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Summary

� Appropriate abiotic stress response is pivotal for plant survival and makes use of multiple

signaling molecules and phytohormones to achieve specific and fast molecular adjustments. A

multitude of studies has highlighted the role of alternative splicing in response to abiotic stress,

including temperature, emphasizing the role of transcriptional regulation for stress response.

Here we investigated the role of the core-splicing factor PORCUPINE (PCP) on

temperature-dependent root development.
� We used marker lines and transcriptomic analyses to study the expression profiles of meris-

tematic regulators and mitotic markers, and chemical treatments, as well as root hormone

profiling to assess the effect of auxin signaling.
� The loss of PCP significantly alters RAM architecture in a temperature-dependent manner.

Our results indicate that PCP modulates the expression of central meristematic regulators and

is required to maintain appropriate levels of auxin in the RAM.
� We conclude that alternative pre-mRNA splicing is sensitive to moderate temperature fluc-

tuations and contributes to root meristem maintenance, possibly through the regulation of

phytohormone homeostasis and meristematic activity.

Introduction

Plants display remarkable phenotypic plasticity, which they
achieve by continuously assessing their environment (Guo
et al., 2018; Lamers et al., 2020). Generally, abiotic stresses
induce a signaling cascade involving small signaling molecules,
such as reactive oxygen species (ROS), and various phytohor-
mones, such as auxin (Lamers et al., 2020; Danve et al., 2021). It
is noteworthy, that while different stresses utilize a common set
of signaling components, plants achieve sophisticated and stress-
specific transcriptional and physiological responses (Lamers
et al., 2020). To date, it remains an open question in plant phy-
siology how these stress-specific responses are attained.

Root development and architecture have a strong impact on
overall plant physiology, growth rate and stress resistance (Jung &
McCouch, 2013; Kuriakose & Silvester, 2016; Gonz�alez-Garc�ıa
et al., 2023). Yet, many molecular processes governing root growth
and patterning, particularly in response to environmental cues,
remain unknown (Kuriakose & Silvester, 2016; Motte
et al., 2019). Briefly, root development and growth are governed
by the rate of cell proliferation and elongation (Greb & Lohmann,
2016; Kuriakose & Silvester, 2016; Motte et al., 2019). The root
apical meristem (RAM) is thus pivotal for root growth, since it

harbors the quiescent center (QC), comprising undifferentiated
cells, and pluripotent stem cells, which undergo asymmetric cell
division to generate daughter cells (Kuriakose & Silvester, 2016).
WUSCHEL-LIKE HOMEOBOX5 (WOX5) is an essential tran-
scription factor for the regulation of root development. It is
expressed in the QC (Sarkar et al., 2007) where it suppresses the
expression of CYCD3;3 and CYCD1;1, thus inhibiting cell prolif-
eration (Forzani et al., 2014; Motte et al., 2019). Root organiza-
tion can be divided into radial patterning, encompassing vascular
tissue, endodermis, cortex and epidermis, and tangential pattern-
ing, specifically the differentiation of epidermal cells into tricho-
blasts (hair-bearing cells) and atrichoblasts (nonhair-bearing cells)
(Kuriakose & Silvester, 2016). Arabidopsis thaliana (L.) Heynh.
(A. thaliana) has a type III root hair pattern, where trichoblasts are
in contact with two underlying cortical cells, while atrichoblasts
are only in contact with one cortical cell, thus creating an orga-
nized and repetitive pattern of root hair and non-root hair cells
(Salazar-Henao et al., 2016). It has been shown that all the
above-mentioned processes are governed by auxin and maintaining
a stable auxin maximum in the QC and a gradient along the root
axis is crucial for the regulation of cell division and expansion
(Kuriakose & Silvester, 2016; Zluhan-Mart�ınez et al., 2021).
Auxin is believed to act upstream of the major regulators of stem
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cell activity, and auxin concentration can attenuate signaling cas-
cades by modulating gene expression (Kuriakose & Silve-
ster, 2016). Furthermore, research on the role of auxin in root
development highlighted that various environmental cues and hor-
monal signals converge onto auxin signaling (Olatunji et al., 2017;
Motte et al., 2019). It appears that auxin biosynthesis and homeos-
tasis contribute to environmental adaptation. Besides the free, bio-
logically active form of auxin, IAA, it can be found in three
different conjugated forms: (1) sugar esters, (2) amide conjugations
to amino acids, and (3) amide conjugations to peptides or proteins
(Ruiz Rosquete et al., 2012; Casanova-S�aez et al., 2021). Until
recently, it was postulated that among the amino acid conjugations
all but two, IAA-Asp and IAA-Glu, were reversible
(Ludwig-M€uller, 2011; Ruiz Rosquete et al., 2012; Korasick
et al., 2013; Casanova-S�aez et al., 2021). However, a new model
has been proposed, suggesting that IAA-Asp and IAA-Glu are also
reversible conjugations, but can be subject to oxidation, which ulti-
mately leads to auxin inactivation (Hayashi et al., 2021; Luo
et al., 2023). The conjugation of auxin to amino acids depends on
the activity of Gretchen Hagen 3 (GH3) family proteins, which
also contribute significantly to the regulation of plant stress
responses (Ruiz Rosquete et al., 2012; Casanova-S�aez et al., 2022;
Wojtaczka et al., 2022; Luo et al., 2023).

