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Whole genome sequences of 70 
indigenous Ethiopian cattle
Wondossen ayalew1,2,7, Wu Xiaoyun1,7, Getinet Mekuriaw Tarekegn2,3 ✉, Rakan Naboulsi4, 
tesfaye Sisay tessema2, Renaud Van Damme  5, Erik Bongcam-Rudloff  5, Min Chu1, 
Chunnian Liang1, Zewdu Edea6, Solomon Enquahone3 & Yan Ping1 ✉

Indigenous animal genetic resources play a crucial role in preserving global genetic diversity and 
supporting the livelihoods of millions of people. In Ethiopia, the majority of the cattle population 
consists of indigenous breeds. Understanding the genetic architecture of these cattle breeds is essential 
for effective management and conservation efforts. In this study, we sequenced DNA samples from 
70 animals from seven indigenous cattle breeds, generating about two terabytes of pair-end reads 
with an average coverage of 14X. The sequencing data were pre-processed and mapped to the cattle 
reference genome (ARS-UCD1.2) with an alignment rate of 99.2%. Finally, the variant calling process 
produced approximately 35 million high-quality SNPs. These data provide a deeper understanding of 
the genetic landscape, facilitate the identification of causal mutations, and enable the exploration of 
evolutionary patterns to assist cattle improvement and sustainable utilization, particularly in the face of 
unpredictable climate changes.

Background & Summary
Indigenous animal genetic resources, primarily found in developing countries, are known to contain a sig-
nificant portion of the world’s genetic diversity. Millions of people rely directly on these resources for their 
livelihoods1. Ethiopia, in particular, is considered a gateway for cattle migrations in Africa2. Presently, the cattle 
population in Ethiopia exceeds 70 million heads3, with 98.5% of them being indigenous cattle. These indigenous 
cattle are often named based on their appearance, morphological structure, the ethnic group of the herder, and 
their geographical location4,5. Over time, these cattle have developed unique adaptive traits that enable them to 
withstand challenges such as limited feed availability, high environmental temperatures, and a high prevalence 
of internal and external parasites and diseases. These adaptive features have been shaped through natural and 
human selection processes6,7.

By far, cattle production in Ethiopia is an integral part of almost all farming systems in the crop-livestock 
mixed farming systems of highlanders and mid attitudes, and the main occupation in the lowland pastoralists, 
and still promising to rally around the country’s economic development. Despite multiple functions and sig-
nificant phenotypic variations of indigenous cattle populations, little attention was paid to the livestock sector, 
which threatened the country’s cattle diversity and population size. These are mainly associated with complex 
and interrelated factors such as indiscriminate crossbreeding and interbreeding between adjacent indigenous 
breeds due to herders’ migrations and socio-cultural interactions8,9. Furthermore, recurrent drought, the prev-
alence of disease, ethnic conflicts, and the illegal cross-border market hasten the decline in cattle numbers. 
Thus, a comprehensive understanding of breed characteristics, including population size, genetic landscape, and 
geographical distribution, is crucial for effectively managing farm animal genetic resources1,10. It also serves as 
a guiding framework for breed development programs, enabling them to align with specific production needs 
in diverse environments.
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Quantitative genetic analysis has historically been characterized as a black box due to the intricate nature of 
gene action, which involves multiple loci with unknown effects and their interactions in shaping quantitative 
traits11. This complexity has posed challenges in understanding the underlying mechanisms and unraveling 
the genetic architecture of these traits. As a result, researchers have faced difficulties replicating the results of 
selective breeding across different spatial and temporal scales, making it essential to explore further and eluci-
date these complex genetic processes. Advancements in genome sequencing, SNP genotyping technologies, and 
statistical analysis tools have shifted research focus from analyzing neutral variation to exploring functional 
variation12. Notably, the advent of whole-genome sequencing (WGS) in domestic animals has revolutionized 
our understanding of their genetic makeup. It has allowed for the identification of causal variants that have 
significant implications for animal production, health, welfare, and evolutionary studies within livestock species 
and breeds13. While WGS has become a standard tool in various biological sciences, including animal breeding, 
its application for genetic characterization and routine evaluation of livestock genetic resources in developing 
countries is still limited. This study presents the whole-genome sequencing data from 70 indigenous cattle orig-
inating from seven distinct Ethiopian cattle populations sampled from various agro-ecological and climatic 
settings (Table 1; Ayalew et al.14). Thus, our WGS data will serve as a valuable resource for conducting further 
in-depth studies and investigations in tropical cattle. This sequence dataset will facilitate a deeper understanding 
of the genetic landscape, allowing for the identification and validation of causal mutations that contribute to 
essential traits and the exploration of evolutionary patterns.

