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Derksen c, Martin Heimann d, Manuel Helbig e,f, Pasi Kolari g, Anna Kontu a, Alisa Krasnova h,i, 
Samuli Launiainen j, Juha Lemmetyinen a, Hannakaisa Lindqvist a, Anders Lindroth k, Annalea 
Lohila a,g, Kari Luojus a, Ivan Mammarella g, Tiina Markkanen a, Elma Nevala a, Steffen Noe h, 
Matthias Peichl i, Jukka Pumpanen l, Kimmo Rautiainen a, Miia Salminen a, Oliver Sonnentag f, 
Matias Takala a, Tea Thum a, Timo Vesala g, Patrik Vestin k

a Finnish Meteorological Institute, P.O. Box 503, FI-00101 Helsinki, Finland
b Finnish Environment Institute, Latokartanonkaari 11, FI-00790 Helsinki, Finland
c Climate Research Division, Environment and Climate Change Canada, Ontario M3H 5T4, Canada
d Max-Planck-Institute for Biogeochemistry, PF 100164, D-07701 Jena, Germany
e Dalhousie University, NS, B3H 4R2 Halifax, Canada
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A B S T R A C T

Changes in the net carbon sink of boreal forests constitute a major source of uncertainty in the future global 
carbon budget and, hence, climate change projections. The annual net ecosystem exchange of carbon dioxide 
(CO2) controlling the terrestrial carbon stock results from the small difference between respiratory CO2 release 
and the photosynthetic CO2 uptake by vegetation. The boreal forest, and the boreal biome in general, is regarded 
as a persistent and even increasing net carbon sink. However, decreases in photosynthetic CO2 uptake and/or 
concurrent increases in respiratory CO2 release under a changing climate may turn boreal forests from a net sink 
to a net source of CO2. Here, we assessed the interannual variability of the boreal forest net CO2 sink-source 
strength and its two component fluxes from 1981 to 2018. Our remote sensing approach - trained by net CO2 
flux observations at eddy covariance sites across the circumpolar boreal forests - employs satellite-derived re-
trievals of snowmelt timing, landscape freeze-thaw status, and yearly maximum estimates of the normalized 
difference vegetation index as a proxy for peak vegetation productivity. Our results suggest that for the period 
2000–2018, the mean annual evergreen boreal forest CO2 photosynthetic uptake (gross primary productivity) 
was 2.8±0.2 Pg C y− 1 (1.6±0.1 Pg C y− 1 for Eurasia and 1.2±0.1 Pg C y− 1 for North America). In contrast to 
earlier studies results obtained here do not indicate a clear increasing trend in the circumpolar evergreen boreal 
forest CO2 sink. The increase in photosynthetic CO2 uptake is compensated by increasing respiratory releases 
with both component fluxes showing considerable interannual variabilities.
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1. Introduction

1.1. Background and objective

Boreal forests comprise one of the largest terrestrial carbon stocks on 
Earth, even though reported estimates on its magnitude vary consider-
ably from 367 to 1716 Pg (Bradshaw and Warkentin, 2015). Unlike 
tropical forests, the bulk of the boreal forest carbon is stored below-
ground (Pan et al., 2011; Bradshaw and Warkentin, 2015). Earlier 
studies have suggested a persistent increase of the boreal forest and the 
whole boreal region carbon stock along with increasing trends in the 
carbon sink strength across both Eurasia and North America (Pan et al., 
2011; Sitch et al., 2015; Friedlingstein et al., 2022; Yang et al., 2023). 
However, the boreal forest may change from a net carbon sink to a net 
carbon source in response to a warming climate, altered precipitation 
patterns, and intensifying disturbance regimes (Bradshaw and War-
kentin, 2015; Foster et al., 2022).

Excluding disturbances (e.g., forest fires) the annual net ecosystem 
carbon dioxide (CO2) exchange (NEE) is the small difference between 
annually integrated ecosystem respiration (ER) and photosynthetic 
carbon dioxide uptake (gross primary production, GPP) (Chapin et al., 
2006). The CO2 uptake of evergreen boreal forests through photosyn-
thesis starts in spring with increasing day length and air temperature 
(Tanja et al., 2003) and is also affected by the timing of snow melt and 
the thawing of underlying frozen soil which provides access to liquid 
water for root uptake (Frolking et al., 1996; Rautiainen et al., 2014; 
Pulliainen et al., 2017). Photosynthetic CO2 uptake reaches its 
maximum during the summer months (June to August) and gradually 
ceases in fall with diminishing day length and decreasing air tempera-
ture (Hollinger et al., 1999; Launiainen et al., 2022). Thus, annual NEE 
across the boreal biome is influenced by the length of the photosyn-
thetically active period, which in turn, is affected by landscape freeze- 
thaw status (Suni et al., 2003; Thum et al., 2009; Randazzo et al., 
2021; El-Amine et al., 2022). Earlier spring thaw and delayed onset of 
autumn freeze-up have contrasting effects on the annual carbon balance 
of boreal forests (Piao et al., 2008; Richardson et al., 2010; Pulliainen 
et al., 2017). Delayed autumn freeze-up increases the annual ER (re-
leases of CO2 to the atmosphere are higher under thawed conditions), 
whereas earlier spring snow-melt and soil thaw increase the annual CO2 
uptake.

Observations from space-borne microwave radiometers allow 
detection of landscape freeze-thaw status as well as snow accumulation 
and melt (Takala et al., 2009; Kim et al., 2011; Pulliainen et al., 2020). 
Microwave radiometers offer a way to estimate the spring recovery of 
photosynthesis through the timing of snow-melt (Pulliainen et al., 
2017), and they enable detecting changes in ER through the timing of 
landscape freezing and thawing. How these translate to changes in 
(mean) annual GPP, ER and NEE has remained unknown. Satellite-based 
snow cover and landscape freeze-thaw data products derived from 
passive microwave radiometry are available with close to daily global 
coverage starting from the late 1970s, providing the possibility to 
investigate intra- and inter-annual variability and trends of GPP and ER 
over multiple decades (Kim et al., 2017; Luojus et al., 2021).