Low or high temperature are important plant stressors and play
a central role in governing developmental processes (Quint
et al., 2016; Guo et al., 2018; Lamers et al., 2020; De Smet
et al., 2021; Penfield et al., 2021; Zhu et al., 2022). In the case of
A. thaliana, chilling stress is generally experienced between 0°C
and 14°C, wherein exposure to 0–5°C induces cold acclimation,
and temperatures < 0°C induce freezing stress (Praat et al., 2021).
However, natural variations between accessions can have a major
impact on the temperature sensitivity of A. thaliana (Hannah
et al., 2006; Hernandez et al., 2023). Interestingly, it has been
reported that at the transcriptome level, temperature response in
roots is remarkably different from that in shoots (Bellstaedt
et al., 2019; Lamers et al., 2020). In recent years, several studies
have emphasized the role of alternative splicing (AS) in response to
temperature (Calixto et al., 2018; Neumann et al., 2020; Dikaya
et al., 2021), underlining the necessity of transcriptomic adjust-
ments to temperature cues. Several studies have also highlighted
the importance of AS to the cold response in plants (Reddy
et al., 2013; Staiger & Brown, 2013; Calixto et al., 2018; Capovilla
et al., 2018; Laloum et al., 2018). A potential new candidate,
which connects plant development, cold temperature response and
AS is PORCUPINE (PCP/AT2G18740), which encodes the
A. thaliana SmE1/SmEb protein (Capovilla et al., 2018; Huertas
et al., 2019; Wang et al., 2022), which is an essential part of the
spliceosomal SM-ring (Matera & Wang, 2014). PCP is induced
by cold temperatures and osmotic stress (Cao et al., 2011; Capo-
villa et al., 2018; Huertas et al., 2019). The pcp-1 mutant exhibits
strong developmental defects when grown at cold temperatures
(Capovilla et al., 2018; Huertas et al., 2019; Wang et al., 2022),
and a short root phenotype in response to salt stress (Hong
et al., 2023; Willems et al., 2023). Furthermore, pcp-1 mutants are
less sensitive to ROS induced cell damage (Willems et al., 2023).
However, while these studies provide important insights into the

effects of pcp-1 on transcriptomic changes, or shoot development,
the role of PCP in regulating root development has been largely
neglected. Here we show that PCP is key to temperature-
dependent RAM maintenance by modulating the expression of
central meristematic regulators, such as WOX5, and by preserving
appropriate levels of auxin.

Materials and Methods

Plants and growth conditions

A list of all plants and accession numbers can be found in Sup-
porting Information Table S1.

For root growth assays, hormone profiling, and microscopy,
seeds were surface sterilized in a solution comprising 70% EtOH,
10% sodium hypochlorite (7681-52-9; VWR, Darmstadt, Ger-
many), and 0.01% TritonTM X-100 (T8787; Merck, Darmstadt,
Germany), washed twice with absolute EtOH and dried in a
sterile laminar flow cabinet. Sterilized seeds were placed on
½-strength Murashige & Skoog (½MS) (M0222; Duchefa Bio-
chemie, RV Haarlem, the Netherlands) growth medium, contain-
ing 1.6% plant agar (P1001; Duchefa Biochemie) and 0.5 g l�1

MES buffer (M1503; Duchefa Biochemie), pH 5.7 using KOH.
The seeds were stratified at 4°C in darkness for 48 h, placed on
vertical plate holders, and transferred to Percival growth chambers
equipped with full-spectrum white light LEDs, and cultivated
at 16°C, 23°C, or 27°C (�0.5°C), under LD conditions
(16 h : 8 h, light : dark), with a relative humidity of 65%.

