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Abstract
At nuclear power plants, risk analysis concerning environmental extremes is crucial. Based on historical data, estimation of 
return levels is usually performed. For long return periods, a problem is that the related uncertainties of the return levels often 
get large. Moreover, models need to take into account possible effects of climate change. In this paper, extreme sea levels 
close to Swedish nuclear power plants are considered. Non-stationary statistical models and the related results of conditional 
prediction during a typical time horizon of an infrastructure are studied. The influences of parameters in extreme-value 
distributions and the lengths of observation records are discussed. The effect of land uplift in parts of the Baltic Sea is seen.
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1 Introduction

For risk analysis and assessment, e.g. in the domain of 
nuclear safety, statistical methodology is of main impor-
tance. Statistical analysis of environmental extremes (e.g. 
temperature or sea level) is a particular field of study. A key 
issue in extreme-value analysis is that available data series 
usually are quite limited (typically some decades of data), 
which implies problems since the probabilities of interest 
related to the risk scenarios usually are low.

An important measure of risk is the notion of return level, 
related to a specified return period. For instance, the annual 
maximum temperature exceeded with a one percent prob-
ability in any year is called the 100-year temperature. Sev-
eral techniques for estimation of return levels from data are 
well established, e.g. based on the so-called method of block 
maxima or the POT (Peaks Over Thresholds) method; see, 
e.g. Coles (2001) for an overview. Facing climate change, 
statistical frameworks for non-stationary analysis have been 
introduced. Applications are found for several environmen-
tal quantities, and we here give just a few examples: vari-
ables like temperature (Rydén 2011, Hamdi et al. 2018), 
precipitation (Hao et al. 2019; Vu and Mishra 2019), or 

floods (Delgado et al. 2010, Rydén 2022). A review ori-
ented towards hydroclimatic extremes is given by Slater 
et al. (2021). However, extension of the notion of return 
level is not easily made to the non-stationary case. In fact, 
some definitions have been made in the literature, e.g. by 
Parey et al. (2010); for a review, see Cooley (2013). Thus, a 
problem is that there is no unique way of defining the return 
levels.

Regulations and related safety levels in the field of 
nuclear engineering are often related to long return periods; 
for instance, 104 years in the U.K. and 106 years in Swe-
den, respectively (Green 2017; SSM 2021). Moreover, it is 
of interest to consider the actual, or rather intended, life-
time of an infrastructure. This typically is of the order 100 
years. Hence, there is a benefit of studying these low risks 
over a considerably shorter time horizon. A framework for 
such studies was initiated by Hamdi et al. (2018), where the 
notion of conditional prediction was introduced. Examples 
were given with 100-year levels of temperatures in France. A 
software package in the R language, NSGEV, was presented, 
which also renders uncertainties of the estimated return lev-
els by various methods (R Core Team 2024; Deville 2022). 
The authors stated about the merits of the methodology that 
“it provides high return levels for short-term horizons. This 
attractive feature makes it more interesting from a practical 
point of view.”

In this paper, we extend the analysis by Hamdi et al. 
(2018). More precisely, we now study considerably longer 
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return periods and another environmental variable of interest 
for nuclear safety, namely sea level. Stations close to Swed-
ish nuclear power plants are considered. Further, related 
computed uncertainties are presented and the behaviour is 
also discussed from the perspective of the estimated shape 
parameter of a so-called GEV distribution at each location. 
As was claimed by Hamdi et al. (2018): “An in-depth study 
could help to thoroughly improve the NSGEV package and 
apply the developed concept at other sites of interest. The 
concept of conditional predictions and methodology devel-
oped here and the integrated return level definition should 
find additional applications for the assessment of risk asso-
ciated with other hazards in other climate and geoscience 
fields (e.g. coastal hazards)”. Thus, the present paper is in 
line with the views of the cited authors and provides a natu-
ral continuation of the work (e.g. other environmental vari-
able, various sites, longer return periods).

The paper is organised as follows. In Sect. 2, a descrip-
tion of the datasets is given. A brief review of statistical 
extreme-value analysis is presented in Sect. 3, where also the 
aspects on estimation of return levels are discussed in some 
length, in particular the non-stationary framework. Results 
after the fitting of several models are given in Sect. 4 and 
a simulation study, motivated by some results, is presented 
in Sect. 5. Finally, in Sect. 6, a summary and concluding 
discussion is provided.