Supplemented by optical satellite data of vegetation greenness, we 
here utilize multi-decadal time series of passive microwave data prod-
ucts on snow cover and landscape freeze-thaw status to obtain estimates 
on the changes in mean annual ER, and GPP, and thus NEE of circum-
polar boreal forests. The hypothesis is that freeze-thaw estimates based 
on microwave data, supported by optical satellite data-derived spectral 
vegetation indices, can provide approximations of annual ER, GPP and 
NEE estimates independent of terrestrial biosphere models. The 
Normalized Difference Vegetation Index (NDVI) is used here as a proxy 
of vegetation productivity, since the global time series is available 
starting from 1981 from the Advanced Very High Resolution Radiometer 
(AVHRR) observations (Vermote et al., 2018).

The approach developed here provides estimates of the annual 

carbon exchange of circumpolar evergreen boreal forests from 1981 to 
2018 by combining snow and landscape freeze-thaw satellite products 
with daily CO2 flux estimates measured with the eddy covariance 
technique (Table 1) (Kim et al., 2017; Vermote et al., 2018; Pulliainen 
et al., 2020; Luojus et al., 2021; Pulliainen et al., 2021; Pallandt et al., 
2022). Combining satellite information on seasonal dynamics governing 
ecosystem processes with annual CO2 flux estimates over evergreen 
boreal forests (derived from tower-based eddy covariance measure-
ments available since 1990s), proxies for the mean annual GPP, ER and 
NEE can be constructed for a multi-decadal period using statistical 
analysis. Cryosphere information from passive microwave satellite 
radiometry, supported by vegetation information from optical satellite 
spectrometry, has not previously been used to investigate annual NEE, 
GPP or ER.

1.2. Limitations of current carbon exchange assessments

Current estimates of the annual net CO2 sink-source strength across 
the circumpolar evergreen boreal forest, utilizing terrestrial biosphere 
models including data assimilation, are subject to high uncertainties. 
They suggest that the boreal forest is likely a net carbon sink, but 
possibly a net carbon source (Bradshaw and Warkentin, 2015; Sitch 
et al., 2015; López-Blanco et al., 2019; Virkkala et al., 2021; Yang et al., 
2023). One source of uncertainties is the lack of reliable estimates of the 
belowground carbon stock and its role in ecosystem respiration (López- 
Blanco et al., 2019). The sparseness of in situ observation networks 
including eddy covariance flux measurements (Pallandt et al., 2022) is 
another major source of uncertainty highlighting the need for remote 
sensing and modelling approaches – or their combination – to assess the 
regional CO2 balance. Prognostic terrestrial biosphere models enable the 
simulation of past, present, and future CO2 exchanges (Fisher et al., 
2018). However, intercomparisons of terrestrial biosphere models have 
indicated large uncertainties at the regional scale owing to the dis-
crepancies among models (Huntzinger et al., 2012; Fisher et al., 2018). 
The evaluation of modelling approaches and model-based trend analyses 
requires comparisons with independent multi-decadal time series of CO2 
balance and component fluxes.

A recent multi-source data assimilation investigation by López- 
Blanco et al. (2019) using a terrestrial biosphere model DALEC2 indi-
cated a boreal forest CO2 sink for the period 2000–2015 with the median 
annual NEE of − 110 g C m− 2 y− 1 with 90% confidence ranging from 
− 388 to 1196 g C m− 2 y− 1, i.e., from a moderate net carbon sink 
(indicated by the minus sign) to a large source (López-Blanco et al., 
2019). Their estimated median annual GPP was 760 g C m− 2y− 1 with a 
90% confidence range from 584 to 968 g C m− 2 y− 1. For the annual ER, 
they reported nearly order of magnitude uncertainty, a 90% confidence 
range from 285 to 2114 g C m− 2 y− 1 (median 635 g C m− 2 y− 1).

Investigations using only satellite data are typically limited to GPP or 
net primary production based on observations across optical wave-
lengths, e.g., using vegetation indices or estimates of solar-induced 
vegetation fluorescence (Xiao et al., 2019). Recently, approaches esti-
mating global GPP by applying vegetation optical depth from passive 
radiometer or active radar microwave observations have been intro-
duced (Teubner et al., 2019; Wild et al., 2022). Distributed eddy 
covariance CO2 flux observations have been used together with optical- 
range satellite observations from sensors such as the Moderate Resolu-
tion Imaging Spectroradiometer (MODIS), to quantify GPP, ER and NEE. 
In practice, satellite MODIS data-derived vegetation indices or re-
flectances are used as input to light use efficiency models, machine 
learning or regression algorithms (Ryu et al., 2019; Xiao et al., 2019). 
For example, results for North America covering the period 2001–2012 
showed moderate magnitudes of mean annual GPP and ER for the forest 
regions of Canada and the northern parts of the conterminous U.S., 
~800–1200 and ~ 600–800 g C m− 2 y− 1, respectively (Xiao et al., 
2014). For Canadian forests and U.S. Rocky Mountains, NEE ranged 
from ~ − 100 to ~ − 200 g C m− 2 y− 1, whereas the strongest net CO2 
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sink was estimated for both the eastern U.S. and the Pacific Coast (mean 
annual NEE from ~ − 300 to ~ − 600 g C m− 2 y− 1). Small magnitudes of 
mean annual GPP and ER were indicated for Alaska and northern Can-
ada (< 500 g C m− 2 y− 1). However, annual CO2 emissions from wildfires 
may exceed the magnitude of mean annual NEE in North American 
boreal forests resulting in forests being a carbon source (Zhao et al., 
2021). In this study, we broaden the suite of approaches on a hemi-
spheric scale by utilizing long time series of passive microwave data- 
derived landscape freeze-thaw status information, NDVI and flux- 
tower data from boreal forests.

2. Material and methods

2.1. Generation of the circumpolar and flux station datasets

Snow and landscape freeze-thaw information was obtained by fusing 
two datasets, the GlobSnow v3.0 climate data record (CDR) (Pulliainen 
et al., 2020; Luojus et al., 2021), and the landscape freeze-thaw Earth 
system data record (FT-ESDR) (Kim et al., 2011; Kim et al., 2017). Both 
products (starting from 1979) are based on the global space-borne mi-
crowave radiometer data time series from a sensor suite including the 
Scanning Multichannel Microwave Radiometer (SMMR) and several 
succeeding Special Sensor Microwave/Imager instruments (SSM/I and 
SSMIS sensors). The FT-ESDR product indicates the landscape freeze- 
thaw status for each satellite data pixel throughout the year (Kim 

Table 1 
Characteristics of flux sites and flux dataseta.