For crossings and seed propagation, seeds were stratified in
0.1% agarose (35-1020; VWR) solution at 4°C in darkness for
48 h, then transferred to soil (3 : 1 soil : vermiculite (Sibelco
Europe, Sibelco Nordic AB, V€asteras, Sweden)). Plants were fer-
tilized once with Rika (Horto Liquid Rika S, 7-5-1; SW Horto,
Hammenh€og, Sweden) (dilution factor 1 : 100) and treated with
NEMAblom (BioNema AB, Umea, Sweden). Plants were grown
in Percival growth chambers equipped with full-spectrum white
light LEDs and cultivated at 16°C or 23°C (�0.5°C), under LD
conditions (16 h : 8 h, light : dark), with a humidity of 65%.

Hormone treatments with auxinole (HY-111444; MedChem-
Express, Monmouth Junction, NJ, USA) and IAA (I2886;
Merck/Sigma-Aldrich) were carried out on ½MS plates. Each
compound was dissolved in DMSO (D8418; Merck) to create
stock solutions of 50 mM auxinole and 100 mM IAA. Auxinole
was directly added to the growth medium to reach the desired
concentrations, while IAA was first further diluted in sterile water
(1 : 1000 ≙ 100 lM) and then added to the growth medium to
reach the desired concentrations. Diluted DMSO was used in
control plates. IAA-containing plates were wrapped in yellow
plastic sheets to prevent light-mediated IAA degradation.

DNA extraction and plant genotyping

For pcp-1 genotyping, the Phire Plant Direct PCR Master Mix
(F160L; Thermo ScientificTM, Waltham, MA, USA) was used
according to manufacturer’s instructions. Briefly, a small pipette
tip was used to take a leaf punch, which was then homogenized
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in 20 ll of dilution buffer. One microliter of this mixture was
used in a PCR mix containing 12.5 ll of Phire Plant Direct PCR
Master Mix (29), 10.5 ll nuclease-free water and 0.5 ll of each
oligo. The oligo annealing temperature was 55°C. The oligo
sequences were as follows:

PCP-forward (LP): CTCCGATTCACCAGACTTGAG,
PCP-reverse (RP): GCCGAAGAGAATGACACAATC, T-DNA
(LBb1.3): ATTTTGCCGATTTCGGAAC.

Microscopy

For marker line, RAM, and stele microscopy we followed the
published ClearSee protocol (Kurihara et al., 2015), with the fol-
lowing changes: Seedlings were fixed for 1 h in 4%
PFA + 0.01% TritonTM X-100 and cleared in ClearSee solution
overnight. For the PlaCCI-marker line fixation time was shor-
tened to 10 min. After overnight clearing, all seedlings, apart
from PlaCCI, were counterstained with SR2200 cell wall staining
(Musielak et al., 2016) following the protocol established by
Tofanelli et al. (2019).

PIN protein immunolocalization was performed using an Insi-
tuProVsi (Intavis Bioanalytical Instruments AG, Cologne, Ger-
many) as previously described (Sauer et al., 2006; Doyle
et al., 2015). Seedlings were either grown for 5 d at 23°C
(�0.5°C), or 10 d at 16°C (�0.5°C) and then sampled. This was
made necessary due to sample size restrictions of the InsituProVSI
Robot wells. The full protocol for the immunolocalization with
the InsituProVSI Robot can be found in Methods S1. The samples
were treated with the following antibodies: anti-PIN1 (sheep)
(NASC ID: N782246), anti-PIN2 (rabbit) (Abas et al., 2006)
(from Dr Ranjan Swarup), anti-PIN7 (rabbit) (Doyle et al., 2019)
(from Dr Siamsa Doyle), anti-sheep CY3 (713-165-003; Jackson
ImmunoResearch, Ely, Cambridgeshire, UK) and anti-rabbit CY3
(111-165-003; Jackson ImmunoResearch) (Table S2).

