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ABSTRACT
Forests worldwide contain unique cultural traces of past human land use. Increased pressure on
forest ecosystems and intensive modern forest management methods threaten these ancient
monuments and cultural remains. In northern Europe, older forests often contain very old traces,
such as millennia-old hunting pits and indigenous Sami hearths. Investigations have repeatedly
found that forest owners often fail to protect these cultural remains and that many are damaged
by forestry operations. Current maps of hunting pits are incomplete, and the locations of known
pits have poor spatial accuracy. This study investigated whether hunting pits can be automatically
mapped using national airborne laser data and deep learning. The best model correctly mapped
70% of all the hunting pits in the test data with an F1 score of 0.76. This model can be
implemented across northern Scandinavia and could have an immediate effect on the protection
of cultural remains.
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Introduction

The long history of forest utilization in Sweden has forged a
remarkable heritage encompassing a wide array of ancient
monuments and cultural remains in forests. These invaluable
relics reveal our profound economic, social, and cultural
relationships with the forest and its significant importance
in shaping Sweden’s development. Examples of these ancient
features include hunting pits, often dating back several thou-
sands of years and which are unique from a global perspec-
tive (Hennius 2020), Sami hearths showing patterns of
prehistoric and historic indigenous Sami land use in north-
ern Sweden (Liedgren et al. 2017), charcoal kilns (platforms)
documenting the long importance of wood for the Swedish
mining industry, and tar-kilns that are remnants of a now-
forgotten industry that supplied the world with pine tar
used to preserve ships (Norstedt et al. 2020; Östlund, Zack-
risson, and Axelsson 1997). Numerous additional examples
exist in the Swedish forests. These examples are present in
approximately 68% of forest land, each offering an insight
into the rich forest history of Sweden. Regrettably, a signifi-
cant number of these remains have been destroyed due to
modern forest management and hydroelectric development,
not only in Sweden but also in many other forest-dominated
countries. Consequently, the recognition of the significance
of preserving cultural heritage within forests is growing
both nationwide and globally (Agnoletti and Santoro
2018). Furthermore, the increasing pressure on forests as
part of climate change policies, coupled with the need for
enhanced knowledge of historical land use, including indi-
genous communities, are fueling calls for more robust legis-
lation and better and more precise forest management
practices. Consequently, and in accordance with inter-
national obligations (enshrined in Article 1 of the convention
concerning the protection of world cultural and natural

heritage [unesco.org]), Sweden is obliged to protect ancient
monuments and cultural remains in forests, particularly
those that are considered unique to Sweden or northern
Scandinavia. Examples of such remains are hunting pits
and Sami hearths, which are mostly located in northernmost
Sweden, including the counties of Jämtland, Västerbotten,
and Norrbotten.

In Sweden, cultural environments in the forest can be
divided into two categories. Ancient monuments, i.e. objects
established before A.D. 1850, including the surrounding
environment, are protected by Swedish law under the Cul-
tural Environment Act. Other cultural historical remains,
i.e. from A.D. 1850 onwards, are covered by the rules of con-
sideration in section 30 of the Forestry Act. Despite being
legally protected, investigations have repeatedly found that
forest owners, who are responsible for knowing whether
there are ancient remains and other cultural environment
values on their property and sometimes on neighboring
properties, often fail to protect them. According to the Swed-
ish Forest Agency’s regular inventories, more than a quarter
of cultural remains (27%) have been damaged by forestry
operations (Raymond 2022). An important reason for the
continuing destruction of cultural remains, despite the
legal protection and all the actors involved (forest owners
and responsible authorities) being aware and having good
intentions (Ögren 2019), is that ensuring their preservation
is difficult because they are rarely marked on the maps
used for forest planning.

Since there seems to be general agreement that the current
situation is unacceptable (Amréus 2020), a number of edu-
cational initiatives have been carried out over the years to
raise awareness among forest owners and also, for example,
machine operators, on how to detect and protect cultural
remains and agree upon certain practices to avoid damage
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(e.g. when logging during the winter). Despite these
measures, the problem persists when the actors involved
lack updated and accurate maps and specific information
regarding cultural remains. Current databases of, for
example, hunting pits are incomplete, and the locations of
pits that are listed have poor spatial accuracy. New methods,
such as airborne laser scanning (ALS), offer opportunities to
discover and map cultural remains in forests on large scales
(Caspari 2023; Opitz and Herrmann 2018). ALS technology
involves scanning the ground with laser pulses from aircraft
flying at an altitude of about 3 km. The acquired data can
provide three-dimensional representations of landscapes
with very high resolution (Reutebuch, Andersen, and
McGaughey 2005; Thuestad et al. 2021) and are capable of
revealing cultural remains under the forest canopy (Johnson
and Ouimet 2014; Luo et al. 2019). However, it is not feasible
to use manual interpretation to digitize thousands of small-
scale remains, such as hunting pits.

