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A B S T R A C T

The long-term persistence of biochar in soil is often predicted by extrapolating mineralization data from short- 
term laboratory incubations. Single first-order, double first-order, triple first-order and power models have been 
employed for this purpose, all of which have an inherent assumption that biochar is biodegradable. However, 
recent insights challenge this assumption by suggesting that a large fraction of biochar is inert. If so, it would 
make sense to reflect this in the models used, by incorporating an inert carbon (C) pool. We hypothesized that 
such inert pool models would fit better to incubation data than existing models and give more reliable long-term 
predictions. We evaluated this by fitting the models to data from a recently compiled extensive dataset of biochar 
incubations. The inclusion of an inert pool enhanced the model fits over first-order models in most cases. 
However, inert pool models overestimated biochar persistence compared to the measured outcomes. By contrast, 
the double first-order model, which has been the most widely used to date, underestimated biochar persistence 
even in the short term. The power model in general outperformed all other models and gave the most reliable 
predictions, although it was sensitive to increasing or fluctuating mineralization rates in the datasets.

1. Introduction

Following the pioneering work by Wim Sombroek in Amazon soils 
(Sombroek, 1966), biochar garnered attention due to its beneficial im-
pacts on soil fertility (Glaser et al., 2001; Glaser et al., 2002). In recent 
decades, emphasis has been placed on biochar’s potential to store car-
bon (C) in soils, owing to its resistant nature (Lehmann, 2007; Smith, 
2016; Wu et al., 2019). Compared to raw biomass, biochars are one to 
two orders of magnitude more persistent (Lehmann et al., 2021; Azzi 
et al., 2024), which can be attributed to the formation of fused aromatic 
structures during biomass pyrolysis (Howell et al., 2022). The inclusion 
of methods for estimating carbon stock change as a result of biochar 
application in the 2019 Refinement to the 2006 IPCC Guidelines for Na-
tional Greenhouse Gas Inventories is a recognition of biochar’s potential as 
a carbon sequestration method (IPCC, 2019). While biochar is gaining 
recognition as a method for CO2 removal, prediction of its persistence in 
soil is difficult.

Such predictions rely on extrapolation from short-term mineraliza-
tion data from laboratory incubations. Single first-order (SFO) (Rasse 

et al., 2017), double first-order (DFO) (Major et al., 2010; Singh et al. 
2012a; Singh et al. 2012b; Fang et al., 2014), triple first-order (TFO) 
models and power model (Zimmerman, 2010; Liu et al., 2020) have all 
been used to fit mineralization datasets and predict biochar persistence. 
These models differ in their assumptions about the degradation dy-
namics of biochar components. The SFO model assumes that biochar is 
homogenous and that the decay follows first-order kinetics, while the 
more commonly used DFO model assumes the existence of one rapidly 
degrading, labile (months-years), and one more recalcitrant, stable 
(decades-centuries) C pool. The TFO model further expands to three 
pools: a labile, a semi-labile and a recalcitrant pool. By contrast, the 
power model assumes an infinite number of degrading pools, with a 
linear relationship between the logarithm of decay rate and the loga-
rithm of time, implying that biochar consists of a continuum from more 
labile to more refractory C compounds (Zimmerman, 2010). Current 
models are based on the assumption that all biochar C pools are 
biodegradable, albeit some of the C pools degrade slowly. This 
assumption has been challenged by a perspective that condensed aro-
matic structures within biochars are not only stable and capable of 
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persisting for centuries in the environment but completely resistant to 
biological transformation (Schmidt et al., 2022; Sanei et al., 2024). For 
instance, Sanei et al. (2024) concluded that the majority of commercial 
biochars consist entirely of inertinite, and suggested a half-life of 
approximately 100 million years for such biochars, even in an oxidizing 
abiotic environment. This view is in line with geological evidence that 
black C can be preserved for millions of years and be partially inert 
(Cope and Chaloner, 1980; Forbes et al., 2006).