Country (lat, 
lon)

Years of flux 
obs.b

Forest, climate & 
frost zone

Tree species Tree agec

(years)
Soil type Number of freeze 

daysb,d (min/ 
med/max)

Max. daily GPP/ 
ERe (gCm− 2d− 1)

CAN SMC (Sonnentag, 
2021)

Canada 
(N63.15, 
W123.25)

2018 Northern boreal, 
discont. Permafrost

Black spruce – Peat soil 171/171/ 171 10.2/6.7

CAN HPC (Sonnentag and 
Marsh, 2021)

Canada 
(N68.32, 
W133.52)

2013, 2017, 
2018

Northern boreal, 
cont. Permafrost

Black spruce – – 176/196/ 243 10.8/7.2

CAN SCC (Helbig et al., 
2017)

Canada 
(N61.31, 
W121.30)

2015–2018 Northern boreal, 
sporadic 
permafrost

Black spruce – Mineral 
and peat 
soil

152/ 167.5/175 6.5/5.8

BERMS OBS (Barr et al., 
2009)

Canada 
(N53.99, 
W105.12)

2000–2011 Southern boreal, 
seasonal soil frost

(old) Black 
spruce

120 Mineral 
and peat 
soil

123/147/ 202 9.3/9.8

BERMS OJP (Barr et al., 
2009)

Canada 
(N53.92, 
W104.69)

2000–2011 Southern boreal, 
seasonal soil frost

(old) Jack pine 70 Mineral soil 111/143/ 184 7.6/7.6

Estonia tower 2 (
Krasnova et al., 2022)

Estonia 
(N58.28, 
E27.31)

2017 Hemiboreal, 
seasonal soil frost

Birch, aspen, 
Scots pine

– Mineral soil 81/81/81 19.0/18.4

Estonia tower 1 
(Krasnova et al.,2022)

Estonia 
(N58.28, 
E27.31)

2017 Hemiboreal, 
seasonal soil frost

Scots pine – Mineral soil 81/81/81 18.3/13.3

Estonia tower A (
Krasnova et al., 2022)

Estonia 
(N58.27, 
E27.27)

2015–2018 Hemiboreal, 
seasonal soil frost

Norway spruce, 
birch

70 Mineral soil 76/79/87 26.8/33.3

Zotino (Lloyd et al., 2002) Russia 
(N60.80, 
E89.35)

2002–2004 Northern boreal, 
seasonal soil frost

Scots pine up to 200 Mineral soil 194/197/ 201 8.9/5.9

Fyodorovskoye (
Milyukova et al., 2002)

Russia 
(N56.46, 
E32.92)

1999–2009 Southern boreal, 
seasonal soil frost

Norway spruce 150 Mineral- 
peat soil

62/117/ 129 17.9/16.7

Svartberget (Chi et al., 
2021)

Sweden 
(N64.26, 
E19.78)

2015–2016, 
2018

Northern boreal, 
seasonal soil frost

Scots pine, 
Norway spruce

110 Mineral soil 141/147/ 158 9.9/13.0

Rosinedal (Jocher et al., 
2017)

Sweden 
(N64.17, 
E19.74)

2015–2018 Northern boreal, 
seasonal soil frost

Scots pine 90 Mineral soil 107/148.5/162 6.6./9.7

Norundaf (Lagergren 
et al., 2008; Vestin 
et al., 2020)

Sweden 
(N60.09, 
E17.48)

1995–2002, 
2007–2008

Southern boreal, 
seasonal soil frost

Norway spruce, 
Scots pine, 
clear-cut

60–110 
0

Mineral soil 23/89/162 16.3/17.7

Kenttärova (Aurela et al., 
2015)

Finland 
(N67.98, 
E24.25)

2003–2013 Northern boreal, 
seasonal soil frost

Norway spruce 70–160 Mineral soil 151/184/ 195 8.1/5.8

Sodankylä (Thum et al., 
2009)

Finland 
(N67.37, 
E26.63)

2001–2016 Northern boreal, 
seasonal soil frost

Scots pine 80–180 Mineral soil 121/174.5/196 8.8/10.1

Hyytiälä (Lagergren 
et al., 2008; Thum 
et al., 2009)

Finland 
(N61.85, 
E24.28)

2001–2018 Southern boreal, 
seasonal soil frost

Scots pine 40–50 Mineral soil 42/117.5/196 12.9/8.9

a Flux data and their processing procedures are described in reference listed in the table.
b Years with daily flux observations.
c During the flux data acquisition period.
d Based on satellite observations of cryosphere status.
e Based on daily flux dataset.
f Includes two clear-cut sites with EC flux towers in addition to coniferous forest flux site.
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et al., 2017), whereas the GlobSnow data record provides a daily esti-
mate of the snow water equivalent for each satellite data pixel with the 
exact timing of snow clearance estimated from the radiometer data time 
series using a change detection algorithm (Pulliainen, 2006; Takala 
et al., 2009; Takala et al., 2011; Luojus et al., 2021).

The two radiometer products were combined on a fixed equal-area 
terrestrial grid (EASE Grid of 625 km2 grid cells), with one of five 
different daily landscape status values determined for each grid cell: (a) 
thawed snow-free, (b) frozen snow-free, (c) thawed soil during fall with 
(dry) snow cover, (d) frozen soil with dry snow cover and (e) melting 
snow cover (soil frozen or top-soil thawed) (Pulliainen et al., 2021). For 
the analyses here, this classification was simplified to two classes: (1) 
thawed conditions (class a) and (2) frozen soil and/or snow cover 
(classes b, c, d, e). In practice, the freezing of the landscape in autumn 
was determined through the FT-ESDR product and the timing of snow 
clearance and the concurrent estimate for soil thawing was obtained by 
the GlobSnow product as the latter considers snow clearance accurately 
for boreal forests (Takala et al., 2009). Additionally, the summer 
maximum Normalized Difference Vegetation Index (NDVI) was extrac-
ted for evergreen forested areas of each investigated EASE Grid cell from 
the AVHRR NDVI data at 0.05◦ spatial resolution (Vermote et al., 2018). 
In practice, the maximum NDVI for the period 20 June - 31 July, cor-
responding to annual peak GPP period, was extracted from ca. 25 
AVHRR pixels covering each EASE Grid cell considering pixels with a 
forest coverage fraction higher than 50%.