2  Data

Data in this study are hourly measurements of sea level (in 
cm) from recordings provided by the Swedish Meteoro-
logical and Hydrological Institute (SMHI). The sea levels 
are presented in the vertical reference system RH2000, the 
national height system in Sweden. In this study, the RH2000 
values were kept in the statistical analyses, for the sake of 
simplicity; the main aim is to illustrate the non-stationary 
statistical framework presented. Observations can be cor-
rected for relative sea-level change (i.e. isostasy and eus-
tasy). See the document from SMHI (2013), where formulae 
for such corrections are given, and Posada (2014), Sect. 2.3, 
for an example.

A recent review on extreme events in the Baltic Sea 
region, also regarding other quantities than sea level, is given 
by Rutgersson et al. (2022). In the Baltic Sea, extreme sea 
levels could be caused by wind, air pressure (inverse baro-
metric effect), and seiches. Concerning internal tides, the 
amplitude is at most places a few centimetres.

Three stations were considered, all located nearby Swed-
ish nuclear power plants. Table 1 gives a summary includ-
ing e.g. the lengths of records. Further, the locations are 
shown on the map of Scandinavia in Fig. 1, and time series 
of annual maxima are shown in Fig. 2.

Data quality was overall decent, with few major portions 
missing. Concerning extremes, the winter season yields 
more extreme observations and needs extra care in exami-
nation. Some gaps unfortunately happened during January 
for Oskarshamn and Ringhals. The treatment is described 
below.

2.1  Oskarshamn

There is a substantial gap in the time series for 1980: the 
period January 27 to April 7 is missing (and a few hours in 
January 26 and April 8). Measurements from a neighbouring 
site, Ölands norra udde (57.37, 17.10) were considered, and 
a comparison with the original data just before and after the 
gap period was made. An illustration for the period preced-
ing the gap period is shown in Fig. 3, left panel. The series 
are quite similar, and as Ölands norra udde in fact had obser-
vations for the gap period, hence that period was examined. 
The maximum of the gap period was 38.8 cm. The tenth 
largest maximum during 1980 of the Oskarshamn series was 
58.5 cm. Thus, the gap in the Oskarshamn series is not that 
serious with extremes in mind.

Fig. 1  Map over Scandinavia with the locations of measurement sta-
tions indicated
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2.2  Ringhals

 Observations are missing in 2022, the period January 5 
to January 11. This is within the winter season, and hence 
careful attention needs to be paid. Measurements from 
neighbouring site Onsala were considered for comparison 
(measurements started there at 2015). An illustration for the 
period preceding the gap period is shown in Fig. 3, right 
panel. The time series are close, and Onsala observations for 
the gap period could be analysed as a proxy. The maximum 
was found to be 56.9 cm, to be compared with, e.g. the tenth 

Fig. 2  Time series and annual 
maxima of sea level at the three 
locations under study

Table 1  Stations considered in the study

Station Latitude/Longitude Period

Forsmark (60.41, 18.21) 1976-2022
Oskarshamn (57.28, 16.48) 1961-2022
Ringhals (57.25, 12.11) 1973-2022
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largest maximum during 2022 of the Ringhals series, 70.2 
cm. Thus, the gap in the Ringhals is not that severe.

3  Statistical methodology

3.1  Extreme‑value analysis

Statistical extreme-value analysis concerns the tails of dis-
tributions. The common approach, with roots to Gumbel 
(1958), is to fit a generalised extreme-value (GEV) distri-
bution to a sample of independent annual maxima (“block 
maxima”). This then serves as the limiting distribution of 
independent maxima. The distribution function for the GEV 
distribution is given as

defined on {x ∶ 1 + 𝜉(x − 𝜇)∕𝜎 > 0} and where 𝜇, 𝜎 > 0 and 
� are the location, scale, and shape parameters, respectively 
(Coles 2001; Dey et al. 2016).

With the GEV distribution, three limiting distributions 
are unified. These have been studied historically as separate 
cases, and the shape parameter � is related to the nature of 
the tail. Still, there is interest in discussing these cases. If 
𝜉 < 0 , the upper tail is bounded (reversed Weibull distribu-
tion); if � = 0 , the tail decays exponentially (Gumbel dis-
tribution); and if 𝜉 > 0 , the tail decays as a power function 
(Fréchet distribution). In the case 𝜉 < 0 , the upper limit is 
given by � − �∕�.

(1)�(X ≤ x) = exp

{

−
[

1 + �

(

x − �

�

)]−1∕�
}

,

When fitting a conventional GEV distribution to data, 
estimation is often performed using the maximum likeli-
hood (ML) method. When −1 < 𝜉 ≤ −0.5 , the ML estimate 
exists, but does not have the standard asymptotic prop-
erties. Often in practice, 𝜉 > −0.5 (cf. Dey et al. 2016), 
which is also the case in this study.