Moreover, the detailed analytical procedures offer significant advantages for researchers, such as ease of 
management of similar WGS and implementation of global cattle meta-assemblies at a broader scale. The 
meta-assembly, which combines multiple genetic or genomic data assemblies into a single, comprehensive 
assembly, will enable the accurate validation of regions under selection reported by various researchers, ensuring 
the identification of actual signals while minimizing false positives and supporting future breed improvement 
and conservation efforts.

Methods
Cattle sampling and collection. We specifically selected seven indigenous cattle populations (Abigar, Barka, 
Boran, Fellata, Fogera, Gojjam-Highland, and Horro) for our study, with ten unrelated samples collected from each 
population. These cattle populations inhabit distinct agro-climatic regions, representing Ethiopia’s diverse environ-
ments (Table 1). We selected these particular populations based on their relevance to agricultural practices, pro-
viding insights into desirable production traits, environmental adaptation, and regional livestock farming systems. 
Blood samples were drawn from the jugular vein of the cattle under sterile conditions, using 10 ml EDTA tubes. 
The samples were carefully transported to the laboratory in an ice box and stored at −20 °C until DNA extraction.

Extraction and quality control of genomic DNA. The blood samples were thawed for 30 minutes at 
room temperature and underwent DNA extraction using the Tiangen genomic DNA extraction kit based on the 
manufacturer’s protocols (TIANGEN Biotech, Beijing, China). We conducted 0.8% agarose gel electrophoresis to 
assess DNA integrity and visualized the resulting DNA bands using a gel imaging apparatus. Each sample’s DNA 
concentration and quality were determined using a Nanodrop Spectrophotometer (ND-2000, Thermo Scientific, 
Massachusetts, USA) at a wavelength of A260/A280. Samples with DNA concentrations above 50 μg/μl were then 
sent to Wuhan Frasergen Bioinformatics Co. Ltd in China for whole-genome sequencing (WGS).

Sequence library preparation and sequencing. The VAHTS Universal DNA Library Prep Kit for MGI 
(Vazyme, Nanjing, China) was employed to generate sequencing libraries of each sample, targeting fragments of 
approximately 500 bp in length using one microgram of DNA as input material. Adapter sequences were ligated to 
each sample. Library size and quantification were assessed using Qubit 3.0 Fluorometers and Bioanalyzer 2100 sys-
tems (Agilent Technologies, CA, USA). Finally, the sequencing process was conducted by Frasergen Bioinformatics 
Co., Ltd. (Wuhan, China) on an MGI-SEQ 2000 platform, resulting in a 150 bp sequence length for each sample.

Sequence data pre-processing and mapping. The demultiplexed 70 individual samples (forward 
and reverse reads) were received and checked for their quality metrics using FastQC v0.11.815. The raw reads 
were subjected to initial quality control by Trimmomatic v0.39 using default settings16. After removing adapter 
sequences and low-quality reads, MultiQC v1.14 was run on the clean reads, and standard sequence quality met-
rics were confirmed for subsequent analysis. BWA-MEM 0.7.17-r118817 was employed to align individual reads 

Breeds No. of samples Geographic region Altitude Latitude Longitude Agro-Ecology

Abigar 10 Gambela 523 8.123469 34.30687 Hot, humid, and low-altitude

Barka 10 Amhara 895 14.18467 36.89087 Hot, humid, and low-altitude

Boran 10 Oromiya 1368 4.978936 38.27516 Hot, humid, and low-altitude

Felata 10 Amhara 552 12.40733 35.87573 Hot, humid, and low-altitude

Fogera 10 Amhara 1735 11.86045 37.81373 Humid and mid altitude

Gojjam-Highland 10 Amhara 3410 10.72113 37.85988 Cold, humid, and high-altitude

Horro 10 Oromiya 1722 9.672949 37.07545 Humid and mid-altitude

Table 1. Ethiopian cattle breeds and their respective sampling locations.
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to the latest bovine reference genome ARS-UCD1.218. The aligned reads were converted to binary alignment map 
(BAM) format, sorted by coordinates, and indexed using SAMtools version 1.619. Finally, the duplicate sequences 
were marked using the MarkDuplicates function of Picard 2.27.4 (https://broadinstitute.github.io/picard/) to pro-
duce a non-duplicated bam file for variant calling.

