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Abstract
To attain food security, we must minimize crop losses caused by weed growth, animal herbivores, and pathogens (or “pests”). 
Today, crop production depends heavily on the use of chemical pesticides (or “pesticides”) to protect the crops. However, 
pesticides are phased out as they lose efficiency due to pest resistance, and few new pesticides are appearing on the market. 
In addition, policies and national action programs are implemented with the aim of reducing pesticide risks. We must rede-
sign our cropping systems to successfully protect our crops against pests using fewer or no pesticides. In this review, I focus 
on the principles for redesigning the crop ecosystem. Ecological redesign aims to enhance ecological functions in order to 
regulate pest populations and diminish crop losses. Exploring ecology and ecosystems plays an important role in this transi-
tion. Guiding principles for redesigning the cropping system can be drawn from understanding its ecology. Ecosystem and 
community ecologists have identified four principal ecological characteristics that enhance the biotic regulation of ecological 
processes across ecosystems: (i) advanced ecosystem succession through introducing and conserving perennial crops and 
landscape habitats; (ii) reduced disturbance frequency and intensity; (iii) an increase in both managed and wild functional 
biological diversity, above and below ground; and (iv) matched spatial extent of land use (e.g., crop field size) with that of 
ecological processes (e.g., dispersal capacity of predators). I review the practices that link these ecosystem characteristics to 
crop protection in grain commodity cropping in both the crop field and the agricultural landscape. The review brings forth 
how basic understandings drawn from ecosystem and community ecology can guide agricultural research in the redesign 
of cropping systems, ensuring that technologies, breeding, innovation, and policy are adapted to and support the reshaped 
crop ecosystem.
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1 Introduction

To avoid yield loss, we must ensure robust and efficient 
crop protection. Despite ongoing crop protection efforts, 
one-third of the global crop yield is estimated to be lost 
to weeds, animal herbivores, and pathogens (Oerke 2006; 
Savary 2019). Crop protection promotes and maintains plant 
health and yields. Crop protection is likely to gain greater 
worldwide importance as pest outbreaks and abiotic plant 
stresses increase due to climate change, biodiversity decline, 
and ecosystem degradation (IPBES 2019; IPCC 2022).

Pesticides are currently a key tool used in protecting our 
dominant staple crops (Popp et al. 2013). The widespread 
introduction of pesticides in the mid-twentieth century enabled 
the growth of a few commodity crops in specialized large-scale 
cropping systems (Matson et al. 1997; Crossley et al. 2021; 
Schaak et al. 2023). However, soon after this introduction, 
serious trade-offs became apparent. Insecticides hit non-target 
predatory arthropods, which weakened the natural regulation 
of herbivore populations and caused outbreaks of primary and 
secondary insect pests, i.e., surges of previously harmless her-
bivores (Settle et al. 1996; Dutcher 2007). Pesticides have well-
documented negative impacts on water quality (e.g., Mahai 
et al. 2021; Tröger et al. 2021; Stehle & Schulz 2015) and on 
human health (Kim et al. 2017). They alter abundances of non-
target species and hence community composition (Rundlöf 
et al. 2015; Sanchez-Bayo & Wijkhuis; 2019; Ruuskanen et al. 
2023), in turn impeding ecosystem processes such as crop pol-
lination and nutrient cycling (e.g., Stanley et al. 2015; Edlinger 
et al. 2022; Ruuskanen et al. 2022).

Efforts have been made to mitigate these impacts through 
the stricter regulation of pesticide use, the withdrawal of regis-
trations deemed too risky, and the implementation of national 
and transnational risk-reduction programs and policies (Bar-
zmand & Dachbrodt-Saaydeh 2011; Wu et al 2018; Möhring 
et al. 2020). However, investments in crop protection research 
and innovation, as well as the implementation of supporting 
politics, policies, and market initiatives, have not kept pace 
with the decreased availability of pesticides and pressure to 
reduce pesticide use. This is evident in the continued use of 
several retracted pesticides facilitated by temporary emer-
gency authorization within the European Union (EFSA 2022; 
PAN 2023). The need to find alternatives for crop protection is 
further underscored by the fact that older pesticides are losing 
efficacy and are being phased out, while fewer or no alterna-
tives are meanwhile reaching the market (IRAC 2022; Riggi 
et al. 2016; Owen 2016; Duke 2012; Duke & Dayan 2018).

The challenges for crop protection have not gone unno-
ticed within the scientific literature. Pesticides are a corner-
stone in commodity crop production. Therefore, growing 
our food with fewer, or no, pesticides calls for transforma-
tive change, combining new technologies and breeding 

(Tataridas et al. 2022; Burgues et al. 2020) with agronomic 
practices (e.g., Riemens et al. 2022; Maclaren et al. 2020), 
novel research and innovation approaches (Jacquet et al. 
2022), education (Wyckhuys et al. 2019), supporting poli-
cies (Mack et al. 2023; Finger & Möhring 2024), and careful 
landscape management (Deguine et al. 2023).

