figure 2.  Mean sensitivity analysis from all the data sets shown as a deviation in Ali from 
observed values.  A mean is presented as all the data sets showed consistent results. 
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3.2 DIVISION OF THE DATA SET BY SITE TYPE 

3,2 DIVISION OF THE DATA SET BY SITE TYPE  
Using the closely sampled Kryklan data it was possible to calibrate the models to 
assess the influence of different site types upon Al speciation.  This will help in 
deciding if the data needs to be divided in to groups and separate calibrations run, or if 
an average calibration can successfully model all site types.  In the Kryklan data set 
the sample sites were divided into one of four categories: Forested Headwaters, Mire 
Headwaters, Mixed Headwaters and Mixed Downstream.  The models were calibrated 
to each individual site and then to each category.  The figure below shows the results 
of this investigation, the X-axis is the percentage of FA which is assumed active, this 
is the calibration variable within the models and therefore variation in this will give 
differing modelled Ali. 
 

0%

20%

40%

60%

80%

100%

120%

140%

160%

Forest
Headwater

Mire Headwater Mixed
Headwater

Mixed
downstream

C
al

ib
ra

tio
n 

co
-e

ffi
ci

en
t (

%
 F

A
 a

ct
iv

e

Type
specif ic
All data
average
Site
Specif ic

 
Figure 3. Results of individual and site categorised sample from the Kryklan survey  

 
The most extreme values are for mire headwater streams; all others showed both 
reasonable intra- and inter-fit.  Forest sites show the tightest intra-grouping and it can 
be assumed that the introduction of water from wetland and open sites contributes to 
the variation seen in the mixed up and down stream sites.  As the intended target 
groups for this model are lakes and possibly larger streams, the mire values can be 
removed.  With these two extreme values removed the average value for all the 
samples provides a reasonable fit the samples.  Therefore, it can be concluded that on 
a large-scale, individual calibration to site type is not needed in order to obtain a 
reasonable modelled Al result.  However these results to indicate that further 
investigation of small headwater streams would be beneficial, this is especially true 
when considering that it is often these small streams which can have the highest Ali 
concentrations. 
 
 
3.3 UP-SCALING TO NATIONAL LEVEL  
The detailed study of Kryklan catchment showed that a single calibration can 
generalise the major landuse types, the next stage was to up-scale from a catchment 
size survey to a national scale.  The 1995 survey was based on a random selection of 
lakes, and the 2000 survey had a closer focus on the more acid lakes.  Both surveys 
had Al speciation undertaken by ITM in Stockholm.  The WHAM model has been 
applied to both data sets and the Visual MINTEQ to the 2000 data.   As the results 
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3.3 UP-SCALING TO NATIONAL LEVEL

from the WHAM model were better than with Visual MINTEQ and in view of the 
high time demands of Visual MINTEQ only WHAM was applied to the 1995 data. 
 
The data fell into clear pH categories, which is not unexpected due to the strong 
relationship between pH and Al solubility.  Therefore the models where first divided 
into pH classes which then received individual calibrations for each class. 
 

  

 

 
 
 

Variation in calibration variable (% FA active) 
 

WHAM 
RI 1995 

WHAM 
RI 2000 

Visual 
MINTEQ 
RI 2000 

All  1,2 1,0  1,5 
pH <5 1,2 (n=30) 0,7 (n=42) 1,2 (n=42) 
pH 5-6 1,0 (n=108) 1,2 (n=97) 1,6 (n=97) 
pH >6 1,5 (n=534) 2,0 (n=178) 2,3 (n=178) 

 
 
 
 
Figure 4.  Comparison of observed and modelled Ali from RI 2000 and 1995 using WHAM and Visual 
MINTEQ.  Dashed lines represent a 1:1 fit. 
 
The results for RI 2000 show a fit falling very close to a 1:1 line and with an R2 of 
0,74.  This is a very good fit, especially considering that both the lab and modelled 
results are subject to possible theoretical and analytical errors.  The results of the RI 
1995 data show again a close relationship to a 1:1 line but a poorer r2 value.  This is 
expected as the 1995 data is dominated by low Ali samples and therefore there are 
few points over 150µg/l which gives an “unstable” trend line that is strongly 
controlled by just a few samples.  When comparing the results of the WHAM 
modelling and Visual MINTEQ the clearest observation is that they show similar 
results.  This is a positive result which re-enforces the validity of both models as the 
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3.4 AL CATEGORIZATION 

WHAM model bases its Alo/Ali speciation on literature values and Visual MINTEQ 
bases its Alo/Ali speciation on an empirical relationship taken from a restricted 
number of samples of Swedish sites.  However, overall the results from the WHAM 
modelling indicate a better fit, and when also considering the ease of application the 
WHAM model would be selected in preference to Visual MINTEQ 
 
 
3.4 AL CATEGORIZATION 
The basis for wanting to speciate Al is the adverse effects of certain fractions of Al on 
aquatic fauna.  Therefore, examining the data above may give an un-necessarily 
negative result as this compares the absolute difference between the observed and 
modelled Ali.  Of more interest from a toxicological viewpoint is to assign categories 
of Ali based on biological observations and to measure the models effectiveness in 
placing a sample in the correct category.  Naturvårdsverket liming handbook from 
2002 (Naturvårdsverket 2002) assigns three categories, primarily based on pH, but 
with Ali limits. 
 

