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ABSTRACT
correct estimation of tree biomass is important when calculating uptake or emission of cO2 
in relation to land-use and land-use change. the objectives of this study were (1) to estimate 
the root/shoot ratio for the estimation of root biomass based on the above-ground biomass 
(aGB) of Acacia mearnsii, and (2) to develop allometric equations for the estimation of the 
above-and below-ground biomass (BGB) of Acacia mearnsii. to estimate the aGB and BGB, 
twenty-four trees of varying ages (3, 4, 5, and 6 years) were harvested, with six trees per age 
group. We measured the dry biomass for different tree parts and developed allometric models 
using tree height (h) and diameter at breast height (DBh) as independent variables. the 
results showed that the biomass of the stem accounted for 69% of the total biomass, followed 
by branches (14%), roots (8.1%), and leaves (7.3%). the recorded mean root/shoot ratio was 
0.11. the biomass of the stem and coarse roots increased with increasing tree age, while a 
contrary trend was observed for the other tree components. each component has its unique 
allometric model.

1.  Introduction

Estimating aboveground tree biomass in forests to 
establish biomass C stocks and the direction of change 
of the biomass C pool is increasingly important in  
climate mitigation projects (Sebrala et  al. 2022). 
Measurement, reporting and verification (MRV) proto-
cols are utilized to assess carbon dioxide emission 
reduction interventions like Reducing Emissions from 
Deforestation and Forest Degradation (REDD+) proj-
ects (Virgulino-Júnior et  al. 2020). They are also com-
monly used in compilation of regional or national 
carbon budgets (Henry et  al. 2011; Yu et  al. 2014). The 
development of allometric equations can enhance the 
accuracy of tree biomass estimations and hence 
improve the MRV protocols (Chave et  al. 2014).

Direct or indirect approaches and combinations 
thereof can be used to measure tree biomass (Henry 
et  al. 2011). The direct method (cutting, weighing and 
determination moisture content) is the most accurate 
but also the most costly and time-consuming. The 
most popular non-destructive technique for assessing 
forest biomass is the application of empirical allometric 
equations. However, they initially require the destruc-
tion of sample trees to establish the allometric models 

(Chave et  al. 2014). The most important step in 
improving the accuracy of measuring forest biomass is 
choosing the right allometric models (Picard et al. 2015).

The link between biomass weight and tree morpho-
logical and physiological traits such as tree height, 
diameter at breast height, and wood density are used 
for developing allometric equations (Kachamba et  al. 
2016; Zhao et  al. 2019). For various forests and tree 
species, a generalized allometric model has been cre-
ated (Basuki et  al. 2009). However, tree biomass may 
vary considerably between tree species due to the tree 
architecture and morphology. It is therefore recom-
mended to create species-specific allometric equations 
to minimize biased assessments of tree biomass 
(Chaturvedi and Raghubanshi 2015).

In the Fagita-Lekoma district, Acacia mearnsii plan-
tations were started in the early 1990s as state planta-
tion sites on degraded hill slopes. Around the year 
2000 some farmers started to plant the species on their 
crop land in order to produce charcoal, a practice that 
spread quickly due to its profitability. The rapidly 
expanding plantations (Wondie and Mekuria,2018; 
Liyew et  al. 2019) imply that the plantations might be 
a significant carbon sequestration. The carbon seques-
trations from the plantations are not yet determined 
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due to lack of allometric biomass functions for Acacia 
mearnsii. The objectives of this study were (1) to esti-
mate the root/shoot ratio for the estimation of root bio-
mass based on the AGB of Acacia mearnsii  and (2) to 
develop allometric equations for the estimation of the 
above- and below-ground biomass of Acacia mearnsii.