Literature on the subject often emphasizes the need to 
develop substitutions for pesticides, such as biopesticides, 
crop breeding, and mechanical weeding. Yet it also acknowl-
edges that these substitutes are insufficient to ensure reliable 
crop protection. A redesign of cropping systems is thus called 
for (Tittonell et al. 2014; van Bers et al. 2019). Pesticides 
were once essential for the introduction of specialized crop 
production. Globally, they have, most importantly, facilitated 
a radical redesign of crop ecosystems across agricultural land-
scapes. Lower, or no, dependence on pesticides will thus like-
wise require a redesign or “strong” ecological modernization 
of crop ecosystems to provide adequate crop protection using 
fewer pesticides (Jacquet et al. 2022), releasing us from our 
clear dependence on them (Conti et al. 2021; Clapp 2021).

In order to create conditions under which ecological func-
tions, such as predation, can regulate pest populations at low 
abundances, we must redesign existing crop ecosystems (Bom-
marco et al. 2013). Ecology is a central basic science intrinsic 
to this effort (Deguine et al. 2023). Population, community, and 
landscape ecological knowledge are engaged and developed 
and combined with agronomic practices that are often applied 
to specific taxa separately (van Bruggen et al. 2016; Maclaren 
et al. 2020; Lundin et al. 2021; Riemens et al. 2022). There is 
scope to gain further ecological understanding at the ecosystem 
level to direct which kind of practices to implement, while also 
understanding their potential impacts on the crop ecosystem 
as a whole. Such ecological redesign principles could guide 
policy, research, and transformation pathways strategically.

Each crop ecosystem has characteristic ecological condi-
tions. The biotic and abiotic factors that determine stocks and 
flows of energy and elements are subject to the exact same 
biophysical constraints and physical laws of any other ecosys-
tem. Hence, ecosystem and community ecology principles can 
be employed and further developed to guide crop ecosystem 
redesign (Smith 2015).

In particular, ecosystem and community ecologists have 
identified four ecological characteristics that distinctly affect 
the biotic regulation of ecological processes across ecosys-
tems. They offer guidance for ecosystem redesign that ensures 
preventative and resilient crop protection:

 i. Advance succession by introducing and conserving 
perennial crops and landscape habitats

 ii. Reduce the frequency and intensity of ecosystem dis-
turbance

 iii. Increase both managed and wild functional biological 
diversity above and below ground
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Fig. 1  Illustrations of land man-
agement for sustainable crop 
protection: in the landscape 
(upper left) and in the crop field 
by managing plant diversity 
(upper right) and disturbance 
(lower left) (photos: Ola 
Lundin), in order to promote 
biological regulation of pests 
(lower right) (photo: Sandra 
Lindström).

Fig. 2  Ecosystem character-
istics to guide crop ecosystem 
redesign for sustainable crop 
protection. Crop ecosystem 
characteristics are identified to 
guide crop ecosystem redesign 
toward growing our food with 
less or no pesticides: perennial-
ity, disturbance, and diversity 
in the crop fields situated in 
a landscape with annual and 
perennial habitat configuration 
and composition that spatially 
matches the requirements 
of beneficial organisms and 
ecosystem services. Farming 
practice types are exemplified as 
having a particular effect on cer-
tain ecosystem characteristics: 
perennial crops, crop and weed 
diversity, organic fertilizer, and 
reduced tillage. (Figure created 
by Janina Heinen).
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 iv. Match spatial scales of land use and ecological pro-
cesses

These characteristics affect two main factors governing pest 
management: the regulation and suppression of pests and the 
enhancement of plant health, i.e., the plant’s capacity to grow 
and withstand abiotic and biotic stresses, herbivory, and com-
petition. Here, I focus on the former, noting that many of the 
actions taken to build preventative crop protection are likely 
to enhance also plant resilience.

In this review, crop ecosystem characteristics and key eco-
logical processes are described in relation to current under-
standings of ecosystem and community ecology, drawing 
most of its examples from grain cropping. An overview is then 
provided of practices within the crop field and landscape that 
affect the four ecosystem characteristics (Fig. 1 and 2). Finally, 
it iterates the necessity to consider farm economics, develop 
technologies, and redefine breeding targets that are adapted to 
the reshaped crop ecosystem.

2  Characteristics of crop ecosystems

2.1  Succession and disturbance

In ecological terms, industrial commodity grain eco-
systems are nutrient-rich ecosystems that are kept in an 
early successional stage through repeated disturbance and 
annual cropping. They have a low diversity of crops and 
associated organisms across large spatial extents.

Growing annual crops that experience a high level of 
disturbance across large swaths of land (Gaba et al. 2014) 
keeps the ecosystem in perpetual early secondary suc-
cession (Radosevich et al. 2007). Secondary succession 
describes the evolution of a community of organisms over 
time after a major disturbance, such as a flood, fire, land-
slide, or the plowing of an arable field. It drastically affects 
an area but does not render it entirely lifeless. This distin-
guishes secondary from primary succession communities, 
which develop from a lifeless area.