Confocal microscopy was performed using a Zeiss LSM780
CLSM with inverted stand. For RAM phenotyping, marker-line
analysis, and immunolocalization, a 940/1.2 water immersion
objective was used. For cell counting of the proximal meristem
and PlaCCI visualization, a 925 multi-immersion objective was
used. The wavelengths which were used for each marker can be
found in Table S3.

For root hair phenotyping, seedlings were imaged at a fluores-
cence stereomicroscope Leica M205 FA (Leica Microsystems
GmbH, Wetzlar, Germany), which was upgraded to the THUN-
DER Imager Model Organism during this study.

Image analysis was done using FIJI (https://imagej.
net/software/fiji/). For better visibility, the contrast of some
images has been adjusted. In this case, all images of one panel
were adjusted identically.

Hormone profiling

Root tissue was sampled by cutting the roots below the hypocotyl
using a razor blade and immediately snap-frozen. The frozen root
tissue was homogenized in liquid nitrogen using mortar and pes-
tle. Five biological replicates per genotype were sampled.

Samples were extracted, purified, and analyzed according to the
method described in �Simura et al. (2018) with the inclusion of
compounds IAA-Glc and oxIAA-Glc (MRMs, 176.1 > 130.1 and
192.1 > 146.1, respectively) and their 13C6-analogs were used for
precise quantification (MRMs, 182.1 > 130.1 and
198.2 > 152.1) as described in Pên�c�ık et al. (2018). Briefly,
c. 10 mg of frozen material per sample was homogenized and
extracted in 1 ml of ice-cold 50% aqueous acetonitrile (v/v) with
the mixture of 13C- or deuterium-labeled internal standards using
a bead mill (27 Hz, 10 min, 4°C; MixerMill; Retsch GmbH,
Haan, Germany). After centrifugation (18 620 g, 15 min, 4°C),
the supernatant was purified as follows: A solid-phase extraction
column Oasis HLB (30 mg 1 ml; Waters Inc., Milford, MA,
USA) was conditioned with 1 ml of 100% methanol and 1 ml of
deionized water (Milli-Q; Merck Millipore, Burlington, MA,
USA). After the conditioning steps, each sample was loaded on
SPE column and flow-through fraction was collected with the elu-
tion fraction, 1 ml 30% aqueous acetonitrile (v/v). Samples were
evaporated to dryness using a SpeedVac vacuum concentrator
(SpeedVac SPD111V; Thermo Scientific). Before LC-MS analysis,
samples were dissolved in 40 ll of 20% acetonitrile (v/v) and
transferred to insert-equipped vials, 20 ll were injected onto the
column. Mass spectrometry analysis of targeted compounds was
performed by an UHPLC-ESI-MS/MS system comprising of a
1290 Infinity Binary LC System coupled to a 6490 Triple Quad
LC-MS System with Jet Stream and Dual Ion Funnel technologies
(Agilent Technologies, Santa Clara, CA, USA). The quantification
was carried out in Agilent MASSHUNTER Workstation Software
Quantitative (Agilent Technologies). Primary data and statistical
analysis can be found in Tables S4 and S5.

Statistical analysis

For root length measurement, plates were scanned at an EPSON
Expression 12000XL scanner (EPSON Europe, Kista, Sweden),
equipped with SILVERFAST®8 software (LaserSoft Imaging AG, Kiel,
Germany). Root lengths were measured using the Simple Neurite
Tracer found in FIJI. Confocal images were imported into FIJI, and
cell numbers were counted using the inbuilt cell counter. As an
approximation to meristem size, we counted the number of cells in
the proximal meristem of the seedlings (number of cortical cells from
QC to elongation zone, where cells double in size) (Verbelen
et al., 2006; Pavelescu et al., 2018). To account for different root
lengths, stele cells were counted in the differentiated root (two visible
protoxylem strands) (Kondo et al., 2014). Cell counts, root lengths
and hormone quantifications were statistically analyzed using GRAPH-

PAD PRISM 10.2.1 (GraphPad Software Inc., Boston, MA, USA). All
GRAPHPAD analysis sheets can be found in Tables S6 and S7.