2.  Material and methods

2.1.  Study site

The study was conducted in the Fagita-Lekoma district 
of Awi zone, in the Amhara region of northwestern 
Ethiopia (Figure 1). The district is located at 36°40ˈ01˝ 
to 37° 50ˈ21˝E longitude and 10°57ˈ23 to 11°11ˈ21˝ N 
latitude within the altitudinal range from 1888 to 2915 
m above sea level. The agro-ecological zone of the study 
area is the subtropical oceanic highland. Acrisols and 
Leptosols are the two main soil groups found in the 
area (FAO, 2014). The annual mean temperature varies 
between 9.4 and 25 °C. The area experiences bimodal 
rainfall, with the majority of the precipitation falling 
between June and September. The average yearly rainfall 
ranges from 1951 to 3424 mm (Abebe et  al. 2020).

2.2.  Studied species

Acacia mearnsii (black wattle) belongs to the family 
Fabaceae and originates from Australia. In Ethiopia, it 
grows well in moist and wet Weyna Dega agro-climatic 
zones, 1600–2500 m above sea level. The tree is a rela-
tively short-lived species that decline in vigour after 10–15 
years (Bekele-Tesemma and Tengnäs, 2007). It is a 
fast-growing and nitrogen fixing tree that reaches up to 
6–12 m in height under favourable conditions. It has good 
potential for utilization as fuel wood, for charcoal produc-
tion, and to improve soil fertility (Chanie et  al. 2021).

2.3.  Biomass sampling and data collection

Four stand ages (3–6 years) of Acacia mearnsii were 
chosen from farmers-managed woodlots to represent 
various diameter classes. Six representative sample 
trees were chosen at each stand age; a total of 24 
sample trees were cut down close to the ground. 
Following the harvesting of the sample trees, the 
stems, branches, and leaves were separated, and the 
fresh weights of each component were measured in 
the field. Subsamples were taken from each compo-
nent of the stem (in five equal parts measuring 5 cm 
in length), branch, and leaf. Samples of roots were 
taken down to a soil depth of 40 cm. After sieving, 
roots were separated and classified into three catego-
ries: fine (< 2 mm), medium (2–5 mm), and coarse 
roots (> 5 mm) based on their diameter classes. 
Subsamples were taken after total fresh biomass was 
measured. The subsamples were packed in a plastic 
bag, and transported to the University of Gondar for 
drying and weighing. The stem subsamples were 
oven-dried at 105 °C, while other components were 
oven-dried at 65 °C until they reached a constant 
weight. The root/shoot ratio was calculated as the 
ratio of the total dry weight of the roots to the dry 
weight of the AGB.

2.4.  Statistical analysis and model development

Allometric equations may use diameter at breast height 
(DBH) as a single variable. Combing DBH with tree 
height (H) can improve the accuracy of the allometric 
equation (Kachamba et al. 2016; Sukhbaatar et al. 2023; 
Zhao et  al. 2019). In this study, four allometric equa-
tions with the combination of DBH and H as predictor 
variables were developed by non-linear regression to 
estimate the stem, branch, leaves, above-ground 

Figure 1. Map of the study area in Fagita-lekoma district, amhara region, ethiopia (a), and the point indicate the distribution of sampling points in 
each stand age with six replications for biomass estimation (b).
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biomass (AGB), below-ground biomass (BGB), and 
total tree biomass (TB) (Table 1). Several metrics, 
including the coefficient of determination (R2), mean 
absolute difference (MAD), root mean square error 
(RMSE), Akaike information criterion (AIC), and 
p-value, were used to assess its accuracy and efficiency 
(Pham 2019; Zeng et  al. 2017). Models with higher 
values of R2 and lower scores of RMSE, MAD, and 
AIC are better for predicting below- and above-ground 
biomass (Djomo and Chimi 2017; Kusmana et  al. 2018; 
Virgulino-Júnior et  al. 2020). These values are acquired 
based on the following formulas;
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where, yi = the observed biomass, ŷi = the predicted 
biomass, ỹi = the mean biomass of n plots, n = the 
number of samples, L = log-likelihood estimates, 
k = number of independent variables, R2 = coefficient 
of determination, RMSE = root mean squared error, 
MAD = mean absolute difference, and AIC = akaike 
information criteria.