Repeatedly disturbing and resetting agricultural ecosys-
tem succession limits biodiversity build-up, which would 
usually regulate pests. It instead promotes disturbance-tol-
erant invasive plants (Buhler 1995; Smith 2015; Maclaren 
et al. 2020), plant pathogens (McDonald & Linde 2002), 
and insect herbivores (Wissinger 1997). Maintaining eco-
systems at an early stage of succession reduces the biologi-
cal regulation of resource acquisition and retention (Odum 
1969; Gorham 1979). Communities are structured less by 
biotic processes such as competition and consumption 
and more by stochastic processes, which require human 

intervention and resource inputs to pre-empt or subdue 
outbreaks in order to stabilize primary production (Wiss-
inger 1997; Rist et al. 2014; Smith and Mortensen 2017). 
In contrast, establishing perennial growth forms improves 
resource acquisition and retention efficiencies, which are 
typical characteristics of mid-successional ecosystems 
(Crews 2018). Introducing perennial crops enhances pools 
of soil organic matter, enriches organismal communities, 
and stabilizes ecosystem functions, including those related 
to crop protection (Duchene et al. 2019; Martin et al. 2020; 
Heinen et al. 2023).

2.2  Biodiversity

Commodity grain cropping is usually characterized by a 
low diversity of crops and their associated organisms. The 
crop is a founding organism of the agricultural ecosystem, 
similar to how trees are the pillar of the forested ecosystem 
(Ellison et al. 2005). Despite low crop diversity, the crop 
is always accompanied by a wealth of organisms above 
and below ground, many of which participate in and drive 
functions linked to the primary production of the crop. 
This diverse community of organisms includes additional 
primary producers beyond the crop plant, such as weeds 
and non-crop plants; thousands of consumer species of 
herbivores, predators, decomposers, and pollinators (Tsia-
fouli et al. 2015; Dainese et al. 2019); and an immense and 
multifunctional microbiome (Bender et al. 2016; Trivedi 
et al. 2020, Banerjee and van der Heijden 2023). The com-
munity of organisms assembled in a crop field is drawn 
from a regional species pool and shaped by a hierarchical 
set of environmental, landscape, crop management, and 
biotic filters (Smith & Mortensen 2017).

Together, the organisms drive resource stocks and flows 
of energy, carbon, nutrients, and water through resource 
channels that exist both above and below ground (Wardle 
et al. 2004; Wolkovich et al. 2014). The organisms and pro-
cesses are affected by the materials and species we put into 
and remove from the ecosystem (Riggi & Bommarco 2019; 
Zelnik et al. 2022). They are affected by when and how we 
till, sow, fertilize, protect, and harvest the crop. Farming 
operations can build or disrupt already formed macro- and 
micro-assemblages of organisms. Furthermore, how they are 
managed affects how the primary production of the crop and 
its associated ecosystem processes respond to variations in 
climatic conditions (e.g., Bowles et al. 2020; Costa et al. 
2024). Ecosystem functions that are particularly relevant 
for crop protection outcomes include herbivory, predation, 
disease, antagonism, and competition, which all affect the 
primary production we seek to harvest.
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2.2.1  Relationships between biodiversity and ecosystem 
functioning

There has been much research into how ecosystem functions 
are affected by the richness and composition of organismal 
communities. Ecological understanding of the links between 
biodiversity and ecosystem functioning holds the potential 
to inform the redesign of crop ecosystems (Cardinale et al. 
2012; Isbell et al. 2017). This research clearly demonstrates 
that diversity among terrestrial spatially mixed plant com-
munities enhances the regulation of arthropod herbivory 
(Barnes et al. 2020; Wan et al. 2020) and biomass produc-
tion (Tilman et al. 2006; Cardinale et al. 2012; Reich et al. 
2012). This is due to the effects of species selection and 
niche complementarity. This relationship is thought to also 
apply to agricultural ecosystems (Isbell et al. 2017).

Recent research partly confirms this hypothesis. Based 
on data amassed from multiple agricultural long-term 
trials, we find that gradually increasing especially crop 
functional diversity increases cereal yield benefits. This is 
achieved by rotating crops within a field over time (Smith 
et al. 2023). There is evidence that increasing weed diver-
sity, e.g., through diverse cropping (Hofmeijer et al. 2021), 
reduces yield losses (Adeux et al. 2019; Liebman et al. 
2021), enhances fungal diversity (Triolet et al. 2022), and 
potentially enhances weed seed predation by insects.

Species-rich arthropod predator communities with 
evenly distributed abundances among species are often 
found to be more efficient in suppressing insect crop herbi-
vores (Crowder et al. 2010; Dainese et al. 2019). However, 
the strength of this relationship depends on the species 
and the crop involved, and on which aspect of diversity 
is measured. Diversity, in terms of species richness, is 
often a poorer predictor of predation compared with the 
diversity and distribution of functional groups of predators 
(Gagic et al. 2015; Feit et al. 2019). Although increasing 
arthropod predator species or functional diversity more 
often suppresses crop herbivores, there can be weak or 

negative effects on predation, resulting from increased 
intraguild predation and interference among predators 
as species are added to the community (Letourneau et al. 
2009; Jonsson et al. 2018).

Recent research also shows that soil microbial com-
munity composition can significantly impact plant health, 
allowing the prospect of managing or engineering disease-
suppressive soils (Mendes et al. 2011; Schlatter et al. 2017; 
Trivedi et al. 2017). The relationship between microbial 
diversity and the ability to suppress plant pathogens is 
not yet fully researched (but see Van Elsas et al. 2012). 
Researchers are currently identifying the key taxa and 
genes responsible for disease suppression (Expósito et al. 
2018; Mendes et al. 2011; Trivedi et al. 2017). However, 
increasing a soil’s organic matter can enhance its general 
suppressiveness (Expósito et al. 2017).