Variant calling and filtration. High-quality variant calling and filtration are vital in genomic research. 
The Genome Analysis Toolkit best practices pipeline (https://gatk.broadinstitute.org/hc/en-us/articles/360
035535932-Germline-short-variant discovery) was employed for SNPs discoveries (Fig. 1). First, the marked 
duplicate bam files were used as input to generate Base Quality Score Recalibration (BQSR) tables using GATK 
4.3.0.0. The “Apply BQSR” argument of the same software was then employed to create recalibrated BAM files. 
The HaplotypCaller method, followed by joint genotyping of all samples and VQSR procedures for SNP recali-
brations, was performed using validated SNPs provided by the 1000 bull genome project. In the Variant Quality 
Score Recalibration (VQSR) procedure, SNP recalibrations utilized different variant annotators, including 
Quality of Depth (Q.D.), Fisher Strand Test (F.S.), Mapping Quality Score (M.Q.), Mapping Quality Rank Sum 
Test (MQRankSum), Read Position Rank Sum Test Statistic (ReadPosRankSum), and StrandOddsRatio Test 
(SOR). Subsequently, the ApplyVQSR procedure was employed to select variants with a true sensitivity of 99.0%. 
Finally, the ‘SelectVariant’ procedure from the same software was used, and the final SNPs were used for annota-
tions (refer to the Code availability section).

Data Records
The 70 Ethiopian indigenous cattle pair-end raw sequencing data (in fastq.gz format) were available at NCBI 
under Sequence Read Archive (SRA) accession numbers SRP47834820 and SRP48080321 (Supplementary file 1). 
The VCF file can be available in the European Variation Archive (EVA) with the accession number for Project 
PRJEB75238 (https://identifiers.org/ena.embl:ERP159827)22.

technical Validation
Quality control for raw reads and alignments. In next-generation sequencing (NGS) data analysis, 
quality control of raw sequence reads is a standard preliminary procedure before further analysis. This crucial 
pre-processing step enhances the overall data quality and reliability before conducting downstream analyses23. 
Some essential quality measures used to make choices for the downstream analysis are the base quality, nucleotide 

Fig. 1 Overview of raw data quality control, sequence mapping, variant calling, and variant filtration pipeline. 
The pipeline follows GATK’s best practice protocol for germline short variant discovery.
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distribution, G.C. content, and duplication rate of the raw sequences24. Sequencing of each individual yielded 
between 13.61 gigabases to 25.45 gigabases, of which 91.8–95.5% of the reads fell above Phred scaled quality score 
of 30, which proves the bases were called with 99.9% accuracy (Fig. 2). To elucidate all types of variants (includ-
ing SNVs, indels, and CNVs), a high-depth WGS (30X) is the ‘gold standard’25. Due to budget constraints, it is 
common practice to sequence fewer samples at high coverage (20 to 30X). However, this approach may result in 
a poor representation of a population’s genetic variation. The smaller dataset may not adequately capture the full 
range of genetic diversity present, leading to potential biases or incomplete insights23. Recently, Jiang et al. sug-
gested 4X as the lowest boundary and 10X as an ideal depth for achieving greater than 99% genome coverage in 
pigs26. The average estimated coverage for each of the 70 Ethiopian cattle samples was above the threshold with an 
average depth of 14X (Fig. 2). The relatively moderate depth of coverage in our study enhances the resolution and 
reliability of downstream analyses, leading to more robust findings and insights into the genetic basis of various 
traits and population dynamics26,27.

The MultiQC software28 was employed to generate a pooled sequence quality metrics report (Fig. 3). 
The MultiQC reports for 70 paired-end Ethiopian cattle sequences confirm that the mean quality scores  
and per-sequence metrics fell within the high sequence standard range for downstream analysis (Fig. 3b,c). 
Although there is no universal threshold for duplication levels in WGS data, FastQC flagged a warning for 

Fig. 2 Boxplot presentation of 70 Ethiopian cattle sequencing yield, yield Q30 and estimated sequence coverage.

Fig. 3 The quality control metrics from FastQC analysis of 70 cattle sequences. The metrics from all FASTQ 
files are consolidated using the MultiQC package.
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sequences with more than 20% duplicates15. Unlike PCR-free methods, PCR-based sequencing introduces bias 
in sequencing data by causing uneven amplification of genomic regions and generating duplicate reads, which 
can impact the accuracy of the sequencing data29. Intriguingly, we found an average duplication rate of 17% 
(Fig. 3a), and this relatively low level of duplication observed in our data can mitigate challenges in variant 
calling and uneven distribution of coverage across the genome and enhance the efficiency and speed of analysis 
pipelines30.

A uniform G.C. content among reads indicates high-quality sequencing, suggesting minimal artifacts or 
contaminants24. However, in our dataset comprising 70 forward and 70 reverse sequencing files (140 files), all 
sequenced in the same lane and on the same instrument, Fig. 3d reveals some deviations from the expected 

Annotation categories Count % of total

Downstream 2,563,798 4.51%

Exon 513,998 0.90%

Intergenic 23,537,404 41.41%

Intron 27,406,871 48.22%

Splice_site_acceptor 613 0.00%

Splice_site_donor 966 0.00%

Splice_site_region 49,852 0.09%

Transcript 551 0.00%

Upstream 2,507,622 4.41%

UTR_3_prime 176,834 0.31%

UTR_5_prime 75,531 0.13%

Table 2. Single Nucleotide Polymorphisms (SNPs) across various annotation categories.