Semi-automatic detection of cultural remains can signifi-
cantly speed up the digitization process. Trier and Pilø
(2012) proposed template matching to map pit structures,
such as sites for iron production and hunting pits. Trier, Zor-
tea, and Tonning (2015) built on this method and mapped
mound structures using ALS data. Opitz and Herrmann
(2018) argued that the biggest weakness of automatic
methods was that they did not detect archaeological features
with heterogeneous backgrounds at a large scale. However,
the recent development of advanced image analysis methods,
such as machine learning, has opened up new ways to detect
cultural remains. Convolutional Neural Networks (CNN)
have become the backbone of image processing and have
been applied to map archaeological sites (Caspari and Crespo
2019; Verschoof-van der Vaart et al. 2020). Freeland and col-
leagues (2016) used object detection to map earthworks in
the Kingdom of Tonga, Trier, Cowley, and Waldeland
(2019) used ResNet18 to find old house foundations in Scot-
land, and Verschoof-van der Vaart and Lambers (2019) used
Regions-based Convolutional Neural Networks (R-CNN) to
find Celtic fields and house foundations in The Netherlands.
Trier, Reksten, and Løseth (2021) also used R-CNN to map
charcoal kilns, hunting pits, and grave mounds from dense
ALS data in parts of southern Norway. However, the R-
CNN suffered from a large number of false positives.
Guyot and colleagues (2021) used Mask R-CNN with trans-
fer learning to detect and characterize archaeological struc-
tures. Segmentation approaches such as UNET
(Ronneberger, Fischer, and Brox 2015) could also be used
to map archaeological features (Ibrahim, Nagy, and Benedek
2019; Li et al. 2022), and the recently-developed deep learn-
ing method You Only Look Once (YOLO) (Redmon et al.
2016) also shows promising potential for detecting small fea-
tures from remote sensing data (Yang 2021).

There has been a great deal of focus on developing and
evaluating new deep learning algorithms, but less attention
has been given to the pre-processing of the ALS data. ALS
data are commonly converted to a digital elevation model
(DEM) from which topographical indices, such as hill shad-
ing, can be applied to visualize small-scale features. A hill-
shaded DEM (shaded relief) is a method for visualizing topo-
graphy and does not give absolute elevation values. On the
one hand, hill shading is easy for humans to interpret, and
the fixed range of possible values makes it easier to normalize
for machine learning models. On the other hand, hill shading

is affected by the line of sight in the DEM and the position of
the light source. Štular and colleagues (2012) evaluated mul-
tiple topographical indices for manual visual detection and
interpretation of archaeological features and concluded
that interpreters should choose different techniques for
different terrain types. Further, it is reasonable to assume
that the optimal indices depend on the type and scale of
archaeological features an interpreter is interested in. For
example, linear features such as fences might be better visu-
alized with hill shading, while pit-like features such as char-
coal pits and hunting pits could benefit more from
hydrological indices such as depth in sink or elevation
above pit. Further, topographical indices intuitive to humans
are not necessarily optimal for machine learning models.
Machine learning models can also be trained with a combi-
nation of multiple topographical indices simultaneously, as
demonstrated by Guyot and colleagues (2021). There has
been a renewed interest in research on enhanced use of
local topography, partly due to the widespread use of ALS
data over the last decade. Multiscale analytical techniques,
in particular, have gained popularity due to their ability to
overcome the inherent scale-dependency of many DEM-
derived attributes, such as local topographic position (Lind-
say, Cockburn, and Russell 2015; Newman, Lindsay, and
Cockburn 2018).