Enhancing biodiversity can significantly strengthen 
crop protection. However, the question of which aspect of 
diversity to promote, e.g., species or functional diversity, 
and whether to promote specific organisms are matters that 
need to be assessed for specific functions, agronomic, and 
environmental contexts.

2.3  Matching spatial scales of land use 
with ecological processes

In nature, ecological and physical processes occur over 
specific spatial scales. Sustained crop production, rely-
ing on the biotic pest regulation provided by biodiversity, 
needs crops and other habitats to be situated within the 
landscape near the vital resources required for a large 
number of service-providing organisms. Mobile predatory 
arthropods exemplify and justify the importance of such 
spatial and temporal matching (Jonsson et al. 2014). Many 
predator species depend on continuous access in their life 
cycle to spatially separated resources and habitats for their 
survival and reproduction (Rand et al. 2006; Schellhorn 
et al. 2015). Importantly, all these necessary resources 

Fig. 3  Managing spatial extent (e.g., crop field size) and crop or habi-
tat diversity to match resource requirements of beneficial organisms 
that contribute to crop protection (e.g., predators to herbivorous 
pests). Mobile service-providing organisms, such as predatory arthro-
pods, need continuous access to resources and habitats within their 
movement range for their survival and reproduction. This is in many 

landscapes decided by us humans, who crop and manage farmland. 
Purple indicates the probability of survival and reproduction for a 
predator in two differently cropped landscapes. Colored fields in the 
landscape indicate different management practices in the crop fields 
such as crop species, tillage, and fertilization. (Figure created by 
Janina Heinen).
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must be within a reachable distance given each species’ 
mobility (Schellhorn et al 2014) (Fig. 3).

In disturbed landscapes with few annual crop species 
grown in large fields with little or no remnant perennial habi-
tats, e.g., grasslands, hedges, and wood lots, mobile service-
providing organisms have difficulty surviving as resources 
are too far out of reach (Tscharntke et al. 2007).

Arthropod pests, in contrast, often thrive due to their 
greater dispersal capacity and shorter generation time com-
pared with their predators. This makes them better suited to 
exploit the rich crop resources and escape predation in the 
disturbed early succession ecosystems that we have created 
(Settle et al. 1996; Wissinger et al. 1997). Redesigned land-
scapes need to satisfy the demands for multiple beneficial 
organisms and supply adequate resources for a large number 
of species, all with diverse resource requirements and dis-
persal capacities (Vasseur et al. 2013).

3  Land‑use practices for ecological redesign

Practices and key experiences for ecological redesign and 
modernized crop protection and production can be drawn 
from farming practices that employ restricted or actively 
minimized pesticide use, such as organic and agroecological 
farming (Mäder et al. 2002; Wezel et al. 2014; van Bruggen 
et al. 2016). These practices are increasingly evidenced and 
implemented widely enough to inspire innovation and create 
a testing ground for adoption. However, more research and 
more strategically informed investments in innovation are 
needed so that this can be more widely implemented within 
mainstream, non-certified farming (in which certain inputs 
are allowed).

A common denominator among these practices is the 
improved use and strength of natural processes in the ecosys-
tem in order to reduce dependency on external resource inputs 
with upheld crop productivity. The aim is to achieve auton-
omy in production based on efficient and circular resource use 
via geographic integration of multiple forms of production. 
A pervading component is adopting practices that enhance 
biodiversity to strengthen ecosystem functions such as biotic 
pest regulation and nutrient cycling (Bommarco et al. 2013).

The following section presents practices and research 
findings that exemplify how the crop ecosystem character-
istics of diversification, perenniality, reduced disturbance, 
and spatial matching can be managed within the crop field 
and the cropped landscape.

3.1  Redesigning the crop field

The crop field can be redesigned in terms of which crops, cul-
tivars, and support plantings are grown in it. Crop species and 
cultivars can be grown together within a field in a specified 

season through inter-, strip-, or patch-cropping. We can plant 
crops that are either annual or perennial. We decide the dura-
tion of the season during which the soil is covered with a 
crop and the number and sequence of crops that are rotated 
or relay cropped over time. In addition, the ecology of the 
field is greatly influenced by how and when we sow, as well 
as when we till, fertilize, and harvest and what we do with the 
crop residues. This management regime affects the diversity, 
disturbance, and successional stage in the crop field, hold-
ing great implications for crop protection. The amount of 
literature on the subject is copious and growing. I will now 
introduce the main sets of practices, pointing the reader to 
literature on the subject that they may delve further into.

3.1.1  Crop diversity

As mentioned, the crop is a foundational organism for the crop-
ping ecosystem. A straightforward way to increase biodiversity 
in the ecosystem is simply to grow more crop species or func-
tionally different crops, such as grasses, forbs, broadleaf, and 
nitrogen-fixing crops. They can be combined in many ways 
either sequentially over time, e.g., in a rotation, or in the same 
field and season associating them in different spatial configura-
tions, such as inter-, relay-, strip-, or patch-cropping. This can 
have substantial consequences for crop protection.