RNA extraction, strand-specific RNA sequencing and
data analysis

Root tissue was sampled at ZT = 6 (Zeitgeber Time, beginning
of day is ZT = 0) and snap-frozen in liquid nitrogen. The tissue
was then homogenized using a bead mill (30 Hz, 1 min) and
RNA was extracted using TRIzol (15596026; InvitrogenTM)
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following manufacturer’s instructions. Subsequently, RNA was
treated with DNaseI (EN0521; InvitrogenTM) following manufac-
turer’s instructions and sent for strand-specific RNA sequencing
at Biomarker Technologies (BMK) GmbH, M€unster, Germany.
The raw sequencing data are available at the European Nucleo-
tide Archive (ENA) at EMBL-EBI under the accession no.
PRJEB76546.

Data preprocessing included quality control where the raw
sequence data were assessed (FASTQC v.0.10.1) and ribosomal
RNA (SORTMERNA v.2.1b) (Kopylova et al., 2012) and adaptor
sequences (TRIMMOMATIC v.0.32) (Bolger et al., 2014) were
removed, followed by another quality control step to ensure that
no technical artifacts were introduced during data preprocessing.
MRNA sequences were aligned with SALMON (v.0.14.2) (Patro
et al., 2017) to the A. thaliana Reference Transcript Dataset 2
(Zhang et al., 2017).

Postprocessing and analysis of the RNA sequencing data were
performed using the 3D RNA sequencing app (Guo et al., 2021)
(https://3drnaseq.hutton.ac.uk/app_direct/3DRNAseq/). Batch
effect removal in the auxinole dataset was performed using the
inbuilt batch effect removal (RUVr from the RUVSEQ package in
R). We chose TMM (weighted trimmed mean of M-values) as
data normalization method, and the output data were filtered for
an Absolute log2FC of two or higher. For further clustering and
network inference analysis, the Dashboard for the Inference and
Analysis of Networks from Expression data (DIANE) (Cassan
et al., 2021) was used (https://diane.bpmp.inrae.fr/). Results
from the 3DAPP and DIANE can be found in Table S8. We used
SUPPA2 (Trincado et al., 2018) to calculate the local alternative
splicing events based on the expression of transcripts in each data-
set, and to carry out the differential splicing analysis with a

pairwise comparison between the mutant and wild-type. The dif-
ferentially spliced candidates were obtained using P-value < 0.05
Filtered results can be found in Table S9.

Results

The loss of PORCUPINE causes severe defects of root
development

Huertas et al. (2019) reported that pcp-1 seedlings grown at 20°C
display shortened roots and increased root hair density. We per-
formed a detailed phenotypic analysis of pcp-1 root development
to gain insight into the molecular mechanisms underlying this
phenotype. We observed that pcp-1 roots were always shorter
than those of Col-0, which is in line with the observations from
Huertas et al. (2019) (Fig. 1a,b). At the microscopic level, the
RAM architecture of pcp-1 was perturbed at 23°C, particularly in
the stele (Fig. 1c). pcp-1 seedlings grown at 16°C showed a severe
disruption of RAM organization and early differentiation,
demonstrated by the early onset of root hairs. Interestingly, 2 d
shift to 16°C was sufficient to induce similar phenotypic altera-
tions. The number of cells in the proximal meristem was lower in
pcp-1 at 23°C and was reduced even more at 16°C (Fig. 1d).
Due to the defects in the stele, we wanted to investigate whether
stele cell numbers were also affected by the loss of PCP and low
temperature. While stele cell numbers were significantly reduced
in pcp-1 in comparison to Col-0 (Fig. S1a,b), there was no differ-
ence due to temperature, suggesting that this may be a genotype-
specific phenotype. To test this hypothesis, we grew seedlings at
slightly elevated temperatures (27°C). Interestingly, we observed
a near full suppression of the pcp-1 root phenotype at 27°C, with
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Fig. 1 The loss of pcp-1 causes severe root
development defects at 16°C. (a, b) pcp-1
mutants grown at 16°C exhibit shortened, and
hairy roots compared to Col-0. Top and bottom
magenta asterisks indicate the lack of leaf
primordia and hairy root tip, respectively. Bars,
1 cm. (c, d) RAM architecture is disturbed in pcp-