All satellite datasets were rectified to the same EASE Grid of 625 km2 

grid cells, and annual lengths of freeze-thaw conditions were calculated 
for all grid cells that represent the circumpolar evergreen boreal forest. 
The forested pixels included into the analysis were selected using a 
criterion that the grid cell must have at least a 30% fraction of conifer 
evergreen forest (larch-dominated Siberian forests are excluded). The 
analysis based on the ESA GlobCover and ESA Climate Change Initiative 
Land Cover dataset (Bontemps et al., 2011). Additionally, we restricted 
to grid cells for which at least 80% of winters have over 59 snow days 
during the first half of the year based on the GlobSnow CDR, which 
makes the investigated forested area slightly smaller than in previous 
studies (Pulliainen et al., 2017). The total forested area investigated here 
comprises 2.05 106 km2 forests in Eurasia, and 1.52 106 km2 in North 
America, respectively (Table 2).

The eddy covariance (EC) flux station dataset includes gap-filled 
daily averaged net CO2 fluxes from 16 circumpolar sites (Pallandt 
et al., 2022) that predominantly include mature forest stands (Table 1). 
The flux stations in Canada, Estonia, Finland, Russia and Sweden pro-
vide altogether 114 site years of NEE from which GPP and ER were 
partitioned using established methods (Lasslop et al., 2012). The gap- 
filling and partitioning methods varied depending upon which 
network an individual station belongs (Table 1). The set of 16 stations 
was supplemented by two clear-cut sites in Norunda, Sweden, with two- 
year-long time series of flux observations and NDVI information of a 
high spatial resolution extracted from Landsat data (Vestin et al., 2020). 
The clear-cut sites co-locate in the same EaseGrid cell as the Norunda’s 
spruce and pine-dominated station. Mean annual values of NEE, GPP 
and ER [gC m− 2 y− 1] were calculated for all 116 flux observation time 
series. The flux dataset extends from 1995 to 2018 and they were 
compared with the coinciding satellite data-based freeze-thaw and NDVI 
information from the overlapping grid cell.

Additional independent data for the comparison with the flux station 
data and our satellite-based estimate include NEE, GPP and ER estimates 
from FLUXCOM product (Jung et al., 2020), JSBACH simulations (Reick 
et al., 2013) driven by CRU-JRA dataset (Harris and Osborn, 2014), and 
TRENDY DLEM-S3 simulations (Tian et al., 2015). The FLUXCOM record 
provides time series of NEE, GPP and ER retrieved by applying machine 
learning techniques to eddy covariance flux tower, meteorological, 
climate and optical remote sensing (MODIS) data (Jung et al., 2020). 
JSBACH model was applied to provide carbon cycle-climate predictions 
similar to TRENDY simulations using CRU-JRA data (Harris and Osborn, 

2014) for the meteorological forcing (however, without using dynamic 
land cover characteristics). The third dataset for comparison is the 
DLEM-S3 simulation that is one of the TRENDY datasets (Friedlingstein 
et al., 2022).

Further benchmarking of our new GPP estimates was carried out 
using the MODIS GPP product (Running and Zhao, 2021), and the 
employed peak NDVI values were compared with summer maximum 
values of solar-induced fluorescences (SIF) obtained from the merged 
Global Ozone Monitoring Experiment 2 (GOME-2) and Sentinel-5P 
TROPOMI satellite observations (Duveiller et al., 2020; Guanter et al., 
2021).

2.2. Predicting NEE, GPP and ER by satellite data

The analysis of the coinciding satellite and flux station data set 
indicated that the summer maximum NDVI and the lengths of the annual 
or first half of year thaw seasons, and especially their product, are 
strongly correlated with the cumulative GPP and ER for the respective 
period (Figs. 1, 2, Table S1). The evident reasons for the observed 
correlation include that the length of thaw season is connected (a) to the 
timing of the spring recovery of photosystem II activity with tempera-
tures raising above the freezing point (Ensminger et al., 2004), and (b) to 
the reduction of liquid water, required for biological activity, due to the 
freezing of soil in autumn (El-Amine et al., 2022). Additionally, liquid 
water from thawed soil is needed for full photosynthetic recovery in 
spring to supply water to trees (Kimball et al., 2004; Monson et al., 2005; 
Barr et al., 2009; El-Amine et al., 2022). During thaw, also the decom-
position of organic matter strongly increases (Goulden et al., 1998). 
Moreover, the end of growing season, as observed from GPP, could be 
explained at boreal spruce forests by the decrease of soil liquid water 
content and the formation of the seasonal snow pack (El-Amine et al., 
2022).

Thus, we can approximate the mean annual GPP (ER) with a two- 
dimensional linear model: 

z = f(x, y)+ ε = β1xy+ β0 + ε (1) 

Table 2 
Mean annual ecosystem CO2 fluxesa for 2000–2018.