3.2  Return levels: conventional analysis

The T-year return level, corresponding to a return period 
T, is often defined as the high quantile for which the prob-
ability that the annual maximum exceeds this quantile is 
1/T. In the stationary case, the return level can be inter-
preted in two ways: that the expected waiting time until 
the next exceedance is T years or that the expected number 
of events in T years is 1. For details and arguments, see 
Cooley (2013).

For a GEV distribution the return level follows from 
closed-form expressions as quantiles in the distribution:

Estimates of return levels are obtained by in Eq. (2) simply 
plugging in the ML estimates of the parameters � , � , and � . 
The uncertainty of the return level is of interest to assess in 
risk analysis, and statistical procedures are, e.g. the delta 
method or profile likelihood. Usually the profile likelihood 
approach is preferred, as the delta method results in sym-
metric intervals.

(2)xT = � −
�

�

[

1 − (− ln(1 − 1∕T))−�
]

.

Fig. 3  Comparison of time series from nearby stations and interval preceding period of gap in time series of primary interest. Left panel: Oskar-
shamn and Ölands norra udde. Right panel: Ringhals and Onsala. In both situations, the neighbouring stations have a similar temporal behaviour
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3.3  Return levels: non‑stationary formulations

Often the scale and location parameters in the GEV distri-
bution are time varying and then assumed to be polynomial 
functions of time (Coles 2001). A simple example, for the 
location parameter, is

where �0 and �1 are parameters, to be estimated. In prac-
tice, the shape parameter is kept constant (already in the 
stationary case, estimation of the shape parameter is more 
troublesome than for the other parameters). For compari-
son of time-varying statistical models, computation of the 
Akaike information criterion (AIC) can be made. This is 
a comparative measure; the lower, the better, in terms of 
predictive performance of the model. Another option is to 
employ likelihood ratio (LR) tests.

Concerning return levels and return periods, several 
notions have been discussed and suggested in the literature. 
Following Hamdi et al. (2018) and with predictions in mind, 
one can speak about two types: conditional prediction and 
integrated prediction. In the former case, return period is 
conditional to a fixed date relative to a future block. In the 
latter case, return period is integrated over a future period. 
The calculated return level then corresponds to an expected 
number of exceedances equal to one over that period.

Hamdi et al. (2018) emphasise advantages of the con-
ditional return period, as there is no need to assume that 
the current trend will remain unchanged until far time hori-
zons. This is valuable for planning and safety analysis. In 
this paper, we investigate results by conditional prediction as 
implemented in the R package NSGEV (Deville 2022). For 
instance, an algorithm with constrained optimisation is used 
for the inference based on profile likelihood. Details on the 
numerical work are found in the vignette related to NSGEV.

3.4  Special case: time‑dependent location 
parameter

We first investigate the simple case of a time-dependent 
location parameter in a GEV, cf. Equation (3). Estimation is 
performed by maximum likelihood as implemented in the 

(3)�(t) = �0 + �1t,

R package extRemes. In Table 2, for each station is pre-
sented the p-value of an LR test when comparing the model 
in Eq.  (3) to a stationary model. A low p-value implies 
rejection of the null hypothesis of stationarity. Moreover, 
the point estimates of �1 are given, along with related stand-
ard errors.

We note that for one of the stations, Forsmark, the station-
ary model is rejected in favour of the model in Eq. (3). The 
sign of �̂�1 is negative, implying a decrease in slope.

4  Results

We here present the results for the stations: Forsmark, 
Oskarshamn, and Ringhals. For all locations, the following 
models were fitted: 

m
0
: Stationary model

m
1
: Time-dependent location parameter: �(t) = �

0
+ �

1
t

m
2
: Time-dependent scale parameter: �(t) = �

0
+ �

1
t

m
3
∶ Time-dependent location and scale parameters (cf. m

1
 and m

2
)

Return levels were computed for return periods 102 , 103 , 
104 , 105 , and 106 (years), following the notion of conditional 
prediction from Sect. 3.3. The planned time horizon for a 
power plant is of the order 100 years, so starting from pre-
sent, say January 2024, we study the behaviour at January 
2124.

The results are presented in forms of visualisations, so-
called return-level plots. On the abscissa is then showed the 
return period, and the ordinate shows the related estimated 
quantile (that is, return level). The plot shows point estimates 
as well as uncertainties in the form of confidence intervals 
as implemented in NSGEV: the delta method; profile like-
lihood; and bootstrap methodology (Hamdi et al. 2018). 
Confidence intervals are given with the conventional 95% 
confidence level as well as 70% confidence level, the latter 
a choice in this context by French nuclear operators. For 
a given station and type of confidence interval, a pair of 
return-level plots is shown: to the left, the status of today 
and to the right, 100 years into the future.