From this, it seems logic to incorporate an inert C pool (i.e. a constant 
that does not degrade over time) into existing models used to fit labo-
ratory incubation data. Such inert pool models could be used as a way to 
assess if results from biochar incubations are consistent with the view 
that biochars contain an inert fraction. If it works, it would have the 
added benefit of allowing us to estimate the size of this inert pool for 
different biochars from the mineralization data and compare it with 
estimates from other sources, such as chemical characterization. The 
concept of using inert-pool models is not new; it has been applied to 
simulate soil organic C (SOC) changes in fallow soils (Barré et al., 2010) 
and it was employed to estimate the inert-pool sizes of biochar based on 
short incubations (only 74 days, Farrell et al., 2013) and to predict the 
persistent aromatic C pool (Schmidt et al., 2022). However, to the best of 
our knowledge, no systematic evaluation of using inert-pool models for 
biochar incubation data has been performed.

Recently, we compiled biochar decomposition data from 134 
decomposition time series (Azzi et al., 2024). Here, we explore the po-
tential of using inert pool models for estimating biochar persistence 
based on this dataset. Our first objective (i) was to assess whether inert 
pool models (SFO + I) and (DFO + I) would improve the fits to incu-
bation data compared to existing models (SFO, DFO, TFO and power 
model). Our second objective (ii) was to evaluate the ability of the 
models to predict biochar persistence, based on the incubation data from 
Kuzyakov et al. (2014) and similar studies spanning at least 2 years. Our 
hypothesis was that inert pool models would fit better to biochar 
mineralization data than existing models and provide more reliable 
long-term predictions.

2. Materials and methods

2.1. Data sources

We used the database compiled during our previous synthesis study 
(Azzi et al., 2024), but we made a selection of data based on the 
following inclusion criteria: (1) biochar incubated under aerobic con-
ditions (i.e. excluding flooded conditions as in Wu et al., 2016); (2) 
duration exceeding 365 days (i.e. excluding the studies from Rasse et al., 
2017; Zhu et al., 2019); (3) incubation temperature maintained below 
40◦C (excluding some data from Fang et al., 2014); (4) soil incubation 
under constant conditions, i.e., without changes in moisture content, 
temperature or nutrients (excluding the field studies from Major et al., 
2010; Ventura et al., 2015, Ventura et al., 2019); (5) biochar incubated 
in soil (excluding Aubertin et al., 2021). Additionally, we digitized three 
observations from Zimmerman (2010) instead of using the reconstructed 
data that was present in the original database. Based on these criteria, a 
total of 9 articles containing 72 datasets (observations) of biochar 
mineralization were retained (Supplementary material 1). For compar-
ative purposes, the analysis incorporated 4 observations derived from 
non-pyrolyzed raw biomass decomposition from Budai et al. (2016) and 
Santos et al. (2012).

2.2. Data quality selection

The models used in this study assume a pattern of faster biochar 
decomposition during the initial stages of incubation, followed by a 
gradual slowing down over time, reaching a plateau in the case of the 
inert pool models, and are sensitive to deviations from this pattern. Such 
deviations can arise due to fluctuations in soil temperature, other 

unidentified factors or measurement errors can affect model fits, the 
accuracy and reliability of model predictions. To avoid such problems, 
datasets were visually inspected by plotting the biochar C remaining 
over time in scatter plots, and the decomposition datasets that contained 
obvious increases or fluctuations in mineralization rate were excluded 
(31 observations). The reasons for data exclusion are further detailed in 
Table S1. In total, 41 observations were selected for the subsequent 
curve fitting. An attempt was also made to fit the excluded datasets in 
order to provide additional rationale for their exclusion from further 
discussion (Fig. S1).

2.3. Biochar C modeling

The selected biochar C mineralization observations were fitted using 
Sigmaplot 14.0 through non-linear regression, employing the Lev-
enberg–Marquardt algorithm. This algorithm estimates the parameter 
values that minimize the sum of squares of variances between observed 
and predicted values, and it is commonly used in biochar mineralization 
curve fitting (Fang et al., 2014; Budai et al., 2016; Santos et al., 2021). 
All C pools and decay rates were constrained to be larger than zero 
except for the inert C pools where the decay rate was zero by default. 
Initial parameter values were estimated based on the provided data 
using the built-in equations in Sigmaplot. The detailed curve fitting re-
sults are shown in Supplementary Material 1. The following models 
were evaluated:

SFO model: 

Cr = C0*exp(− k*t) (1) 

where Cr is biochar C remaining at time t, C0 is initial biochar C and k is 
the first order mineralization rate, respectively.