Diverse crop rotations often prevent pest population 
build-up by breaking the pest life cycle. This is due to 
resource competition and interference and the fact that the 
pests’ resources are removed over time (Malezieux et al. 
2009; Bennett et  al. 2012). The exact mechanisms for 
observed yield gains in diverse rotation are poorly known, 
but the creation of disease-suppressive soils could be an 
important contributing factor (Santhanam et al. 2015; Peralta 
et al. 2018). By using diverse rotations, attacks by pests 
that are difficult or impossible to manage curatively can be 
avoided. These pests are numerous and include several weeds 
(Liebman & Dyck 1993), such as black grass in winter wheat 
(Moss 2017), pathogens such as club root disease in oilseed 
rape (Derbyshire & Denton-Giles 2016), and root rot in peas 
(Kälin et al. 2022). They also include animals such as cysts 
and root-knot nematodes in potatoes (Jones et al. 2013).

Long-term agricultural plot experiments have shown that 
rotations with functionally different crops benefit yields, 
which, for some crops, increase continually over time 
(Smith et al. 2023). The gains occur due to a combination 
of enhanced soil fertility, nutrients, and water use efficiency 
(MacLaren et al. 2022), resistance to adverse climatic con-
ditions (Bowles et al. 2020; Marini et al. 2020; Costa et al. 
2024), and improved pest regulation (Bennett et al. 2012). 
The latter is, however, likely to be underestimated in agricul-
tural long-term trials as pesticides in many of these experi-
ments are applied equally across treatments. However, trials 
in which herbicide applications have been optimized in each 
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rotational treatment demonstrate a reduced need for chemi-
cal weed control in diverse rotations (Davis et al. 2012; 
Weisberger et al. 2019). More long-term experiments with 
a setup such as these, in which crop protection measures are 
optimized and recorded treatment-by-treatment, would be 
needed to accurately evaluate the contributions to pest regu-
lation from crop diversification and other farming practices.

We can reduce pest incidence and yield losses to weeds 
(Petit et al. 2018; Vrignon-Brenas et al. 2018; Gu et al. 2021) 
and disease (Stomph et al. 2020) by growing mixtures of crop 
species in intercrops or with service crops in the form of cover 
crops, green manure, and relay crops. There are concerns that 
service crops could encourage soil-borne pathogens, but there 
is as yet little evidence that this would be the case despite 
widespread implementation in some regions (Šišić et al. 
2018). Combinations of intercropped species are also effec-
tive for insect control (Hooks & Fereres 2006; Letourneau 
et al. 2011; Iverson et al. 2014), e.g., as part of “push-pull” 
pest control techniques (Cook et al. 2007). Varietal mixtures 
reduce losses to mainly aerial pathogens in cereals and rice 
(Borg et al. 2018; Reiss and Drinkwater 2018; Hariri et al. 
2001; Kristoffersen et al. 2020; Zhu 2000) and can affect 
insect pests (Tooker and Frank 2012). They do, however, have 
limited effects on weed control (Lazzaro et al. 2018).

3.1.2  Perennial crops

Perennial cropping, such as with perennial legume-grass 
mixes for feed and pasture (ley), moves the ecosystem into a 
later stage of succession. It reduces soil erosion and has well-
documented positive effects on soil structure and fertility, 
nutrient cycling, soil water retention, and also pest regulation 
(Lemaire et al. 2015; Martin et al. 2020). Perennial crops can 
outcompete weeds that thrive in annual crops (Meiss et al. 
2010a; Schuster et al. 2020). Interestingly, weeds that are 
found alongside perennial crops (and that are not problematic 
in annual crops) contribute to a species-rich weed community 
that is less competitive with the crop (Meiss et al. 2010b).

Perennial crops have a great capacity to increase soil organic 
matter (Scotti et al. 2015; Thorup-Kristensen et al. 2020; Tang 
et al. 2024), which increases predator communities that prey 
on crop herbivores (Tsiafouli et al. 2015; Garratt et al. 2018; 
Heinen et al. 2024) and increases the soil’s disease-suppressive 
capacity (cf. Expósito et al. 2017). Introducing perenniality 
and increasing the soil’s organic matter are promising options 
for strengthened ecological functionality, including pest  
regulation both above and below ground.

3.1.3  Tillage and fertilization

Cropping will inevitably disturb the ecosystem through 
sowing, managing pests, and harvesting the crop (Gaba 

et al. 2014; Tooker et al. 2020). Tilling to control weeds 
and prepare the seed bed significantly disturbs the eco-
system (Lal et al. 2007). Reduced tillage or direct sowing 
diminishes mechanical disturbance, increases organic mat-
ter near the soil surface, and mitigates soil erosion (Stinner 
& House 1990). Predatory arthropods and insect pest sup-
pression can benefit from conservation tillage (Tamburini 
et al. 2016). However, some problematic weeds, especially 
those with a competitive life history strategy (sensu Grime 
1977), are less well regulated than with conversion till-
age (Gaba et al. 2017; Wittwer & van der Heijden 2020). 
Volunteer crops (Cordeau 2022) and slugs (Douglas & 
Tooker 2012) can cause problems and increase depend-
ence on pesticides. A recent global meta-analysis, how-
ever, showed no difference in pest incidence between deep 
conversion and conservation tillage, and foliar pests were 
somewhat less prevalent in the latter (Rowen et al. 2020). 
To fully reap the benefits of reduced tillage, more non-
chemical options to suppress weeds, such as with mechani-
cal means, would need to be developed (e.g., Bergkvist 
et al. 2017; Grosse et al. 2021).