Area Flux [g C m¡2 

y¡1]
2000- 
2018b

Evergreen boreal forests of Northern 
Hemisphere 
(3.5702 106 km2)

GPP 
ER 
NEEc

795 ± 60  
741 ± 60  
-55 ± 84

Eurasia 
(2.0538 106 km2)

GPP 
ER 
NEEc

794 ± 60 
741 ± 60 
− 53 ± 84

North America 
(1.5164 106 km2)

GPP 
ER 
NEEc

797 ± 60 
740 ± 60 
− 57 ± 84

Area Flux 
[Pg C y¡1]

2000- 
2018a

Evergreen boreal forests of Northern 
Hemisphere 
(3.5702 106 km2)

GPP 
ER 
NEEc

2.8 ± 0.2 
2.6 ± 0.2 
− 0.2 ± 0.3

Eurasia 
(2.0538 106 km2)

GPP 
ER 
NEEc

1.6 ± 0.1 
1.5 ± 0.2 
− 0.1 ± 0.2

North America 
(1.5164 106 km2)

GPP 
ER 
NEEc

1.2 ± 0.1 
1.1 ± 0.1 
− 0.1 ± 0.1

a Estimates by the linear model for mean annual GPP (Eq.1) and exponential 
model for mean annual ER (Eq.3).

b Error bounds (±std) are obtained by boostrap analysis. The error bound 
value across the investigated period is the average of different years due to the 
non-zero covariance of interannual errrors.

c NEE is obtained from the difference between the spatially averaged values of 
GPP and ER (negative values of mean annual NEE indicate a net sink of CO2).
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where.z = mean annual GPP (ER) [g C m− 2 y− 1].x = length of thaw, i. 
e., the number of thawed, snow-free days during a single year or first 
half of the year based on satellite data.y = NDVImaxcos(LAT − 23.5◦

), 
where NDVImax is the annual maximum value for the grid cell (EASE 
Grid) from AVHRR data and LAT is the latitude (the correction 
approximately considers the decrese of incoming light due to Earth’s 
curvature).ε = random error [g C m− 2 y− 1].

For estimating GPP [g C m− 2 y− 1], by linear regression the obtained 
regression coefficient values were β0 = − 314.3 and β1 = 9.859 (Fig. 3). 
However, the dataset used for training regression algorithms (Fig. 2) 
suggests that an exponential relationship between mean annual ER and 
the length of annual thaw provides a better agreement than a linear 
approach. Thus, in addition to (Eq.1), we apply a regression formula to 
describe the logarithmic value of ER: 

ln
(
ER

/
1gCm− 2y− 1) = ln(z) = g(x, y)+ έ = βʹ

1xy+ βʹ
0 + έ (2) 

When x = length of annual thaw and y = NDVImaxcos(LAT − 23.5◦

) in 
Eq.2, we get the regression coefficient values β́ 0 and β́ 1 by fitting the 
product x•y to the logarithmic value of ER resulting in β́ 0 = 5.4615 and 
β́ 1 = 0.0095.

Eq.2 leads to: 

ER = exp
(

βʹ
1xy+ βʹ

0 + έ
)
• 1 gCm− 2y− 1. (3) 

Parameters β0 and β1 in Eq.1, and β́ 0 and β́ 1 in Eqs. 2 and 3, are 
determined through linear regression by analysing satellite data-derived 
product xy against each of the 114 mean annual values of GPP (ER) from 
EC flux stations, i.e., by least-squares fitting the formula to the training 
dataset including 114 flux data-based mean annual values of GPP and 
108 mean annual values of ER (hemiboreal Estonian forests were eclu-
ded in the training of the algorithm), see Fig. 2. The highest performance 
in estimating GPP and ER is obtained by using the length of the annual 

thaw (in x) and latitudinal correction for NDVImax in y (linear model 
(Eq.1) for GPP and exponential model (Eq.3) for ER).

To establish an ensemble of model predictions for GPP, we also 
applied a model with the length of six-month spring thaw as a predictor 
variable, and for ER predictions by both the linear and exponential 
models were considered. As an outcome, model combinations according 
to Fig. 2, indicating a significant correlation between the satellite data 
derived freeze-thaw and NDVI conditions, were included in the analysis 
to provide a proxy for GPP and ER. Thus, GPP was predicted with two 
models and ER with four models.

For the mapping of circumpolar values of mean annual GPP and ER 
we applied (Eqs.1 and 3) to all grid cells representing evergreen boreal 
forests. Circumpolar, North American, and European scale estimates of 
mean annual NEE were determined by subtracting the regional average 
of GPP from the regional value of mean annual ER. As two models were 
used for GPP and four models for ER (Fig. 2), the estimates of NEE were 
obtained with eight combinations, which enables a consideration of 
uncertainties associated to the overall analysis. Circumpolar/continen-
tal scale averages and statistical error bounds of annual GPP, ER and 
NEE estimates were determined through a bootstrap analysis. The 
bootstrap algorithms (Eqs.1 and 3) were trained by taking 10,000 
resamples with replacement from the training data set divided to ten 
clusters of nearby or individual flux stations (nine clusters excluding 
Estonian stations in the case of ER). Flux stations (Table 1) from four 
regions were grouped together in the analysis since the number of 
observation years was small for individual stations (Estonia, northern 
Sweden, Russia, and Northwest Canada). The bootstrap analysis enables 
the estimation of ±1 std. (standard deviation) error bounds from the set 
of obtained 10,000 algorithms.

Fig. 1. Flux station data derived GPP and the drivers of the developed satellite proxy (Eq.1). Both GPP and ER are driven by the product of summer maximum NDVI 
with the latitude correction and the length of annual thaw. The two-dimensional response of the mean annual GPP to the two driver variables is interpolated from 
flux station data-derived GPP (a). The range of interannual variabilility of driver variables across the circumpolar boreal forests, depicted by circles and standard 
deviation bars (b-c), is captured by the range of conditions in the applied flux observation data set (a).

J. Pulliainen et al.                                                                                                                                                                                                                              



Remote Sensing of Environment 313 (2024) 114376

6

Fig. 2. Relationship between the drivers of the proxy (latitudinally corrected NDVI and length of annual or six-month spring thaw) and flux station data-derived GPP 
and ER (mean annual values and maximum values of daily means for each year). The model fitting according to (Eqs.1 and 3) are also shown.