DFO model: 

Cr = C1*exp( − k1*t)+C2*exp(− k2*t) (2) 

where Cr biochar C remaining at time t and C1, C2, k1, k2 represent a 
labile biochar C pool, a stable biochar C pool, and the first order rate 
constants for the labile and stable pools, respectively.

TFO model: 

Cr = C1*exp( − k1*t)+C2*exp(− k2*t)C3*exp(− k3*t) (3) 

where Cr biochar C remaining at time t and C1, C2, C3, k1, k2, k3 represent 
a labile biochar C pool, semi-labile biochar C pool, a stable biochar C 
pool, and the first order rate constants for the labile, semi-labile and 
stable pools, respectively.

Power model: 

Cr = C0 −

(
C0*eb

m + 1

)

*tm+1 (4) 

The log transformed decay rate k and log transformed incubation time 
(t) follows a linear relationship as Eq. (5), where m and b are the slope 
and intercept, respectively: 

ln( − k) = m*ln(t)+ b (5) 

For simplicity, Eq. (4) can also be written as 

Cr = C0 − c*td (6) 

where c and d are positive constants.
Based on Eq. (1) and (2), we parametrized two inert pool models, 

denoted as the SFO + I and DFO + I models, under the assumption that 
biochar encompasses an inert C pool, as described by the following 
equations.

SFO + I model: 

Cr = C1*exp( − k1*t)+Ci (7) 
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where Cr is biochar C remaining at time t, C1 is the fraction of labile 
biochar C pool and k1 is the first order mineralization rate, respectively. 
Ci represents the size of the inert biochar C pool.

DFO + I model: 

Cr = C1*exp( − k1*t)+C2*exp( − k2*t)+Ci (8) 

where Cr is biochar C remaining at time t, C1, C2, Ci k1, k2 represent the 
fraction of labile biochar C pool, semi-labile biochar C pool, the inert 
biochar pool, and the first order rate constants for the labile, semi-labile 
pools, respectively.

The fits were considered acceptable if the estimated parameters had 
smaller standard errors (SE) than the parameter values per se. The 
goodness of the fit of the models was evaluated by the Akaike infor-
mation criterion (AIC), which serves as a metric for model selection by 
considering both the goodness of fit and the number of parameters. The 
best-fit models for each observation were identified based on the lowest 
AIC values. Adjusted R2 values were also included to assess the overall 
fitting.

2.4. Biochar C remaining after 100 years

To evaluate biochar C remaining after 100 years (BC100) pre-
dictions, we calculated BC100 for the 31 observations that could be 
satisfactorily fitted with the SFO, SFO + I, DFO, DFO + I and power 
models (i.e., the estimated SEs < the parameters). The TFO model was 
excluded from predicting BC100 because a large portion of the model 
fits had unrealistically high SEs.

2.5. Assessing the predictive performance of the models

In order to evaluate the predictive ability of the models, we utilized 
the longest biochar decomposition dataset generated to date from 
Kuzyakov et al. (2014). The models were fitted to biochar decomposi-
tion data from progressively shortened incubation periods (i.e. 1480/ 
1475, 734/732, 380/378, 213/211, 54/51 days) and the predicted 
mineralization was compared against the measured data on day 3102, 
according to the method proposed by Sleutel et al. (2005). Moreover, to 
assess the overall predictive performance of the selected models, we 
extended our analysis to include data (21 observations) from in-
cubations spanning at least two years, by fitting models using biochar 
decomposition data from 3-month and 1-year of incubation and 
comparing the extrapolated results with the 2-year measured data.

2.6. Non-parametric test

The Kruskal–Wallis test with multiple non-parametric comparisons 
was used to detect differences in BC100 predicted by five of the different 
models (SFO, SFO + I, DFO, DFO + I, and power) since the condition of 
normality was not fulfilled.

3. Results and discussion

3.1. Inert pool models

Inert pool models generated the best fits in about 25 % of the cases, 
as measured by AIC, with 9 for the DFO + I model but only 2 for the SFO 
+ I model when comparing all the models (Fig. 1). However, when 
comparing the performance only to the first order models without inert 
pools, the addition of an inert pool improved fits in most cases (84 % for 
the SFO vs SFO + I comparison and 63 % for the DFO vs DFO + I one as 
evaluated by AIC, Supplementary material 1). The SFO + I model per-
formed less well in fitting data and had lower adjusted R2 values 
compared to the DFO + I model (Fig. 1).