1 and the number of cells in the proximal
meristem is significantly lower in pcp-1. Bottom
green arrows indicate position of QC, top green
arrows indicate beginning of cell elongation. Bars,
50 lm. All box plots are min to max, with the
middle line indicating the median, and numbers
below them indicate the sample number.
Statistical test: Two-way ANOVA with post hoc
Tukey analysis, P < 0.05. Letters above the
boxplots indicate groups that are not significantly
different. Additional microscopy images of the
RAM can be found in Supporting Information
Fig. S2(c,d).
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no differences in cell numbers in the proximal meristem or stele
compared to Col-0 (Figs S1, S2).

Taking a closer look at the RAM organization of pcp-1 grown
at 16°C, we noted that in many seedlings it was challenging to
determine the exact position of the QC. Due to the shortened
meristem and early differentiation, we thus hypothesized that the
meristem could be depleted, or that QC identity could be lost.
To investigate this, we crossed pcp-1 with the established
pWOX5::ER-GFP marker (Sarkar et al., 2007). In the control
line, GFP signal was confined to the QC irrespective of growth
temperature. Unexpectedly, pcp-1 mutants carrying the marker
and grown at 16°C displayed a widened expression domain,
which stretched several cell layers into the stele (Figs 2a, S3a).
Since WOX5 inhibits cell division in the QC, we were curious to
further investigate the number of dividing cells in the root meris-
tem of pcp-1. To this end, we employed the established PlaCCI
(Plant Cell Cycle Indicator), which combines three fluorescent
markers, which are expressed during different stages of the cell
cycle (Desvoyes et al., 2020). We were particularly interested in
the pCycB1;1::N-CycB1;1-YFP expression, since it marks the
transition of G2 to M-phase in the cell cycle and thus active cell
division. In the control, we observed a significant increase in
CycB1;1 positive cells in seedlings grown at 16°C compared to
23°C (Figs 2b,c, S4a,b). In pcp-1 mutants crossed with the
PlaCCI, we observed a slightly reduced number of CycB1;1
expressing cells at 23°C, and a further reduction at 16°C
(Figs 2b,c, S4b). pCDT1a::CDT1a-eCFP expression is indicative
of highly proliferative cells or cells undergoing endocycle (Lasok

et al., 2023). In the control, we observed CDT1a expression
throughout the meristem, which was concentrated around the
initials and in the stele. In the mutant, we observed overall
weaker, and more diffuse CDT1a expression, and at 16°C, the
expression boundary was located closer to the root tip (Figs 2b,
S4a). Finally, pHTR13::HTR13-mCherry expression, and thus
histone 3.1 deposition, is associated with proliferation potential
(Otero et al., 2016). HTR13 expression in pcp-1 mutants grown
at 16°C was markedly reduced in length, displaying a shortened
expression domain compared to the control, in which the expres-
sion domain extended throughout the observable root (Figs 2b,
S4a).

Taken together, these results indicate that PCP is essential for
RAM maintenance in a temperature-dependent manner. The loss
of PCP causes an ectopic expression of the QC marker WOX5 at
16°C, correlated with a decrease in cell division, shown by
reduced expression of mitotic cell markers, and a shortened mer-
istem.

pcp-1mutants exhibit misspecification of (a)trichoblast
cells and elevated endogenous IAA