Tables presenting numerical results for all situations (sta-
tions, methods for confidence interval, confidence level) 
would be too spacious. In Table 3 is presented, for reference 
only, the case for return period T = 1000 and significance 
level 0.95. This might serve as a complement to the figures.

Before proceeding to the results of the model fittings, we 
present for each station ML estimates of the shape param-
eter � in the GEV distribution. As pointed out in Sect. 3.1, 
the sign of the shape parameter has implications for the 
interpretation of e.g. upper bounds of the quantity studied. 
In Table 4 are given the estimates as well as p-values for 
Wald tests of the null hypothesis � = 0 . Following common 

Table 2  Examination of possible trend in location parameter. LR test: 
non-stationary against stationary (related p-value) and point estimate 
of �

1
 with associated standard error

Station LR test, p-value �̂�
1
 with standard error

Forsmark 0.0019 −0.70 (0.20)
Oskarshamn 0.63 0.050 (0.10)
Ringhals 0.20 0.24 (0.19)
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praxis, the null hypothesis is rejected if p < 0.05 . We find 
that for the stations Forsmark and Oskarshamn, both situ-
ated on the Baltic Sea coast (Fig. 1) evidence of a negative 
shape parameter, whilst the Gumbel case cannot be rejected 
at Ringhals station.

4.1  Forsmark station

Comparing the models by AIC, there is a preference for 
model m1 (AIC values 429.2, 421.5, 430.3, and 422.5), 
and LR tests give the same conclusion. In other words, we 
face a time-dependent location parameter, which follows 
as �(t) = 112.3 − 0.7t (Table 2, with results from the same 
model being fitted). The negative slope over time can be 
interpreted as a result of land uplift, present in this part of 
the Baltic Sea (Fig. 1).

Based on the model m1 , we make predictions following 
conditional prediction. The results are visualised in Figure 4 
in the form of return-level plots. We note the decrease in 
return level in the future and also the increase in width of 
confidence interval with increasing return period, in particu-
lar, for the case of 95% confidence level. Furthermore, the 
profile likelihood and bootstrap alternatives yield extraordi-
narily high upper bounds that seem non-relevant.

4.2  Oskarshamn station

For this station, the stationary model m0 is the best choice in 
terms of AIC (520.0, 521.7, 521.9, and 523.7) and LR tests. 
Although not statistically significant, there is now a posi-
tive slope in location parameter (following model m1 ) and 
hence a slight increase in return level over the time horizon 
to 2124. For an illustration, see Fig. 5. Compared to the 
previous station, we here note a not that dramatic increase 

in uncertainty over time, in terms of sea level; about 3 m as 
upper limit of the 95% confidence interval for T = 106 years, 
as compared to over 12 m in the most extreme setting for 
station Forsmark.

4.3  Ringhals station

Compared to the other two locations, this is situated on the 
west coast of Sweden (Fig. 1). Again, we compare the three 
models, and the stationary model m0 is preferred (lowest 
AIC: (453.11, 453.45, 454.79, and 454.90)). Return-level 
plots are shown in Fig. 6, where we chose to present the out-
comes of the stationary model m1 (although not significant). 
The same features as for Forsmark station can be observed, 
i.e. unreasonably high upper limits of the 95% confidence 
intervals with increasing return period.

5  Simulation study: example of Forsmark

We here discuss possible reasons for differences in features, 
in terms of widths of confidence intervals, at stations Fors-
mark and Oskarshamn (Figs. 4 and 5). From Table 4, we 
note that for both sites the shape parameter is significantly 
negative, which implies from theory an upper limit (case of 
reversed Weibull distribution). However, there is a slight 
difference in the length of the original time series, Table 1. 
The length of the Forsmark series is 15 years shorter, and the 
station has considerably higher uncertainty for return-level 
estimates for long return periods.