For biochar persistence estimations based on biochar decomposition 
data, the key criterion for assessing a model’s performance lies in its 

capacity to extrapolate beyond the observed period. Even if a model fits 
the data well, it may still have poor predictability (Sleutel et al., 2005). 
Notably, the predictions of biochar C remaining (BC100) was highest for 

Fig. 1. (a) Numbers of best fits as evaluated by comparing AIC (Akaike infor-
mation criterion) values fitted by 6 different models (SFO, single-first order; 
SFO + I, single-first order + an inert pool; DFO, double-first order model; DFO 
+ I, double-first order model + an inert pool; TFO, triple-first order model; 
power model); (b) Adjusted R2 values for the fits generated by abovementioned 
models, n = 41.

Fig. 2. Predictions of biochar C remaining after 100 years (BC100) using five 
different models (SFO, single-first order; SFO + I, single-first order + an inert 
pool; DFO, double-first order model; DFO + I, double-first order model + an 
inert pool). Different letters indicate significant differences in BC100 pre-
dictions (n = 31, p < 0.05).
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the inert pool models among the five models assessed (Fig. 2). The inert 
pool models (SFO + I and DFO + I) also overestimated biochar persis-
tence compared to measured outcomes (Figs. 3 and 4, Fig. S2). When 
evaluating the predictive power of inert models using a larger dataset 
(21 observations), they consistently overestimated biochar persistence 
in all cases (Fig. 4).

Moreover, the models estimated relatively large inert C pool sizes 
(41 % to 58 %) even when fitted to mineralization data from highly 

degradable raw biomass. While these estimates are much lower than the 
estimated inert pool sizes for the biochars (on average 96 %), they are 
considerably higher than what would be expected for raw biomass and 
the inert C pool size appears to essentially be determined by the amount 
of C remaining by the end of the incubation. This is problematic since 
most incubations are very short in comparison with the timescale that 
biochars persist in soil. However, dismissing the idea of using the inert 
pool model (DFO + I) entirely may not be necessary. Some researchers 

Fig. 3. Predictions from six models (SFO, single-first order; SFO + I, single-first order + an inert pool; DFO, double-first order model; DFO + I, double-first order 
model + an inert pool; TFO, triple-first order and power models) when fitting to gradually reduced incubation lengths from the longest available biochar incubation 
in a loess soil (Kuzyakov et al., 2014, observation 37) compared to the measured outcome. Note: the TFO model did not fit to incubation datasets shorter than 
51 days.
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have argued that biochar becomes biologically inert during the process 
of biochar production, as indicated by high random reflectance values 
(Petersen et al., 2023; Sanei et al., et al., 2024). Formation of such 
inertinite fractions occur particularly in biochars produced at tempera-
tures exceeding 600 ◦C. Thus, it is possible that inert pool models would 
be more useful for incubations of commercial biochars produced at 
higher temperatures with lower H/C ratios (<0.3) than studied here 
(Fig. S3). More research is needed in order to validate the efficacy of the 
inert pool models for such biochars and to refine the conditions under 
which they could be correctly applied, e.g. by comparing inert pool size 
estimates with measures of degrees of aromatic condensation or iner-
tinite content in biochar.

3.2. First order kinetic models

The SFO model only had one out of 41 best fits for the selected ob-
servations and the adjusted R2 values were lower than for all other 
models (Fig. 1). Upon visual inspection, the goodness of fits generated 
by the SFO model were poor in most cases. By fitting the exponential 
models to data from a 380-day incubation from Kuzyakov et al. (2014), 
the estimates of biochar C remaining after 8.5 years were under-
estimated to greater extent than the predictions from other models 
(Fig. 3 and Fig. S2). Similar results were obtained when comparing 2- 
year measured outcomes with the predictions using 3-month and 1- 
year incubation data (21 observations, Fig. 4, Fig. S4). As the fits for 
the SFO model are in general poor, the model is not recommended for 
predicting biochar persistence.