Organic fertilizers increase the soil diversity of several 
taxa by providing resources to the soil micro- and macro-
biota (Hines et al. 2006; Birkhofer et al. 2008; Viketoft et al. 
2021) and provide food resources to support populations of 
generalist natural enemies and seed predators above ground 
(Birkhofer et al. 2008; Riggi and Bommarco 2019). In com-
parison, inorganic mineral fertilizers feed nutrients more 
directly to the plant, increasing the plant’s nitrogen con-
tent and the food quality for the herbivores enhancing their 
growth and reproduction (Herencia et al. 2007). Organic fer-
tilization, especially with manure, can also boost top-down 
predator suppression of insect pests (Birkhofer et al. 2008; 
Riggi and Bommarco 2019; Aguilera et al. 2021; Heinen 
et al. 2024). Increasing soil’s carbon content is beneficial for 
nutrient cycling and use efficiency and is also a key practice 
for enhancing crop protection. Combining such management 
with microbiome inoculation and engineering to build spe-
cific and general disease-suppressive soils is a promising 
development for crop protection (Schlatter et al. 2017; Hart-
man et al. 2018; Banerjee et al. 2019; Trivedi et al. 2022).

Diversifying farming practices builds associated biodi-
versity, strengthening multiple ecological functions in the 
cropping ecosystem, including pest regulation (Tamburini 
et al. 2020a, b; Dainese et al. 2019). The win-win out-
comes from diversification between crop yield and other 
ecosystem processes that support primary production will 
become apparent (Tamburini et al. 2020a, b). The concept 
of “biodiversity farming” can be used to maintain yields 
under suppressed resource inputs and is aligned with the 
key aims for future agriculture, such as climate-neutral 
“carbon farming” and securing food availability (Lehner 
& Rosenberg 2021).
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3.2  Redesigning the cropped landscape

Organisms move, and materials are exchanged among habitats 
in the landscape (Gounand et al. 2018). Pests disperse widely, 
and ecological functions that support crop production, such 
as pest regulation and pollination, are provided by mobile 
organisms whose occurrence and population sizes are com-
monly regulated at spatial scales well beyond that of the crop 
field (Kremen et al. 2007; Moslonka-Lefebvre et al. 2011; 
Jonsson et al. 2014; Bourgeois et al. 2020). The processes 
and outcomes we observe in a crop field are thus a combined 
result of the ecological conditions within that field and of 
the composition and configuration of the surrounding land-
scape (Fahrig 2011). Successful pest management requires a 
landscape perspective and coordinated land use that reaches 
beyond the individual farm (Kremen and Merenlender 2018).

3.2.1  Landscape composition

A landscape perspective related to pest management can be 
used for arthropods in conservation biological control, i.e., 
encouraging naturally resident predators and parasitoids that 
prey on or parasitize herbivorous arthropods (Tscharntke 
et al. 2007; Rusch et al. 2017; Landis 2017), pathogen epide-
miology (Plantegenest et al. 2007; Meentemeyer et al. 2012), 
and weed dispersal (Bourgeois et al. 2020).

Perenniality within the landscape plays a key role. If the 
landscape is covered with stable and diverse perennial crops 
(e.g., ley) and non-crop habitats, there is more likely to be an 
abundance and diversity of predators and parasitoids to insect 
pests (Cronin and Reeve 2005; Chaplin-Kramer et al. 2011; 
but see Karp et al. 2018) as well as pest regulation (Rusch et al. 
2013; 2016; Veres et al. 2013). Grasslands, forests, hedgerows, 
field margins, road verges, and perennial crops provide con-
tinuous access to alternative food and refuge for predators and 
parasitoids in cropped landscapes dominated by intensively and 
frequently disturbed crop fields (Vasseur et al. 2013; Schell-
horn et al. 2015). In contrast, specialized pests prefer large-scale 
and continuous growth of their host crop, although they might 
be temporarily diluted (Delaune et al. 2021). Pests often have 
higher dispersal and growth capacity and are adapted to exploit 
ephemeral nutrient-rich plant resources in early succession eco-
systems. Their predators are instead more sensitive to distur-
bance, have lower growth rates and longer generation times, 
and therefore need local and continuously available resources 
(Schellhorn et al. 2015; Tooker et al. 2020).

Creation of pest-suppressive landscapes is based on the 
establishment (Landis et al. 2000; Jonsson et al. 2015; Gurr 
et al. 2017; Albrecht et al. 2020), preservation, and restoration 
(Chaplin-Kramer et al. 2011; Gardiner et al. 2018) of peren-
nial (preferably native) (Parry et al. 2015) vegetation within 
dispersal range to the crop for predators and parasitoids (Rand 

et al. 2006). However, perennial habitats can also harbor alter-
native hosts for pathogens, insect herbivores, and other pests. 
Exotic pests have been known to favor perennial non-crop 
habitats, probably due to access to added resources (beyond 
the crop) and the lack of natural enemies adapted to prey on 
them (Tamburini et al. 2020a, b). The devastating spotted 
wing drosophila, Drosophila suzukii Matsumura, is such an 
example in Europe.