Fig. 3. Performances of linear regression (Eq.1) and exponential (Eq.3) algorithms for predicting mean annual GPP and ER, respectively, at CO2 flux stations used 
for training the algorithms. The product of space-borne observed annual length of thaw and latitude factor corrected summer maximum landscape scale NDVI is used 
as a predictor variable. Algorithms are also tested for small clear-cut test sites that are not included in the training data set by applying a landscape scale value of 
NDVI and site-specific NDVI observed at a high spatial resolution.
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3. Results and discussion

3.1. Methodology assessment

Excluding the small clear-cut areas, the overall coefficient of deter-
mination (R2) of the algorithm using the global landscape scale NDVI 
information as input was 0.62 for GPP and 0.55 for ER, respectively, 
when testing included the hemiboreal Estonian stations (Fig. 3). The 
results of Fig. 3 are obtained by the baseline algorithm (Eqs.1 and 3) 
using the the length of annual thaw and latitudinally corrected NDVI as 
the predictor variable. The comparison of daily flux data with the sat-
ellite data-derived daily freeze-thaw status of landscape indicates that 
the overall behavior of GPP and ER is strongly correlated with changes 
in freeze-thaw conditions, and further, a significant correlation exists 
between the thawed-season GPP (ER) and the latitude-corrected sum-
mer maximum NDVI (Fig. S1). The results of bootstrap analysis indicate 
only a small bias both for the mean annual GPP (6.0 g C m− 2 y− 1) and ER 
(− 30.3 g C m− 2 y− 1), which suggests that our spatially distributed es-
timates have only a small systematic error (Fig. 4).

The same predictor variable, i.e., the product of annual thaw length 
and NDVImax, was used as a baseline for both GPP and ER since it pro-
vided the highest correlation between the satellite observations and the 
flux data-derived mean annual values of GPP and ER. However, all 
models shown in Fig. 2 were included to obtain an ensemble of model 
predictions for the period from 1981 to 2018. They apply different 
predictor variables, e.g., length of snow cover during the first half of the 
year, in addition to the length of annual thaw, for predicting GPP. Thus, 
the estimated temporal dynamics of GPP and ER varies within the 
ensemble as different drivers are used in the predictor variable. This also 
facilitates an additional uncertainty analysis of the predicted time series 
and trends of GPP, ER and NEE. Since NEE is the small difference be-
tween ER and GPP - and random error in estimating ER and GPP is 
relatively high and correlated - the spatial pattern of NEE cannot be 
reliably estimated for small regions (for continental-scale random esti-
mation error is averaged out, which was confirmed by investigating the 
systematic error through a bootstrap testing).

The validity of the developed approach was further investigated by 
analysing the temporal behavior of NEE, GPP and ER estimation error at 
the locations of circumpolar flux towers (Figs. 5, 6). The difference be-
tween flux data-derived values and satellite estimates indicates that for 
both Eurasia and North America the overall bias does not show any 
significant trend during the period of flux observations (Fig. 6). Further, 

the bias of NEE estimates by the satellite proxy compared with EC re-
cords for 1995–2018 does not show any trend, and only small trends for 
the other investigated data records (FLUXCOM, JSBACH, DLEM-S3). 
Instead, the biases with respect to flux station-observed NEE show 
analogous interannual fluctuations, and the mean values by satellite 
proxy, JSBACH, FLUXCOM and DLEM-S3 are close to each other for all 
years (Fig. 5a). Flux data on NEE, incorporating multiple stations, is 
available for the period 1999–2018 (for Norunda, Sweden, also for 
1995–1998). Since the available set of reporting flux stations varies from 
year to year (Table 1), the biases also vary interannually (Fig. 5a).

The comparison of the developed satellite proxy at the flux site lo-
cations indicates a relatively good agreement with the MODIS GPP 
product (Running and Zhao, 2021) (R2 = 0.69, Fig. 7). Compared with 
the in situ measured EC fluxes, the MODIS product appears to under-
estimate annual GPP for values above 1200 g C m− 2 y− 1 (nevertheless, 
the overall correlation is high (R2 = 0.69)). Additionally, the compari-
son of the employed summer maximum NDVI with the summer 
maximum value of solar-induced chlorophyll fluorescence (SIF) ob-
tained from a merged time series of GOME-2 and TROPOMI satellite 
observations (Duveiller et al., 2020; Guanter et al., 2021) indicates that 
the NDVI information is highly correlated with the magnitude of boreal 
forest vegetation photosynthesis (Fig. 8). Thus, the summer maximum 
NDVI explains well the spatio-temporal variability of peak vegetation 
productivity. Additionally, the latitudinally corrected peak NDVI is 
correlated with both the flux data-derived mean daily summertime GPP 
and ER (Fig. S1). Since NDVI is a band difference ratio, it is a robust 
index for generating long time series despite its limitations, e.g., satu-
ration for dense vegetation canopies (Jiang et al., 2008). Some other 
indices, such as the Chlorophyll Carotenoid Index (CCI) (Gamon et al., 
2016) may provide better accuracies for estimating GPP in boreal for-
ests, but CCI can be only calculated from MODIS satellite data for shorter 
periods. Time series of NIRv index can be calculated from AVHRR ob-
servations, but a study by Pierrat et al. (2022) suggests that NIRv does 
not improve the relationship with GPP (on a monthly time scale) in 
comparison with NDVI for boreal forests.

Growing season length can be also estimated by using vegetation 
indices derived from optical-range satellite data. However, photosyn-
thetic activity in boreal evergreen forest begins before changes in green 
biomass, thus there is a delay of several weeks between photosynthetic 
recovery and increase of greenness as observed from vegetation indices 
(such as NDVI and EVI) (Melaas et al., 2013; Walther et al., 2016; Pierrat 
et al., 2021; Melser et al., 2024). The application of vegetation indices 

Fig. 4. Regression algorithm performance in the estimation of mean annual GPP and ER from passive microwave radiometry and NDVI data (linear approach for GPP 
and exponential approach for ER corresponding to Fig. 3). Bootstrap regression analysis is used for determining the error bounds of GPP and ER estimates.
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from optical instruments in autumn in the boreal region is challenging, 
due to reduced sun light at the high latitudes. Furthermore, photosyn-
thesis can continue in evergreen forest until the occurrence of severe 
frost (Vogg et al., 1998).

3.2. Refined carbon exchange estimates

We predicted the mean annual GPP and ER from the product of thaw 
period length and summer maximum NDVI for each grid cell repre-
senting the evergreen boreal forest by using Eqs.1 and 3 (Fig. 9). The 
GPP was estimated with two approaches (annual thaw length or first half 
of year thaw length in the predictor) and ER was estimated with four 

Fig. 5. Comparison of satellite-derived mean annual NEE with flux site observations and freeze-thaw conditions in the flux data set vs. conditions in the satellite 
dataset. a, Bias of mean annual NEE estimates is compared with flux station NEE observations (averages for all reporting stations for different years); solid lines show 
the fitted trends of biases for the estimates by satellite proxy, FLUXCOM, JSBACH and DLEM-S3; NEE estimation error root mean squared values are calculated for all 
114 observation cases. b, Comparison of the length of thaw at all flux stations with all satellite observations across 1981–2018, the thickness of horizontal bars 
indicate the number of flux observations per station with diamonds indicating the average ± std., and plus signs indicating maximum and minimum values.