3.  Results

3.1.  Biomass distribution and proportion of the 
tree components

Based on the descriptive statistics of the measured 
variables presented in Table 2, different tree ages of 
selected sample trees have variations in DBH, tree 
height, and tree biomass variables. The mean DBH and 
tree height of selected trees were 7.1 ± 0.001 cm and 
4.4 ± 0.26 m, respectively (Table 2). The proportion of 
stem biomass gradually increased with increasing tree 
age, while the opposite was observed for other tree 
components (Figure 2b). The largest biomass amount 
for the stem was 7.81 kg/tree (69%), followed by branch 
biomass which was 1.63 kg/tree (14%). While the BGB 
was 0.91 kg/tree (8.1%) and leaf biomass 0.83 kg/tree 
(7.3%) (Table 2). Based on the estimation of BGB and 
AGB, the average root/shoot ratio of the Acacia mearn-
sii tree was 0.11, varying from 0.15 for the three years 
age class to 0.08 for the six years age class. In compar-
ison, root biomass allocation by diameter classes, the 
coarse root biomass (> 5 mm) increased with increas-
ing tree age, representing 82% of the total root bio-
mass (Figure 2a). Moreover, the allocation of fine roots 
(< 2 mm) and medium roots (2–5 mm) decreased with 
increasing tree age, and the fine and medium root bio-
mass accounted for 13 and 5.5% of the overall BGB, 
respectively (Figure 2a).

3.2.  Allometric models for each tree component

The parameters of four allometric models together 
with their statistical performance indicators are given 
in Table 3. From the selected allometric models, a spe-
cific model was developed for each tree component. 
The R2 of the best allometric equations ranged from 
0.50 to 0.98. This means the biomass variations of 
Acacia mearnsii can be well explained (50 < R2 < 98%) 
by the combination of tree height and DBH (Table 3). 
The selected allometric equations on stem biomass 
show that the values of RMSE, MAD, and AIC are 
lowest in model 1 compared to the second selected 
model (Table 3). This model can explain stem biomass 
variations well (R2 > 98%).

The same result as for the stem biomass was found 
in the above-ground biomass (AGB) and total biomass, 

Table 1. allometric equations for predicting BgB and agB of Acacia 
mearnsii.

no. equation form components source

1. a + b(dh)c stem, agB, tB Bijak et  al. (2013)
2. a(d2h)b stem, branch, leaves, 

agB, BgB, tB
sukhbaatar et  al. 

(2023)
3. adbhc Branch, leaves, BgB Kachamba et  al. 

(2016)
4. a + b(d2h)c Branch, leaves, agB, 

tB
Zhao et  al. (2019)

Table 2. statistical description of tree biomass components.

Variables n Min. Mean Max. se sd

tree parameters 
 dBh (cm) 24 1.1 7.1 11.9 0.0 0.0
 height (m) 24 2.1 4.4 6.8 0.3 1.3
tree biomass kg/tree
 stem biomass 24 1.2 7.8 23.3 1.3 6.4
 Branch biomass 24 0.7 1.6 4.9 0.2 1.1
 leaves biomass 24 0.3 0.8 2.1 0.1 0.5
 aboveground biomass 24 2.0 10.3 28.4 1.6 7.7
 Belowground biomass 24 0.2 0.9 2.4 0.1 0.6
 total tree biomass 24 2.2 11.3 30.6 1.7 8.3
 root/shoot ratio 24 0.1 0.1 0.2 0.0 0.0

note. dBh: diameter at breast height, n: number of sample trees; Min: minimum value; Max: maximum value; se: 
standard error; sd: standard deviation
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in which model 1 performed better (it has the highest 
values of R2 > 97% and the lowest values of RMSE, 
MAD, and AIC) than the other tested models (Table 3), 
which indicated that this model estimate more is more 
accurate for the stem, AGB, and total biomass (Figure 3a).