Future research must seek to understand how perennial 
habitat quality affects pest, predator, and herbivore com-
munities. This has only recently been gleaned from com-
parisons between forms of perennial habitat established with 
the intent to support biodiversity and the functioning of the 
ecosystem (Woodcock et al. 2008; Boetzl et al. 2019; 2020). 
Population ecological research is needed on the resource 
type and continuity needed for arthropods to complete their 
life cycle and the mortality factors that drive their popula-
tion dynamics (Schellhorn et al. 2015). This information can 
also guide the implementation of plantings and off-settings, 
such as flower strips and hedge rows, targeted to provide 
vital resources to various organisms (Jonsson et al. 2010; 
Tschumi et al. 2015).

3.2.2  Landscape configuration

Not only the proportion but also the size, shape, and spatial 
arrangement, or configuration, of land use types can affect 
pest regulation (Fahrig 2011; Sirami et al. 2019). We can 
measure the configuration of agricultural landscapes in sev-
eral ways, depending on the habitat’s size distribution (or 
grain size), shape complexity, and connectivity. The crop 
field’s size and the amount of perennial edge habitat are 
two commonly used metrics for agricultural landscapes 
(Martin et al. 2019; Estrada-Carmona et al 2022). Differ-
ent taxa respond differently to landscape configuration. For 
predatory arthropods, carabids, spiders, and coccinellids 
appear to be less sensitive, while parasitoids, syrphid flies, 
nabids, chrysomelids, and predatory wasps benefit from 
fine-grained landscapes. This could be due to their gener-
ally poorer dispersal capacity (reviewed in Haan et al. 2020). 
Configuration was less consequential for the predator com-
munity compared with the proportion of perennial habitat in 
South Korean agricultural landscapes (Martin et al. 2016). 
Some predators were affected by the landscape configura-
tion, depending on the amount of non-crop perennial habitat 
and predator traits such as dispersal mode, overwintering, 
and food requirements (Martin et al. 2019). When devising 
pest-suppressive landscapes, we would need to consider both 
landscape composition and configuration (Haan et al. 2020).

The regional pool of species available is affected by 
regional land use, where a diversity of land uses in the 
greater landscape supports a richer regional species pool by 
providing habitat and resources for more species to flourish 
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(Gering et al. 2003; Tscharntke et al. 2007; Clough et al. 
2007). Theory hypothesizes that resilient, stable baseline 
pest regulation is obtained through a diversity of crops and 
non-crop habitats spread out through the landscape, which 
provide contrasting resources asynchronously over time 
and support a diverse pool of species (Peterson et al. 1998; 
Tscharnkte et al. 2007).

3.2.3  Landscape effects of farming practices

The crop field is a key habitat for a wealth of organisms, 
and as we have seen, field management greatly shapes the 
local community. However, we know less about how farm-
ing practices affect associated biodiversity and pest regu-
lation when implemented across large geographic areas. 
Organic farming, crop diversity, the proportion of peren-
nial ley, and their subsequent effects on the landscape have 
been examined. Weeds, predatory and herbivorous arthro-
pods, and weed seed and prey predation rates have all been 
explored.

Employing organic farming in the landscape increases 
weed diversity and can positively affect predatory insects 
and predation rates (Inclán et  al. 2015; Muneret et  al. 
2018). However, the effects are poorly documented, and 
there are also studies that show only marginal effects (Petit 
et al. 2020). Increased crop diversity within the landscape 
can affect resource availability and continuity for mobile 
organisms such as predatory arthropods (Vasseur et  al. 
2013; Schellhorn et al. 2015). It can also directly enhance 
predatory ground beetle diversity (Fahrig 2015; Palmu et al. 
2014; Carbonne et al. 2022) or when combined with non-
crop pastures and forests (Aguilera et al. 2020). The abun-
dance of certain predator species can increase with crop 
diversity (Bertrand et al. 2016) or in the presence of spe-
cific crops within the landscape (Marrec et al. 2017). Others 
have found no such effects on predatory arthropods (Bosem 
Baillod et al. 2017). The results are difficult to compare, as 
analytical approaches and measures to describe the preda-
tor and crop communities vary widely. Overall, the taxa of 
predatory arthropods examined so far seem not to respond 
strongly to crop diversity within the landscape. However, the 
biological control of aphids has been noted to increase with 
landscape crop diversity (Redlich et al. 2018; Scheiner and 
Martin 2020). Given the strong effects of local field manage-
ment on biodiversity, it is plausible that more effects on the 
landscape will become evident if diverse, perennial, and less 
disturbed cropping is implemented over large areas. This is 
even more likely if combined with high-quality, non-crop 
perennial habitat in the landscape.

A key action that has been taken to reduce pesticide 
use has been to increase the efficiency of crop protection 
measures in farming. In some places, better-targeted and 
less toxic chemical pesticides are applied at lower doses and 

with improved machinery and precision. Treatment deci-
sions based on pest monitoring, forecasting, and economic 
thresholds are promoted (e.g., Damos 2015). Added to this 
is the training and licensing of operators, labeling, and pes-
ticide resistance management. Chemical pesticides have, to 
some extent, been substituted with biological control agents 
and mechanical weeding. Pesticide use, however, remains 
high and is even increasing in some regions within the EU 
(Lapierre et al. 2019; Hossard et al. 2017; European Envi-
ronmental Agency 2023), and the US (Douglas and Tooker 
2015; Douglas et al. 2020), with uncertain risk implications 
(European Court of Auditors 2020).