In this subsection, we simulate a fictive dataset of length 
200 years, following a GEV distribution with parameters 
following the ML estimates of the original time series 
( � = 92.5 , � = 21.2 , and � = −0.23 ). Since this is a numer-
ical experiment, we for simplicity denote the simulated 
series of 200 observations as running between 2000 and 
2199. Conditional return levels are computed on a 100-year 
horizon as before, thus ending in 2300, with the resulting 
return-level plots shown in Fig. 7. Only the profile like-
lihood intervals are presented here, and we note that the 
overall uncertainty is now considerably reduced. Even the 
upper bounds of the 95% confidence intervals have sea levels 
less than 2 m for this location, for the longest return period 

Table 3  Summary of 1000-year 
return levels (in cm) as of 2024 
and conditional predictions of 
1000-year return levels, 100 
years ahead (2124). Significance 
level of confidence intervals: 
0.95

Situation Point estimate Delta method Profile likelihood Bootstrap

Forsmark, 2024 161 (110, 211) (134, 327) (122, 218)
Forsmark, 2124 91 (28, 154) (36, 249) (15, 183)
Oskarshamn, 2024 136 (112, 160) (122, 184) (115, 161)
Oskarshamn, 2124 141 (107, 175) (111, 192) (103, 171)
Ringhals, 2024 201 (133, 270) (167. 407) (144, 310)
Ringhals, 2124 226 (148, 303) (166, 431) (148, 339)

Table 4  Estimates of shape parameter � and related p-value for test of 
the null hypothesis � = 0

Station Estimate p-value

Forsmark −0.23 5.2 ⋅ 10−3

Oskarshamn −0.17 2.2 ⋅ 10−2

Ringhals −0.065 0.22



1025Environment Systems and Decisions (2024) 44:1019–1028 

Fig. 4  Return-level plots, Forsmark Fig. 5  Return-level plots, Oskarshamn
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of T = 106 years (Fig. 4). Hence, the length of time series 
seems highly influential. (Several simulations were per-
formed and typically, the level of 2 m was never exceeded.)

6  Summary and discussion

Estimation of return levels is crucial for risk analysis, for 
planning and decision-making. Non-stationary models are 
important in the light of climate change. We found that the 
notion of conditional prediction is useful for predictions 
during the time horizon of typical infrastructure. However, 
in certain cases, the uncertainties may grow very large for 
the long return periods required in certain applications. In 
particular, the confidence intervals from profile likelihood 
and bootstrap methodology, respectively, tend to generate 
wide intervals with unreasonably high upper limits. One 
also notes that for two of the stations (Oskarshamn and 
Ringhals), the non-stationary models were not considered 
statistically significant. The obtained AIC values are from 
a practical point of view similar. The figures illustrate the 
cases when nevertheless applying the non-stationary frame-
work and obtaining conditional predictions. Table 3 shows 
the slight increase in point estimate of return level (return 
period 1000 years).

By a simulation study, we observed the impact of length 
of the original series, Rydén (2023) for similar investigations 
(then considering rejection of the Gumbel distribution). In 
addition, the sign of the shape parameter might play a role: 
a clearly negative shape parameter yields (from theory) an 
upper bound of the random outcome. For two of the three 
considered stations, the shape parameter was negative by 
statistical significance (Table 3).

The sign of the shape parameter, and its implications, 
has been studied for various meteorological quantities. 
Concerning for instance wind speed, there was a debate 
in the literature concerning a possible upper limit (Harris 
2005; Simiu 2007). In the study of sea level, Räty et al. 
(2023) discuss theoretical upper limits on the Finnish coast 
(see their Table 2). Turning to river floods, Hosking et al. 
(1985) mention 32 series (of length 30 or more), with 
estimated shape parameters ranging from −0.32 to 0.48 
(hence, varying in sign). Focussing on annual maximum 
daily rainfall, Papalexiou and Koutsoyiannis (2013) inves-
tigated the impressive number of 15,137 records from all 
over the world, fitting GEV distributions. They found that 
when the effect of the record length was corrected, the 
shape parameter � varied in a narrow range; moreover, an 
influence of geographical location on the value of � . A var-
iability in sign of � was found, but in the majority of cases 
(about 80%), 𝜉 > 0 . Finally, the uncertainty of the upper 

Fig. 6  Return-level plots, Ringhals
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bound is often considerable. This has been for instance 
been demonstrated through simulation studies based on 
GEV distributions with parameter values chosen to mimic 
realistic situations (Rydén, 2024).

Note that this study did not consider potential sea-level 
rise. Recent research, with focus on Scandinavian coast-
lines, was reported by Hieronymus and Kalén (2022). Six 
sites along the Swedish coast were then considered using 
a so-called flood-risk simulation framework. The general 
conclusion was that for longer planning periods, the risk of 
flooding is dominated by high sea-level rise.

Finally, it should be mentioned that the definition of 
return level is discussed in the literature, see for instance 
Volpi et al. (2015), where the problem of dependence in 
time series is in focus. Rootzén and Katz (2013) proposed 
the notion of design life level. In the future research, it would 
be of interest to further investigate possible definitions of 
return levels.
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