The best allometric model for leaf biomass was 
model 4. The values AIC were lower in model 4 than 

in other selected models (Table 3). Although model 3 
had similar values to model 4 for RMSE and MAD, 
the AIC was lower. Further, model 3 was not signifi-
cant (p > 0.05).

The best allometric models for BGB and branch 
biomass were model 3. For BGB, model 3 can 
explain the biomass variations (R2 > 90%), and it 

Figure 2. Proportion of each biomass component in total tree biomass (a) and distribution of root size classes in total root biomass depending on 
each stand age (b).

Figure 3. comparison of predicted agB with our best model agB = 1.92 + 0.02(dh)1.68, predicted agB with the equations of Brown (1997) agB = exp(-
2.134 + 2.53ln(d); predicted agB with equations of Berhe et  al. (2013) agB= 0.0163*d2h (a); predicted BgB with our best equations BgB = 0.01d2.57 
h0.09; predicted BgB with equations of Usoltsev et  al. (2016) BgB = exp(-1.6042 + 2.5524 + ln(d)-0.803ln(h) (b).



FORest science anD technOlOGY 283

had lower MAD values (Table 3, Figure 3b). Although 
model 2 had lower values of AIC, the model was not 
significant (p > 0.05). For leaf biomass, no selected 
allometric model could explain the biomass varia-
tions well (R2 < 60%). Model 4 produced better 
accuracy for biomass estimation (lower values of 
RMSE, MAD, and AIC), and it explained 50% of 
biomass variation (Table 3).

4.  Discussion

4.1.  Biomass allocation and root/shoot ratio

In this study, the highest proportion of biomass is 
found in stem biomass, and the second largest biomass 
component is branch biomass across stand age. This is 
consistent with other research findings (Yang et  al. 
2019; Zhang et  al. 2014). The variation in the alloca-
tion of biomass at different stand ages, in the early 
ages of the stand root and leaves, is critical for the 
acquisition of scarce water and nutrient resources from 
the ground (Yang et  al. 2019).

The calculation of the BGB and AGB of trees is 
crucial for understanding the dynamics of carbon 
stocks (Sukhbaatar et  al. 2023). According to 
Agathokleous et al. (2019), the root/shoot ratio revealed 
the trees’ potential for acquiring water and nutrients in 
comparison to their development potential. Although it 
changes depending on the size and species of the tree, 
it is a useful tool for quickly estimating the BGB based 
on the AGB for carbon assessment (Sukhbaatar et  al. 
2023; Zhao et  al. 2019). In this study, the mean root/
shoot ratio was 0.11. The root/shoot ratio of Acacia 
mearnsii gradually decreased with increasing stand age. 
This is less than the root/shoot ratios of Sonneratia 
species 0.23 (Kusmana et  al. 2018) and Larix sibirica 
0.25 (Sukhbaatar et  al. 2023).

4.2.  Selected models for biomass prediction

In this study, the allometric model for Acacia mearnsii 
was developed by using a combination of DBH and 
tree height. Measurements of DBH and tree height are 
easy in the field. Hence, researchers chose these vari-
ables in combination when creating allometric models 
(Chave et  al. 2014; Getnet and Negash 2021; Gurmessa 
et  al. 2016; Mugasha et  al. 2013; Zhao et  al. 2019). As 
per several studies (Bi et  al. 2015; Kenzo et  al. 2009; 
McCormack et  al. 2015; Sukhbaatar et  al. 2023; Zhao 
et  al. 2019), the biomass allometric model that is cre-
ated by combining DBH and H is generally more 
accurate than using DBH alone.