This study combined multiple CNN models with various
topographical terrain indices to map small-scale archaeologi-
cal features from ALS data. We focused on hunting pits since
they have proven difficult to map in scarce ALS point clouds
less than 5 points per m2 (Trier and Pilø 2012) and are
unique to northern Scandinavia. The aim was to investigate
whether hunting pits could be automatically mapped using
Swedish national ALS data and deep learning. We also eval-
uated the performance of traditional topographical indices
and multiple state-of-the-art topographical indices explicitly
selected to enhance pit structures in high-resolution DEM
data. Specific research areas were: 1) is a point cloud with
1–2 points per m2 good enough to map small-scale cultural
remains such as hunting pits? 2) Which topographical ter-
rain indices are best for detecting hunting pits? 3) Compar-
ing the difference in performance and processing between a
DEM with 0.5 m resolution and one with 1 m resolution, is
the difference in accuracy worth the increased processing
time? 4) A discussion of potential implications of these
tools for forestry policy at the national level of implemen-
tation and practice for forest owners.

Method

We trained multiple deep neural networks on ALS data and
manually digitized hunting pits from central and northern
Sweden. Some 20% of the hunting pits were set aside for test-
ing the trained models. In addition to this test data, we also
applied the best models to a demonstration area in northern
Sweden. Due to limited training data, we utilized transfer
learning, where data from impact craters on the moon
were used to pre-train the models.

Training data

Coordinates of 2000 known hunting pits were downloaded
from the Swedish national heritage board (Figure 1A). The
coordinates were manually adjusted based on visual
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observations in a hill-shaded elevation model. The area sur-
rounding known hunting pits was inspected, and additional
hunting pits were manually digitized if discovered. The
adjusted coordinates were also converted to polygon circles
outlining the size of each hunting pit. In total, 2519 hunting
pits were digitized in this way. These polygons were con-
verted into segmentation masks where pixels inside the poly-
gons were given a value of 1 and pixels outside the polygons
were given a value of 0. The segmentation masks were also
converted to bounding boxes for the YOLO model.

Topographical indices

A compact laser-based system (Leica ALS80-HP-8236) was
used to collect the ALS data from an aircraft flying at
2888–3000 m. The ALS point clouds had a point density of
1–2 points m2 and were divided into 204 tiles with a size
of 2.5 × 2.5 km each. The tiles covered an area of 1275
km2. DEMs with 0.5 m and 1 m resolution were created
from the ALS point clouds using a TIN gridding approach
implemented in Whitebox tools 2.2.0 (Lindsay 2016). Ten
topographical indices were calculated from the DEMs
using Whitebox Tools to highlight local topography, making
it easier for the deep learning model to learn how hunting
pits appear in the DEMs.

The first was multidirectional hill shading, a process that
combines hill-shaded images from azimuth positions at 225,
270, 315, and 360 (0) degrees. The amalgamation of these
images is achieved through a weighted summation, with azi-
muth positions at 270 degrees holding the highest weight of
0.4, followed by positions at 225 and 315 degrees with weights
of 0.1 each, and finally, 360 (0) degrees with a weight of 0.1.

Moving on, the maximum elevation deviation measures
the maximum deviation from mean elevation for each grid
cell in a DEM across various spatial scales. This multiscale

analysis is densely sampled and quantifies the relative topo-
graphic position as a fraction of local relief normalized to the
local surface roughness, as proposed by Lindsay, Cockburn,
and Russell (2015).

Another topographical index included was the multiscale
elevation percentile, a metric that calculates the greatest elevation
percentile across a range of spatial scales. This measurement
serves to express the local topographic position, representing
the vertical position for each DEM grid cell as a percentile of
the elevation distribution, as outlined by Huang, Yang, and
Tang (1979) and Newman, Lindsay, and Cockburn (2018).

The analysis also delves into curvature measures, dis-
tinguishing betweenminimal andmaximal curvature. Minimal
curvature indicates the curvature of a principal section with the
lowest value at a given point on the topographic surface, where
positive values denote hills and negative values suggest valley
positions. Conversely, maximal curvature represents the curva-
ture of a principal section with the highest value at a given
point on the surface, with positive values signifying ridge pos-
itions and negative values indicating closed depressions,
according to the work of Shary, Sharaya, and Mitusov (2002).

Profile curvature, another parameter, is examined as the
curvature of a normal section having a common tangent line
with a slope line at a given point on the surface. Positive values
of the index are indicative of flow acceleration, while negative
profile curvature values indicate flow deceleration, following
the principles outlined by Shary, Sharaya, and Mitusov (2002).