The DFO model performed better and had 10 best fits (24 %) and 
higher adjusted R2 values than the SFO model (Fig. 1). In contrast to 
inert pool models, the DFO model is prone to underestimation of biochar 
persistence, even within the relatively short time-span that we could 
evaluate. In our fitting extrapolations from shortened datasets, the DFO 
model underestimated biochar C persistence, even within a timescale of 
less than 10 years (Figs. 3 and 4, Fig. S4). The incubation duration had a 
significant impact on the accuracy of biochar persistence prediction. 
Within a timeframe of 8.5 years, the prediction accuracy decreased 
markedly with shortened incubation times, particularly for the pre-
dictions from the DFO model when the incubation were shorter than 
400 days (Fig. 3 and Fig. S2). This suggests that the incubation time 

should be at least one year when employing the DFO model, which 
aligns with the recommendation in Lehmann et al. (2021). Nevertheless, 
the discrepancy between estimating BC100 from one-year vs. from 8.5- 
year of incubation data would be as large as 35–46 % based on the 
longest incubation study by Kuzyakov et al. (2014), which is larger than 
for the inert pool models (only 3.4–4.1 % for the DFO + I model). When 
comparing the predictions using 1-year incubation data with 2-year 
measured data (21 observations, Fig. S4), DFO model again under-
estimated biochar persistence.

The DFO model has been the most commonly used model for esti-
mation of biochar persistence from both shorter and longer (> 1 year) 
incubation studies and it was employed in 18 out of the 24 studies listed 
in Table 1. Despite the underestimation in predicting biochar 

Fig. 4. Difference between the measured and the extrapolated biochar C 
remaining for five different models (SFO, single-first order; SFO + I, single-first 
order + an inert pool; DFO, double-first order model; DFO + I, double-first 
order model + an inert pool) when fitting to 3-month biochar incubation 
data and subsequent comparison with the measured data after 2 years (n = 21).

Table 1 
Overview of the publications from which biochar incubation datasets were 
extracted for this paper (No. 1–9), other studies containing shorter (<1 year) 
datasets (No. 10–17), synthesis studies (No. 18–24), and the models used to fit 
the data in the respective studies.

No. Publications Feedstock Pyrolysis 
temperature 
(◦C)

Duration 
(days)

Model 
(s)

1 Santos et al. 
2021

wood 300, 450 745 DFO

2 Zimmerman 
2010

wood 250, 400, 525 379 Power

3 Singh et al. 
2012a

wood, 
biosoilds, 
manure

400, 550 1829 DFO

4 Fang et al. 
2014

wood 450, 550 730 DFO

5 Kuzyakov 
et al. 2014

grass 400 3102 NA

6 Herath et al. 
2015

crop 350, 550 510 TFO

7 Liu et al. 2020 crop 200, 300, 500 368 Power
8 Budai et al. 

2016
crop, grass 230–796 364 DFO

9 Fang et al. 
2019

wood 450, 550 758 DFO

10 Keith et al. 
2011

crop 450, 550 120 DFO

11 Maestrini 
et al. 2014

grass 450 158 DFO

12 Nguyen et al. 
2014

grass 375–475 189 DFO

13 Santos et al. 
2012

wood 450 180 DFO

14 Yang et al. 
2022

crop 300, 450, 600 180 DFO

15 Rasse et al. 
2017

grass 500–750 90 SFO

16 Farrell et al. 
2013

Crop, wood 450 74 DFO + I

17 Bai et al. 2013 grass 200, 475 200 SFO, 
DFO, 
Power

18 Singh et al. 
2012b

Various 150–800, 
including wild 
fire

− SFO, 
DFO

19 Budai et al. 
2013

Various 250–650 365, 1829 DFO

20 Wang et al. 
2016

Various 200–1200 >57 DFO

21 Lehmann 
et al. 2021

Various 200–800 >365 DFO

22 Woolf et al. 
2021

Various 350–800 >365 DFO, 
TFO

23 Rodrigues 
et al. 2023

Various 200–796 >365 DFO

24 Azzi et al. 
2024

Various 200–1200 >349 SFO, 
DFO, 
TFO, 
Power
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persistence, the DFO model has remained widely used in synthesis 
studies (Singh et al. 2012b; Budai et al., 2013; Wang et al., 2016; Leh-
mann et al., 2021; Woolf et al., 2021; Rodrigues et al., 2023). Taking a 
more cautious stance, biochar persistence as predicted by the DFO 
model offers a conservative estimate of the C sequestration potential 
(Budai et al., 2013). However, there is a risk that these underestimations 
may mislead policymakers and stakeholders, so care should be taken 
when interpreting the biochar persistence estimates predicted by the 
DFO model.