BTA CHR Length SNP count Density/kb

1 158534110 2225913 14.04

2 136231102 1835540 13.47

3 121005158 1571987 12.99

4 120000601 1692789 14.11

5 120089316 1578815 13.15

6 117806340 1653802 14.04

7 110682743 1467141 13.26

8 113319770 1509341 13.32

9 105454467 1442407 13.68

10 103308737 1391180 13.47

11 106982474 1437389 13.44

12 87216183 1312516 15.05

13 83472345 1092309 13.09

14 82403003 1126064 13.67

15 85007780 1265285 14.88

16 81013979 1116393 13.78

17 73167244 1042961 14.25

18 65820629 874411 13.28

19 63449741 847878 13.36

20 71974595 1041114 14.47

21 69862954 968519 13.86

22 60773035 836115 13.76

23 52498615 874180 16.65

24 62317253 916025 14.70

25 42350435 605379 14.29

26 51992305 747549 14.38

27 45612108 723378 15.86

28 45940150 726207 15.81

29 51098607 803719 15.73

X 139009144 919141 6.61

Unplaced 76654434 213849 2.79

Table 3. Summary of SNPs density in each chromosome.
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distribution of G.C. content in a subset of 23 files (16.43%). These deviations may be attributed to challenges 
during library preparations15. Notably, despite deviations observed in the G.C. content distribution of some 
sequencing files, a warning message is acceptable for fewer than 30% of the reads, indicating that the overall data 
quality remains suitable for subsequent analysis15.

While the quality control for aligned reads is not routinely conducted, it is a valuable tool for gaining 
additional insights into sample quality. It can help identify problematic samples that might pass the initial 
raw data quality control checks24. In our data, 99.2% of the reads were successfully mapped to the Bos taurus 
(ARS-UCD1.2) reference genome (Supplementary file 2). It suggests that most reads were mapped correctly to 
their corresponding genomic locations.

Quality control for SNP data. After consolidating individual sample VCF files, the joint genotyping analysis 
yielded 39 million SNPs. To ensure the reliability of these variants and filter out false-positive calls for downstream 
analyses, we employed a robust machine-learning model called VQSR (https://gatk.broadinstitute.org/hc/en-us/
articles/360035531612-Variant-Quality-Score-Recalibration-VQSR). VQSR is a two-step process that involves 
training a machine learning model using a training dataset and then applying this model to recalibrate the variant 
quality scores in the primary dataset. VQSR offers several advantages, including improved accuracy, adaptability, 
comprehensive assessment, and reduced false positives compared to traditional filtering methods. By incorporat-
ing VQSR, we optimized the quality control process and enhanced the validity of our variant calls. Specifically, 
threshold values of 99% retained about 35 million true variants and excluded four million variants as poor/false 
positive calls. We also computed the transition/transversion (Ti/Tv) ratio and the heterozygosity-to-homozygosity 
(het/hom) ratio for SNPs passing the 99% threshold. The observed Ti/Tv and het/hom ratios were 2.35 and 1.17, 
respectively. These metrics are consistent with values reported for other African zebu cattle breeds31.

To investigate the genomic distribution and functional impact of genetic variants, we used the SNPeff variant 
annotation tool. A significant portion of variants (over 89%) were annotated within intronic and intragenic 
regions (Table 2). Notably, while the number of SNPs per chromosome correlated with chromosome length32, 
our study revealed varying SNP densities across chromosomes. For instance, Chromosome 23 showed the high-
est SNP density (16.65), whereas the X chromosome had the lowest (6.61). These variations are likely attributed 
to multiple factors, including differences in recombination and mutation rates, genetic drift, demographic influ-
ences, selective pressures, and population history33. Despite containing more repetitive regions, the X chro-
mosome experiences heightened selection pressure against genetic variants, driven by hemizygosity in males 
and X-chromosome inactivation in females. As a result, the X chromosome exhibits a lower SNP density than 
autosomes. These unique genetic mechanisms and evolutionary dynamics significantly shape the distinct SNP 
profiles observed between the X chromosome and autosomes34 Table 3.

Code availability
Data analyses were primarily conducted using standard bioinformatics tools on the Linux operating system. We 
provide detailed information about the versions and code parameters of the software tools used at https://github.
com/WondossenA/WGS_Ethiopian_cattle/blob/main/code_explanation.md.
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