Further, the analysis incorporates measures of surface shape
complexity, texture, and roughness, such as the spherical stan-
dard deviation of normal. This metric quantifies the angular
dispersion of surface normal vectors within a local neighbor-
hood, utilizing a specified filter window of 11 pixels in this
study, as established by Grohmann, Smith, and Riccomini
(2011), Hodgson and Gaile (1999), and Lindsay, Newman,
and Francioni (2019).

Figure 1. Locations of hunting pits used in this study. In total, 2519 hunting pits were manually mapped in northern Sweden. Some 80% of the hunting pits were
used for training the models, while 20% were used for testing.
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Moreover, a multiscale standard deviation of normal is
introduced, akin to the spherical standard deviation of nor-
mal but extending its applicability across multiple scales
without necessitating a specified filter window. The analysis
also includes elevation above pit, which calculates the
elevation of each grid cell in a DEM above the nearest down-
slope pit cell along the flow path. Additionally, depth in sink
is explored as a measure of the depth of each grid cell within
a closed topographic depression, defined as a bowl-like land-
scape feature without an outlet, as proposed by Antonić,
Hatic, and Pernar (2001).

The topographical indices and labelled images from the
204 tiles were split into image chips with 250 × 250 pixels
in each chip (Figure 2). Image chips without hunting pits
were removed to combat the highly imbalanced class dis-
tribution. This resulted in 1640 image chips with 0.5 m
DEM and 1023 image chips from the 1 m DEM. Some
80% of the chips were randomly selected for training
and 20% for testing. Further, we assumed that the hunting
pits and the immediate surrounding terrain did not have
any preferred orientation, which allowed for image

augmentation by rotating and flipping the image chips
during training.

Transfer learning

Due to the relatively small number of digitized hunting pits,
we chose to utilize transfer learning, i.e. training on similar
data from another data source, before fine-tuning the
model on the real data. Inspired by recent work by Gallwey
and colleagues (2019), we chose to use impact craters on the
lunar surface as a transfer learning strategy. The idea was that
impact craters are pits in a lunar DEM and so would be simi-
lar enough to hunting pits on Earth to give our models a bet-
ter starting point than random initialized weights (Figure 3).
The craters were digitized by NASA and were available from
the Moon Crater Database v1 (Robbins 2019). The database
contained approximately 1.3 million lunar impact craters
and were approximately complete for all craters larger than
about 1–2 km in diameter. Craters were manually identified
and measured with data from the Lunar Reconnaissance
Orbiter (LRO). The Lunar Orbiter Laser Altimeter, which

Figure 2. An example of one of the image chips used to train the deep learning models. Each topographical index was selected to highlight the local topography
to make it easier for the deep learning model to learn how hunting pits appear in the lidar data. The segmentation mask was used as the label for the segmenta-
tion model, while the bounding boxes were used for the object detection model. The chips displayed here are from a DEM with 0.5 m resolution.
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was located on the LRO spacecraft, was used to create a DEM
of the moon with a resolution of 118 m (Mazarico et al.
2012). All models were pre-trained with the lunar data before
being trained on the hunting pit dataset.

Deep learning architectures

This study evaluated three deep learning architectures:
semantic segmentation using two types of U-nets, a standard
U-net and an Xception U-net, as well as object detection
using a variant of “You Only Look Once (YOLO)” called
You Only Learn One Representation (YOLOR).

Semantic segmentation
We used TensorFlow 2.6 to build two types of encoder-deco-
der style deep neural networks to transform the topographical
indices into images highlighting the detected hunting pits. On
the encoding path, the networks learn a series of filters, orga-
nized in layers, which express larger and larger neighborhoods
of pixels in fewer and fewer vectors of features. This down-
sampling forces the networks to ignore noise and extract fea-
tures relevant for hunting pit detection. In addition to this
regular U-net, which applies a filter to all feature vectors in
a specific spatial neighborhood at once, we also used a U-
net with Xception blocks (Chollet 2017), which we refer to
as Xception UNet. These blocks decouple the filtering of the
spatial neighborhood within each feature dimension from
the filtering across feature dimensions. This approach sim-
plifies the learning problem for hunting pit detection, since
there is no strong coupling between the two dimensions.
After encoding the images into a spatially more compact rep-
resentation, it is again decoded by a series of learned filters
carrying out transposed convolutions into the final classifi-
cation map. This map contains, for every pixel in the input
image, the probability that the pixel belongs to a hunting
pit. Since only about 1% of the pixels in the input images
were labelled as hunting pits, we used a focal loss function
to increase their weight during training (Lin et al. 2017).
Since segmentation models output a probability for each indi-
vidual pixel instead of objects as YOLOR does, we chose to
merge neighboring pixels into polygons which could be inter-
sected with the digitized hunting pits for evaluation.