The TFO model provided more accurate predictions compared with 
the DFO model but only had four of the best fits (10 %). Further, only 41 
% of the selected datasets could be fitted with the TFO model without 
large SEs (Fig. S1). The SEs of the estimates by the TFO model tended to 
be larger than the parameter estimates. Such large SEs may indicate 
over-parameterization making the results unreliable and the model may 
not suitable for biochar persistence estimation in most cases.

3.3. Power model

The power model, which has been employed in a limited number of 
biochar persistence studies (Zimmerman, 2010; Bai et al., 2013; Liu 
et al., 2020, Azzi et al., 2024), fit all the selected data without large SEs, 
with an average adjusted R2 of 0.99 and with 15 best fits (37 %), the 
highest number of all models. Moreover, when extrapolating from the 
progressively shorter biochar incubation datasets, the power model gave 
the smallest differences between predictions and measured outcomes, 
and the predictions were not as sensitive to shortening the dataset as the 
other models (Fig. 3 and Fig. S2). These results are in line with experi-
mental findings indicating a diverse range of chemical structures and 
arrangements within biochar (Brewer et al., 2009; Keiluweit et al., 
2010). However, the extrapolations made here were based on a “high- 
quality” subset of observations, i.e. without sudden increases or fluctu-
ations in decay rates. When evaluating the power model on some of the 
datasets that we excluded, there were several cases where the power 
model underestimated biochar persistence even to a larger extent than 
the SFO model. For instance, the power model predicted that a wood- 
based biochar produced at 550 ◦C, using the data from Fang et al. 
(2014) (observation 27), would be fully mineralized already after 39 
years, while the estimates from the SFO model suggested that more than 
30 % biochar C would remain after 100 years (Fig. S5). Although 
complete decay within only 39 years is not biologically impossible, it is 
not in line with current literature estimates. In general, caution is war-
ranted in interpreting curve fitting if the underlying data is not deemed 
reliable or suitable (see Table S1 for the criteria we used).

3.4. Challenges with extrapolating from laboratory incubations to field 
conditions

The biochar decomposition data in this study were obtained under 
well-controlled laboratory conditions. Under real field conditions, bio-
char is subjected to drying-wetting and freeze–thaw cycles, dramatic 
temperature fluctuations and other environmental variations. Moreover, 
fresh organic matter is continuously added, maintaining the activity of 
microorganisms at a higher level. All these factors can potentially speed 
up degradation of biochar compared to lab incubations, which likely 
explains, at least in part, the significant decrease in biochar stocks after 
11 years in a recent field study (Gross et al., 2024). The unpredictable 
conditions in the field might lead to erratic patterns in biochar decom-
position rates, posing challenges for data fitting using the models studied 
here. Various sophisticated SOC models have been developed to esti-
mate SOC changes over time under field conditions, with decomposition 
rate modifiers to account for the effects of key factors such as soil tem-
perature, soil moisture and clay content on SOC dynamics (Le Noë et al., 
2023). Recently, Pulcher et al. (2021) attempted to incorporate biochar 
in the RothC model to assess and predict how biochar influences soil C 
dynamics under Italian climate conditions. However, further studies are 

still needed to parameterize existing SOC models for biochar in order to 
predict biochar C dynamics under long-term field conditions.

4. Conclusion

The incorporation of an inert pool often improve model fits to bio-
char mineralization data compared to first order models. However, the 
inert pool models tended to overestimate biochar persistence and gave 
unexpectedly high estimates of the inert pool size even when fitted to 
mineralization data from biodegradable materials. The most commonly 
used models for biochar stability predictions, the first order exponential 
models, underestimated biochar C persistence compared with the 
measured outcomes. This suggests that most current predictions of 
biochar long-term persistence from incubation studies, especially the 
ones stemming from short (< 1 year) incubations, are likely under-
estimated. The power model yielded the highest number of best fits and 
gave the most reliable predictions. It appears to be a better option for 
estimating biochar persistence compared to the other models. However, 
careful data quality assessment is important since the power model is 
sensitive to fluctuations in mineralization rate.
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