The best allometric models for each tree component 
of Acacia mearnsii differed in accuracy from one another, 
with R2 values ranging from 50.6 to 98.6%. The stem 
biomass had the highest value, while the branch biomass 
had the lowest value. The stem, AGB, and total biomass 
all had the best allometric models with 98.6, 97.5, and 
97.8%, respectively. This study have higher R2 values than 
those of Sitoe et  al. (2014) on the AGB of mangrove for-
ests (R2 = 89%), Zhao et  al. (2019) on the AGB and total 
biomass of sub-tropical forests in southern China (R2 = 
90%), Kenzo et  al. (2020) on the stem biomass and AGB 
of Tectona grandis (R2 = 99 and 98%), and Kangkuso 
et al. (2016) on the stem biomass of Lumnitzera racemosa 
tree (R2 = 98.9%). Additionally, the BGB’s R2 value is 
similar to that of Kachamba et  al. (2016) on the BGB of 
Miombo woodlands (R2 = 94%) and Sukhbaatar et  al. 
(2023) on the BGB of Larix sibirica trees (R2 = 98%). 
Nevertheless, the biomass of the branches and leaves has 
lower R2 values than the other tree components.

5.  Conclusion

The biomass distribution of Acacia mearnsii increased 
with increasing tree ages. The largest biomass was 

Table 3. comparison of allometric equations to estimate the agB and BgB for Acacia mearnsii. the best performing model for each category is 
indicated in bold. d: diameter at breast height (cm); h: tree height (m); a, b, and c: equation parameters; r2: coefficient of determination; rMse: root 
mean square error; Mad: mean absolute deviation; and aic: akaike information criteria. the allometric equations are statistically significant at 0.05 if 
the p-value <0.05.

no. equations

Parameters

r2 rMse Mad aic p-valuea b c

stem biomass
1. a + b(DH)c 0.99 0.01 1.75 98.64 0.73 0.49 61.26 <0.001
2. a(d2h)b 0.03 1.07 – 97.57 0.98 0.76 73.26 <0.001
Branch biomass
2. a(d2h)b 0.10 0.55 – 49.32 0.78 0.54 62.51 >0.05
3. aDbHc 0.10 -0.71 1.90 50.65 0.77 0.58 63.87 <0.001
4. a + b(d2h)c 0.48 0.02 0.82 50.39 0.78 0.52 64.00 >0.05
leaves biomass
2. a(d2h)b 0.07 0.49 – 59.66 0.29 0.23 14.70 >0.05
3. adbhc 0.06 2.31 −0.43 61.77 0.28 0.21 15.42 >0.05
4. a + b(D2H)c 0.34 0.01 0.92 62.93 0.28 0.21 14.67 <0.001
above ground biomass
1. a + b(DH)c 1.92 0.02 1.68 97.49 1.19 0.72 84.64 <0.001
2. a(d2h)b 0.07 0.95 – 95.86 1.53 1.10 94.63 <0.001
4. a + b(d2h)c 1.66 0.02 1.12 96.61 1.38 0.82 91.82 >0.05
Below ground biomass
2. a(d2h)b 0.01 0.83 – 91.86 0.16 0.14 −12.69 >0.05
3. aDbHc 0.01 2.57 0.09 92.41 0.16 0.13 -12.36 <0.001
total biomass
1. a + b(DH)c 2.25 0.02 1.69 97.82 1.19 0.73 84.67 <0.001
2. a(d2h)b 0.08 0.95 – 96.08 1.60 1.20 96.77 <0.001
4. a + b(d2h)c 1.97 0.02 1.13 96.99 1.40 0.84 93.38 <0.001
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recorded in stems (69%), followed by branches (14%), 
roots (8.1%), and leaves (7.3%). A comparison of root 
biomass allocation by diameter fractions showed that 
the coarse roots made up 82% of the total root biomass, 
and the average root/shoot ratio was 0.11. The biomass 
equations that use the combination of DBH and H are 
more precise than equations that are solely based on 
DBH. Consequently, the best-fit allometric models for 
estimating AGB and BGB are 1.92 + 0.02(DH)1.68 and 
0.01D2.57H0.09, respectively. The selected allometric equa-
tions can be used to estimate the biomass and carbon 
stock of Acacia mearnsii.
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