Object detection
YOLOR is an object detection model that attempts to find
objects in images rather than classify individual pixels as

U-net does. The architecture uses convolutional filters that
extract features into channels. We used the YOLOR
implementation from Wang, Yeh, and Liao (2021).
YOLOR outputs bounding boxes with a probability metric
for each. In this study, we selected bounding boxes with a
probability of 85% for evaluation.

Evaluation

Model performance was evaluated both quantitatively and
qualitatively. Some 80% of the image chips were used to
train the model and 20% to test the models. A centroid-
based approach described by Fiorucci and colleagues
(2022) was used to calculate the number of true positive,
false positive, and false negative predicted hunting pits.
These numbers were then used to calculate recall, precision,
and F1 score for each model. The F1 score symmetrically
represents both precision and recall in one metric, and the
most accurate model was selected as the one with the highest
F1 score. The most accurate models for each resolution were
used to map hunting pits in a demonstration area in north-
ern Sweden where 80 hunting pits had been mapped manu-
ally (Figure 1B) This was done in order to inspect the results
visually, in addition to the statistical metrics from the test
data. To evaluate the feasibility of implementing these
models on large scales, we also calculated the processing
time that each combination of topographical index and deep
learning model needed for predicting hunting pits per km2.

Results

Three deep learning architectures were evaluated for 10
different topographical indices extracted from DEMs with
two resolutions. The U-net model trained on the topographi-
cal index profile curvature from a 0.5 m DEM was the most
accurate method, with an F1 score of 0.76. This method was
able to map 70% of all hunting pits and had a false positive
rate of 15% when evaluated on the test data.

Performance with test data

The evaluation was carried out in two parts. First, the per-
formance using the 20% test data that had been set aside
was assessed. Second, the best combination of DEM resol-
ution and topographical index was applied to a separate
demonstration area for visual inspection. The models that

Figure 3. A) An example of an impact crater in the lunar DEM. Each pixel in the DEM is 118 × 118 m. B) A hunting pit in a DEM created from the national lidar point
cloud from Sweden. Each pixel is 0.5 × 0.5 m.
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were trained on topographical indices from a 0.5 m DEM
were more accurate than models trained on topographical
indices from a 1 m DEM, shown as higher recall and pre-
cision in Figure 4. Further, both the standard U-net and
the XceptionUNet proved to be more accurate with the test
data than YOLOR, regardless of resolution, although Xcep-
tion UNet tended to lead to higher precision while the stan-
dard U-net led to higher recall. All topographical indices
worked fairly well for both segmentation models, but the
curvature-based indices (minimal, maximal, and profile-cur-
vature) resulted in models with slightly better performance
in terms of F1 score. The YOLOR models showed more vari-
ation across the topographical indices, with hill shading,
maximum elevation deviation, and maximal curvature
being the best.

There were also large differences in how much time each
combination of topographical index and deep learning archi-
tecture required to move from a raw DEM to mapped hunt-
ing pits. This time includes both the processing time of the
topographical indices and the inference time of the deep
learning model (Figure 5). The major difference in proces-
sing time is between the 0.5 m DEM and 1 m DEM, since
changing from a resolution of 1 m to 0.5 m increases the
number of pixels by a factor of four. The difference in F1
score between the best model from a 0.5 m DEM (UNet on
profile curvature) and the best model from a 1 m DEM
(UNet on minimal curvature) was a small decrease from
0.76 to 0.71. If these models were to be implemented on all
forest land in Sweden, the processing time would be 241
days on a 0.5 m DEM and 55 days on a 1 m DEM when run-
ning on a single graphics processing unit (NVIDIA A100
GPU). However, this is a highly parallelizable problem, so
the processing could be spread across multiple GPUs in a
computer cluster. Although it was difficult to compare

these results with the models developed and tested using
different landscapes and with different ALS data, the metrics
of our best model were on par with or better than previous
studies. Different studies presented different metrics; the
most commonly used metrics are summarized in Table 1.