Category 
pH lower 

limit 
Alk lower 

limit (meq/l) 
Ali upper 

limit (µg/l) Key fauna 
1 6,3 0,15 30 Salmon 
2 6,0 0,10 50 Roach, Minnow, Trout, 

Crayfish, River mussels, 
gastropods, mayfly 

3 5,6 0,07 -- Absence of the above 
Table 2.  Classification of Ali into categories, after Naturvårdsverket liming handbook, 2002. 
 
A more robust measure of the modelled Ali can be achieved by seeing how often the 
observed and modelled Ali falls in the same category.  There will of course still be an 
edge effect associated with each category boundary (e.g. Observed at 30µg/l and 
modelled at 29µg/l would be deemed an error).  However, as the majority of the lakes 
in the national surveys have very low Ali concentrations the results will better 
communicate the effectiveness of the models. 

 

 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.  Observed and modelled Ali categories for RI 2000 and 1995 using WHAM 
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3.5 CALIBRATION SAMPLE SIZE

The above figures show firstly the dominance of lakes with less than 30µg/l (category 
1).  The level of samples which are placed in the correct category by the model is 93% 
and 88% for RI 1995 and 2000 respectively.  The other critical statistic is the number 
of samples placed in the wrong category, obviously this is 7% and 12%, but the 
critical areas are a category 3 and 1 miss-calibrations, and these total just 1,5% and 
1,6% for RI 1995 and 2000. 
 
These results show that although the r2 values for the modelled data lie at 0,74 and 
0,64 when the results are examined from a biological impact point of view the models 
are able to predict Ali well. 
 
 
3.5 CALIBRATION SAMPLE SIZE 
The results shown so far above have been for Ali modelled using the whole dataset as 
a calibration set.  However, criticism of models such as WHAM has been due to their 
poor applicability outside of calibration (de Wit et al. 2001).  The long-term goal is to 
be able to apply the model to “blind data” using the calibration based on the results 
presented in this paper.  If a calibrated model is to be applied to new data sets without 
further calibration then it is vital that the model continues to give reliable Aluminum 
speciation results.  To test this, the WHAM model was calibrated with increasing 
smaller fractions of the RI2000 lakes data set and run on the remaining samples.   
 

Table 3 – Effect of reduced calibration set size.  Calibrations used randomly selected samples and 
were run in triplicate.  Values in brackets show standard deviations. 

X-Y plot: Observed vs. Modelled Ali NV Ali categories 

Calibrated with r2 Slope 
Correct 
category 

Major error 
(1:3 or 3:1) 

All samples 100% 0,80 0,93 88% 1,6% 
158 samples 50% 0,84 (±0,04) 0,91 (±0,01) 90% (±2,1%) 1,3% (±0,6%) 
79 samples 25% 0,81 (±0,05) 0,97 (±0,20) 89% (±1,2%) 0,9% (±0,01%) 
16 samples 5% 0,84 (±0,01) 1,25 (±0,06) 87% (±2,1%) 0,4% (±0,4%) 

 
As can be seen from the table above, both the absolute results from the X-Y plot and 
the results of Ali categorization show little variation even when the calibration set is 
equivalent to only 5% of the data set.  This would suggest a relatively stable 
calibration of the model and therefore its application outside the calibration data is 
assumed to be feasible. 
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4. CONCLUSIONS & RECOMMENDATIONS 

 
4.  CONCLUSIONS & RECOMMENDATIONS 
 
 
 
The results presented in this paper have shown that mechanistic models, and 
specifically WHAM can provide Al speciation results with reasonable accuracy and 
consistency.  The results of the model cannot provide an exact figure of Ali but can 
give us a reliable tool for placing water samples into toxicological categories.  As the 
background to this project is the assessment of water quality with regards to quality 
criteria assessment then the categorisation of Ali into toxic and non-toxic is more 
relevant than an exact prediction of Ali concentration to the nearest µg/l. 
 
Providing the necessary input variables are available then WHAM is a tool which can 
quickly, easily and in-expensively provide a reasonable estimate of Ali concentration 
and a reliable estimate of Ali toxicology. 
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