Pesticide use efficiency gains and substitutions may have 
dampened an otherwise even greater increase in pesticide 
use, but these incremental and substitutive actions have not 
released us from the apparently locked-in dependence on pes-
ticides for food production (Vanloqueren & Baret 2009; Conti 
et al. 2021; Clapp 2021). Substitutions for pesticides, e.g., 
with mechanical means, biological control agents, breeding, 
and precision farming, will be key for a successful transi-
tion toward pesticide-free agriculture. To release us from the 
pesticide lock-in, future crop protection must be based on 
preventative rather than curative measures. This requires a 
shift from incremental changes of existing cropping formats to 
completely redesigning the cropping ecosystem, underpinned 
by new and adapted trajectories of innovation (Tittonell 2014; 
van Bers et al. 2019). The ecology of the cropping system 
needs to be redesigned.

4  Technologies, breeding, economics, 
and innovation

Adapted technologies and breeding will be crucial for devel-
oping and implementing ecologically redesigned cropping. 
Farmers will need access to suitable technologies, inputs, 
and genetic material to sustain and raise yields. For this, 
crop plants must be bred for the new ecological condi-
tion. This will involve using modern tools but setting new 
breeding targets for an ecologically redesigned crop plant 
(Rubiales 2023). Furthermore, ecologically redesigned crop 
production will still require curative actions and manage-
ment interventions against pests. Promising curative tools 
to sustain yields include a combination of technologies that 
substitute chemical pesticides, such as biological control 
agents, mechanical techniques, and the precise and directed 
use of available chemical pesticides, inducing minimal expo-
sure and risk.

Productivity and farm economics must be sustained in 
redesigned crop ecosystems. This is especially important 
during the transition. There are promising indications that, 
for instance, crop diversification builds productivity over 
time (Smith et al. 2023). The final potential benefits are, as 
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yet, unknown and appear promising. However, it is clear that 
building the biotic regulation of yield-supporting processes 
takes time.risk.

In any case, it has to be conceded that without pesticides, 
some crops will likely suffer significant yield reductions in 
certain regions due to chronic or recurring pest infestations, 
at least when transitioning away from pesticide dependency 
(INRA 2010). For instance, it is currently not viable to grow 
spring oilseed rape without insecticides in south-central 
Sweden due to recurring insect herbivory both at emergence 
and the flowering stage (Lundin et al. 2020). It remains to 
be understood if this is caused by the weak natural regula-
tion of the pest and whether yields would return to economi-
cally viable levels with ecologically redesigned cropping. 
However, it is encouraging that we, already under currently 
implemented policies and market rules (which continue to 
promote specialization and enlargement and in turn increased 
dependence on pesticides), find that adopting agroecological 
farming practices such as crop diversification can strengthen 
farm economic performance (van der Ploeg et al. 2019; Nils-
son et al. 2022; Sánchez et al. 2022).

The ecological redesign is knowledge-intensive. It requires 
long-term research commitments and open sharing of co-
developed knowledge by practitioners and scientists (Duru 
et al. 2015). Researchers can take risks to undertake chal-
lenges, such as cropping with less or no chemical pesticides 
(e.g., Ditzler et al. 2021; Cordeau 2022; ZALF 2023). This 
kind of visionary system-oriented research and demonstration 
is needed to catalyze the shift needed for the radical innova-
tion of mainstream agriculture (Jacquet et al. 2022). This is 
particularly warranted for large-scale staple cropping systems 
(Mortensen and Smith 2020). Basic science plays an important 
role in this effort. Agricultural sciences draw from all fields of 
basic science. Among them, ecology is emerging as particu-
larly relevant for the modernization of cropping. An improved 
understanding of ecological principles and the biophysical 
processes involved in agricultural ecosystems and integrating 
this knowledge into agronomy science would strengthen the 
theoretical and strategic basis for crop ecosystem redesign.

5  Conclusions

The ecological redesign of crop ecosystems aims to reduce 
pesticide reliance by strengthening the overall biotic regu-
lation of crop pests and, in turn, preventing pest outbreaks. 
This overview shows that there is further scope to engage 
knowledge stemming from ecosystem and community ecol-
ogy, to devise guiding principles for redesign at the ecosys-
tem level. A release from lock-in and a transition of agricul-
ture to low, or no, dependence on pesticides builds on the 
adoption of a diverse set of locally adapted practices that 

enhance local biodiversity. This does not ignore the fact that 
general guiding principles exist, which predictably define 
ecological processes across ecosystems. In this review, four 
such principles are suggested based on our understanding of 
ecosystems and community ecology in relation to perennial-
ity, disturbance, biodiversity, and spatially matched land use. 
Principal ecosystem characteristics are identified that confer 
autonomy in production, reduce reliance on costly external 
inputs, and strategically inform and guide policies related to 
agriculture, biodiversity, and research.
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