Performance for the demonstration area

In addition to the quantitative evaluation with the test data, we
also implemented the best models for each resolution in
northern Sweden where a system of hunting pits had been
manually mapped (Figure 6). YOLOR failed to map most of
the hunting pits in the area, regardless of resolution. The
Xception UNet mapped more hunting pits than YOLOR,
while the UNet model captured most of the hunting pits of
all models but also had the highest number of false positives.

Discussion

For this study, we analyzed and made openly available a large
dataset of 2519 mapped hunting pits spread across 1275 km2

in a landscapemainly dominated by forest. The total area of for-
est land in Sweden is 280,000 km2. In addition to our own
analysis, this dataset can be used for pre-training future models
in the same manner as the moon was used in this study.
Further, we demonstrated that our approach of combining
deep learning with high-density ALS data to map hunting
pits has accuracy close to, or equal to, that of previous studies.

Point density of ALS data

One of the research questions in this study was to investigate
whether the point density of the national Swedish ALS data
(1–2 points/m2) is enough to map small-scale cultural

Figure 4. Results from the models when evaluated with the test data. Recall is defined as how many of all the hunting pits in the test data each model can map.
Precision is defined as how many of the predicted hunting pits are actual hunting pits. Both these metrics should be high for a reliable model.
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remains such as hunting pits. Gallagher and Josephs (2008)
argued that there is a very strong relationship between the
size of cultural remains and the detection success rates.
Their results estimated that as many as 90% of the cultural
remains larger than 16 m in diameter can be expected to
be successfully detected. Some 41% of remains between 12
and 16 m in size were successfully detected, with a large
drop to less than 9% for those measuring less than 12 m in
size. This will also depend on the point density in the ALS
data and DEM resolution. Hunting pits are only a few meters
in diameter, and Opitz and Herrmann (2018) noted that the
major weakness of automatic methods are that they are not
applicable for detection of archaeological features with het-
erogeneous backgrounds at a large scale. However, Trier,
Reksten, and Løseth (2021) demonstrated that it is possible
to train accurate models that can detect small features such
as hunting pits with denser ALS point clouds. While the
best model presented in our study had 15% false detections,
it still managed to detect 70% of all hunting pits in our test
data using the Swedish ALS data with only 1–2 points/m2.
Trier and Pilø (2012) investigated the relationship between
human detection rates and ALS point density and concluded
that 1.8 ground returns/m2 were required for human experts
to detect hunting pits visually at a recall of 82%. This puts our
model slightly below human experts in terms of recall. Trier

and Pilø (2012) argued that at least 2.5 pulses per m2 are
required as a minimum. It is reasonable to assume that the
deep learning methods would perform better with a higher
point density, which stresses the need for more dense ALS
data to increase the detection rate of small-scale archaeologi-
cal features.

Topographical terrain indices

Another aim of this study was to evaluate the performance of
different topographical indices (including traditional indices
such as hill shading but also recently-developed scale-opti-
mized surface roughness methods such as spherical standard
deviation of the distribution of surface normal and multi-
scale elevation percentile) for mapping hunting pits with
deep learning. However, we only observed small differences
in performance across these topographical indices. This
suggests that this kind of feature engineering is not crucial
for mapping cultural remains with high-resolution ALS
data. The deep learning models learn enough features
using their convolution filters. In fact, a possible reason as
to why the multiscale indices and the spherical standard
deviation of normal indices performed worse could be that
they lose too much information when combining different
scales when the features we are trying to map are of the
same local scale. Multiscale analytical techniques are prob-
ably more useful to map cultural remains that have a larger
variation in scale than hunting pits.

The low precision in our model (15% of all detected pits
are false positives) can be partly attributed to other types
of pits found in the landscape. The models in this study
are good tools for mapping pit-like features in the landscape,
but not all pits are hunting pits. There are both anthropo-
genic and natural depressions that can be mistaken for

Figure 5. F1 score plotted against processing time. The high-resolution data requires more processing time due to an increase in the number of pixels.

Table 1. Performance with the test data compared to published approaches of
mapping hunting pits. Point density refers to the ALS point cloud used to train
and test the methods.