Fig. 6. Comparison of satellite-derived mean annual NEE, GPP and ER with those based on the eddy-covariance dataValues for different stations, excluding 
hemiboreal forests in Estonia, are shown for each year (for 1995–1998 daily CO2 flux observations are only available for Norunda, Sweden).
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approaches (Fig. 2). Circumpolar mean annual GPP and ER were 
calculated by averaging all estimates of forested grid cells for each year. 
NEE was estimated by subtracting the circumpolar annual GPP from the 
corresponding spatially averaged ER. Thus, NEE was predicted by eight 
combinations, arising from GPP and ER models. The depicted annual 

averages and their error bounds (Fig. 9) were determined through the 
bootstrap analysis (the statistical accuracy bounds are only shown for 
the baseline model that gives the highest performance). The increasing 
circumpolar trends of mean annual GPP and ER during the period 
1981–2018 are statistically significant (p < 0.05) for all model variants 
obtained by the bootstrap analysis. The exponential model (Eq.3) was 
used as a baseline to estimate the mean annual ER. The results by using 
six-month spring thaw in the predictor variable for GPP yield substan-
tially higher values than those with the length of annual thaw in the 
predictor (even though the correlation between these two thaw lengths 
is high, Fig. S2). This leads to shifted estimates of mean annual NEE for 
the period from 1981 to 1999 (Fig. 9a). The difference between the 
linear and exponential approaches for ER further indicates the uncer-
tainty of the obtained estimates.

Our satellite-derived GPP shows a substantial decrease with 
increasing latitude (Fig. 10). Additionally, the temporal variability of 
circumpolar mean annual GPP and ER is high (Fig. 9b, c). The variability 
is, however, dampened in NEE (Fig. 9a), but the relative uncertainty of 
NEE estimates is much higher since NEE is the small difference between 
two relatively large component fluxes, i.e., mean annual ER and GPP. 
There has been a positive trend in GPP and ER during the period 
1990–2011, but no significant trends thereafter (Fig. 9b, c). Both vari-
ables are the lowest during the 1980s and early 1990s. Also, the net 
carbon sink strength is the weakest for the 1980s and early 1990s, or 
forests may have been even a carbon source (Fig. 9a). The obtained 
estimates of mean annual NEE at the circumpolar scale indicate a 
possible slight increase of carbon sink strength (Fig. 9). This increase is 
driven largely by the GPP increase that started in early 1990s and 
continued until 2011. However, within the period 2012–2018 the 
circumpolar evergreen boreal forest carbon sink strength does not show 
any trend. Both the estimated GPP and ER dropped to constant levels 
after the peak values in 2010 and 2011 (Fig. 9). Table 2 summarizes the 
hemispheric and continental scale estimates of GPP, ER and NEE for the 
period 2000–2018. These values with their uncertainties are obtained by 
the baseline model that uses the length of annual thaw as a driver of the 

Fig. 7. Comparison of satellite proxy and MODIS GPP. Left: MODIS GPP and satellite proxy against flux data-derived mean annual GPP. Right: Comparison of 
estimated mean annual values of GPP at the locations of the employed circumpolar flux stations from 2002 to 2018. The MODIS GPP is based on observations by 
Aqua and Terra satellites (Running and Zhao, 2021). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.)

Fig. 8. Comparison of AVHRR NDVI and downscaled merged GOME-2 and 
TROPOMI SIF for 2007–2018. The summer maximum SIF at flux stations is 
compared with the summer maximum NDVI used in GPP and ER algorithms to 
consider the strength of photosynthesis of evergreen boreal forests of each 
investigated EASE Grid cell.
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proxy (both GPP and ER) and the exponential approach for ER (Eq.3). 
Quantitative estimates for the period 1981–1999 are not shown in 
Table 2, since the spread in ensemble predictions of GPP and NEE is high 
for that period.

The dynamic drivers of GPP and ER proxies are the satellite-derived 
length of the annual or six-month spring thaw and the annual maximum 
NDVI. Flux data-derived GPP and ER can be described as a two- 
dimensional function (product) of these drivers (Fig. 1a), since the re-
sults suggest that the maximum annual NDVI is related to the level of 
summer maximum photosynthesis (Fig. 8) and the length of annual thaw 
is related to the length of the photosynthetically active period (Fig. 1a). 
Decrease in the length of annual thaw from 1981 to 1989 (Fig. 1b) re-
sults in a small decrease of estimated GPP and ER during that period 
(Figs. 9b, c). A progression of longer thaw seasons extends from 1990 
through 2011, with little change between 2012 and 2018 (Fig. 1b). 
Increasing length of annual thaw resulted in the multi-decadal growth in 
GPP and ER, followed by a lack of increase after 2011 (Figs. 1b, 9b, c). 
Maximum summertime NDVI affects more the spatial pattern of GPP and 
ER than the temporal variability (Figs. 1c, 10).

Inter-annual variability and trends in our novel satellite-based NEE, 
GPP and ER estimates are predominantly driven by changes in thaw 
length (Figs. 1, 9). Even though the available flux data do not extend to 
earlier years, the drivers of the developed satellite proxy suggests a small 
decrease in GPP and ER through 1981–1990 (note that the variablity of 
thaw length at flux data is similar to the variability of freeze-thaw 
conditions within the evergreen boreal forest zone across 1981–2018 
(Fig. 5b)). The pixel-wise median effect of annual (12-month) thaw 
length variability to the estimated mean annual GPP is 580 g C m− 2 y− 1 

during the period of 38 years, whereas the median dynamic effect of the 
latitudinally corrected NDVI driver is 279 g C m− 2 y− 1.