Study Recall Precision
F1

score
Point
density

Present study (Unet 0.5 m) 70 85 0.76 1–2
Trier and Pilø (2012) 67–76 - - 7
Trier, Reksten, and Løseth
(2021)

86 80 0.83 5–12

Seitsonen and Ikäheimo (2021) 98 47 0.64 5
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hunting pits, and the point density of the Swedish ALS data
was probably not high enough to separate them. Trier,
Reksten, and Løseth (2021) suggested that citizen science
projects could be used as a way to visually verify detected
hunting pits but also mentioned that experts might be
needed for a proper identification. Another way of dis-
tinguishing hunting pits from other pits without manual ver-
ification or costly archaeological field investigations is to
study the spatial context in which they appear, i.e. the mutual
relationships between the pits and their location in the land-
scape. Usually, a precondition for studying such relation-
ships is the ability to work with large landscape areas, since
catching systems can consist of hundreds of hunting pits
and stretch for several kilometers. A possible way to achieve
this is to add a post-processing step where decision tree-
based methods are used to separate detected pits based on,
for example, soil type and distance to other pits. This step
could reduce the number of false positives when the model
is implemented on a regional or national scale. Other con-
siderations for large-scale implementations are trade-offs

between processing time and accuracy. The best model
trained on a DEM with 0.5 m resolution had an F1 score
of 0.76 and recall of 70% compared to an F1 score of 0.71
and recall of 63% using a 1 m DEM. Depending on the appli-
cation and scale, this decrease in accuracy might be worth
considering, given that the number of pixels that have to
be processed is reduced by a factor of four.

Policy implications

Due to the urgent need to detect and protect cultural remains
in the forest landscape before they are destroyed by forestry
activity or other forms of modern land use, it is of interest to
all the involved actors that new decision support tools are
developed. However, it is also important to understand
and discuss the potential implications of these tools for pol-
icy and practice. As our study has shown, utilizing machine
learning as tools in forestry to detect ancient monuments
presents both benefits and risks. Besides the evident benefits
such as a potential for increasing the degree of detection and

Figure 6. Example from the demonstration area in northern Sweden where a system of manually mapped hunting pits can be seen as two main arches from
southwest to northeast. There were also some hunting pits on ridges (green and red points). Each model used the best topographical index for each resolution.
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documentation of ancient monuments with the potential to
aid in forest planning and management, these methods can
also enhance the efficiency in the analysis of large datasets
compared to manual methods (Opitz and Herrmann 2018;
Soroush et al. 2020). However, the time used to prepare a
deep learning approach and interpret the results, as well as
the need to do subsequent field-verifications, should not be
underestimated.

However, there are also several risks associated with the
application, since the algorithms—as we have seen—may
occasionally misidentify natural features as cultural remains
or vice versa, thus failing to recognize actual remains, which
may result in misinterpretations and the potential loss of sig-
nificant sites (Verschoof-van der Vaart et al. 2020). Since the
algorithms used are trained on existing data, this can intro-
duce biases from previous research or incomplete datasets
and thus reduce the accuracy of detection. This became par-
ticularly visible in our study where some smaller features,
such as individual hunting pits, were not properly detected.
This makes hunting pits a good example of the challenges
with using machine learning and ALS data to detect small-
scale archaeological features. Since the Swedish ALS data
only contain 1–2 points /m2, there is a risk that smaller fea-
tures are discriminated against in favor of larger features that
are easier to detect. At the same time, a very evident benefit is
that the data we can provide and deliver from our model are
directly useful in forestry planning and can be directly incor-
porated into the maps already used for logging machines and
machines undertaking soil scarification. Previous work in
forest water (Lidberg, Nilsson, and Ågren 2020; Lidberg
et al. 2023) has proven that such maps can have an immedi-
ate effect on forest management, even if the maps fail to cap-
ture all cultural features.

Conclusions

Mapping cultural remains such as hunting pits is an impor-
tant first step to ensure their protection in accordance with
the Cultural Environment Act. We showed that semantic
image segmentation with deep learning from high-resolution
ALS data can be used to detect 70% of hunting pits in Swe-
den. However, 15% of all detected hunting pits were, in fact,
false positives. Most topographical indices explored in this
study worked well, and the main increase in performance
came from increasing the resolution of the DEM from 1 m
to 0.5 m. Denser ALS point clouds would likely improve
the performance of all models and reduce the risks associated
with large-scale applications.
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