Even though CO2 releases to the atmosphere by disturbances are not 

Fig. 9. Time series of mean annual GPP, ER and NEE (g C m− 2 y− 1) using the ensemble approach of driver combinations. Annual estimates are obtained using the 
developed satellite proxy (Eqs.1 and 3) for the circumpolar evergreen boreal forest. NEE is the difference between the circumpolar average ER and GPP (note that 
NEE is negative for a net carbon sink). Black circles depict the estimates obtained by the logarithmic model of mean annual ER (Eq.3). For this baseline approach ±1 
std. uncertainty bounds from the bootstrap analysis are also shown. The ±1 std. uncertainty bounds for the exponential ER model are close to those of the 
linear model.

Fig. 10. Estimated mean annual GPP of evergreen boreal forests across the 
period 1981–2018. The spatial distribution of the average level of mean annual 
GPP across the investigated period is depicted. Red crosses show the locations 
of the employed eddy covariance CO2 flux measurement stations. (For inter-
pretation of the references to colour in this figure legend, the reader is referred 
to the web version of this article.)
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considered, the developed approach indirectly considers the effects of 
harvesting, forest fires and other land cover changes to GPP and ER as 
the summer maximum NDVI is used as a multiplier within the predictor 
variable of the developed regression algorithm. Maximum NDVI in-
corporates the influence of interannual changes in forest vegetation 
peak photosynthesis, which is a factor also related to interannual land 
cover changes. To show this, we tested the algorithm for two clear-cut 
sites by applying NDVI information obtained at a high spatial resolu-
tion for these sites, Fig. 3 (Vestin et al., 2020). The results showed that 
the regression algorithm captured better the mean annual GPP and ER 
when NDVI information specific to clear-cut sites was applied instead of 
landscape scale values of NDVI (landscape scale values are virtually not 
affected by individual small scale land cover changes). Thus, we can 
conclude that the algorithm takes into account the reduction of GPP and 
ER caused by the shrinking of forest photosynthesis due to changes in 
forest cover within the grid cell under investigation.

3.3. Comparison with other approaches

We compared our novel method with three established approaches, 
the JSBACH terrestrial biosphere model (Reick et al., 2013), the 
FLUXCOM record (Jung et al., 2020) and the TRENDY DLEM-S3 product 
(Friedlingstein et al., 2022; Tian et al., 2015). The JSBACH simulation 
provided a multi-decadal temporal evolution in GPP and ER comparable 
to that of our analysis, even though the mean levels are lower (Fig. 11). 
The underestimation of mean annual ER is a common feature of 
terrestrial biosphere models owing to high uncertainty in the simulation 
of unfrozen sub-surface soil during autumn and early/deep winter 
(Byrne et al., 2022). The FLUXCOM time series does not show any trend 
in NEE across the evergreen boreal zone through the investigated period 
but the magnitude of NEE is similar to our estimates, although our 
analysis indicates a weak increasing trend in the carbon sink strength for 
the years 1993–2012. For 2010–2018 the circumpolar average NEE by 
FLUXCOM, JSBACH and by our analysis show a good agreement. 

However, both FLUXCOM and JSBACH suggest generally lower levels of 
GPP and ER compared to our estimates. Comparison of DLEM-S3 model 
simulations and FLUXCOM data with Eurasian and North American flux 
observations employed here show a smaller spatio-temporal variability 
compared to our estimates and the in situ flux data (Fig. 11, Fig. S3). For 
the 1981–2018 period, the spatial variability of of both GPP and ER in 
our satellite-based estimate and FLUXCOM are well comparable 
(Fig. S4).

4. Summary and conclusions

We developed a novel method to estimate the trends of mean annual 
net ecosystem CO2 exchange of evergreen boreal forests by using passive 
microwave and optical satellite data, including cryosphere information 
based on passive microwave observations. The analysis here focused on 
evergreen boreal forests excluding larch-dominated forest areas. Ob-
tained estimates of annual CO2 uptake (GPP) and ecosystem respiration 
(ER) provide new insight into the drivers, magnitudes, and trends of 
boreal carbon exchange and, thus, the net CO2 sink-source strength for 
the period 1981–2018. The conducted analysis for boreal forest eddy 
covariance flux stations indicates that the product of satellite-derived 
annual thaw length and summer maximum NDVI is highly correlated 
with the mean annual values of GPP and ER. We compared our results 
with independent approaches. However, any conclusions on absolute 
accuracies of different data sets cannot be made beyond the comparisons 
made with the employed flux station data set (Fig. 5, Fig. 7, Fig. 11, 
Fig. S3, Fig. S4). Moreover, earlier investigations also indicate high 
uncertainties in the assessment of annual balances (López-Blanco et al., 
2019).

Our analysis suggests interannual and decadal variabilities both in 
GPP and ER that are not evident in earlier predictions of evergreen 
boreal forest CO2 sink-source strength (Figs. 9b, c, 11b, c). Our results 
show that the evergreen boreal forest of the Northern Hemisphere is a 
weak net CO2 sink (− 55 ± 84 g C m− 2 y− 1 for 2000–2018), even though 

Fig. 11. Comparison of the satellite proxy with FLUXCOM, JSBACH ecosystem-climate model and TRENDY DLEM-S3 simulations. Average values across the 
circumpolar boreal forest are calculated for the yearly cumulative NEE, GPP and ER, and they are depicted for each data record for the period 1981–2018. The 
variabilities of annual estimates of NEE, GPP and ER are also shown for the satellite proxy (±standard deviation of all estimates from grid cells that represent the 
evergreen boreal forest zone).
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the estimated uncertainty bounds suggest a small likelihood of circum-
polar forests being a carbon source (Fig. 9a, Table 2). Results for the 
annual net carbon uptake show a significant increase during 1990–2010, 
but even a slight decrease during 2011–2018 driven by delayed spring 
snow melt (Figs. 1b, 9b). The assessed statistical uncertainty of the 
circumpolar GPP estimate obtained here for the period 2000–2018 is 
7.5%, with ER the corresponding uncertainty is 8.1%, (Table 2). The 
results suggest that the strong increase in net CO2 uptake during 
1989–2018 is compensated largely by the co-incident increase in 
ecosystem respiratory releaseas of CO2.
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