Our previous results showed that the loss of PCP caused pro-
nounced changes in RAM architecture, as well as early onset of
root hairs at low temperatures. These observations raised two
questions: First, whether root hair cells in pcp-1 were correctly
positioned, and second, whether this phenotype was connected
to the misregulation of endogenous auxin, a known regulator of
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Fig. 2 EctopicWOX5 expression and reduced
number of mitotic cells in pcp-1mutants at 16°C.
(a) pWOX5::ER-GFP expression is restricted to
the QC in Col-0 at both 23°C and 16°C. pcp-1
mutants show ectopic expression of GFP in the
stele at 16°C. Dashed white lines outline the
WOX5 (GFP) expressing cells. Additional images
can be found in Supporting Information Fig. S3
(a). Bars, 20 lm. (b) Analysis of the PlaCCI
reveals lower expression of CycB1;1 (YFP) and
shortened expression area of CDT1a (CFP) and
HTR13 (mCherry) in pcp-1mutants. Colored bars
to the right indicate the respective length of each
marker. Bars, 50 lm. (c) Quantification of
CycB1;1 positive cells. Box plots are min to max,
with the middle line indicating the median, and
numbers below them indicate the sample
number. Statistical test: Two-way ANOVA with
post hoc Tukey analysis, P < 0.05. Letters above
the box plots indicate groups that are not
significantly different. Additional images can be
found in Fig. S4(a). Additional images depicting a
zoom into the YFP expressing domain can be
found in Fig. S4(b).
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root hair development (Vissenberg et al., 2020). To address these
questions, we first crossed pcp-1 with the pGL2::SAND atricho-
blast and the pEXP7::SAND trichoblast marker lines (Fig. S5a),
derived from the SWELLINE marker set (Marqu�es-Bueno
et al., 2016). We observed that the YFP signal in pGL2::SAND
control lines was restricted to cell files 2–3 cells wide, which were
organized in lanes, irrespective of growth temperature. In pcp-1
crossed with the pGL2::SAND marker, we observed that already
at 23°C these cell files were not as structured as in the control,
displaying emergence or loss of YFP signal within presumed (a)
trichoblast lanes, respectively (Figs 3a, S5b). Similarly, at 16°C,
the expression pattern seemed fully disrupted, and atrichoblast
lane width appeared to be reduced to one cell (Figs 3a, S5b). We

observed a similar perturbation of the root hair patterning in the
pEXP7::SAND marker (Figs 3b, S5c). In the control, YFP signal
was restricted to epidermal cells touching two underlying cortical
cells. In pcp-1 crossed with pEXP7::SAND we observed signal in a
few cells only touching one cortical at 23°C, but the correct pat-
tern was mostly preserved. At 16°C, however, the patterning was
fully disrupted and YFP signal was found in multiple adjacent
epidermal cells, regardless of the number of underlying cortical
cells.

To investigate the second question, we crossed pcp-1 with the
qualitative synthetic auxin response marker pDR5::SAND from
the SWELLINE collection (Marqu�es-Bueno et al., 2016). In the
control, the YFP signal was slightly reduced at 16°C, compared
to 23°C, which is in line with previously published data (Zhu
et al., 2015). Interestingly, we observed that the YFP signal in
pcp-1 increased at 23°C, stretching into the stele, and the signal
became wider and stronger at 16°C (Fig. 4a). To corroborate
these findings, and simultaneously explore whether specific
auxin-related pathways were affected in pcp-1, we decided to
measure auxin content in the roots. Since pcp-1 roots are very
short, we decided to use seedlings grown at 23°C and shifted to
16°C for 2 d. Both previous transcriptomic data (Capovilla
et al., 2018) and our phenotypic data (this study) supported the
idea that 2 d shift to 16°C was sufficient to induce all changes
responsible for the pcp-1 cold-sensitivity. The obtained results
showed that IAA concentration was increased in pcp-1 compared
to Col-0 at 23°C and after shift (Fig. 4b; Table S4). Curiously,
IAA amounts were also increased in Col-0 after shift, which was
contrary to the results obtained from the pDR5::SAND marker at
16°C. We hypothesized that this may be due to the shift, and
indeed a 2 d shift to 16°C seemed to rather induce marker
expression in comparison to 23°C (Fig. S6a). We furthermore
observed that all measured reversible IAA amino acid or sugar
conjugates, which serve as storage/inhibition compounds, were
increased, while compounds produced through irreversible oxida-
tive conjugation were increased in pcp-1 at 23°C, but slightly
decreased after shift (Fig. S7a). These results prompted us to
examine if the elevated auxin content at low temperatures could
be responsible for the observed pcp-1 root phenotype. To this
end, we used the known dominant auxin biosynthesis mutant
yuc1D, which produces elevated amounts of IAA (Zhao
et al., 2001). While we did observe that yuc1D produced an
increased amount of root hairs at 16°C, we did not see the same
phenotypic aberrations of the RAM as in pcp-1 (Fig. S7b). Over-
all, these results strengthen the idea that the loss of PCP induces
changes in auxin homeostasis, which might be compensated at
23°C through the elevated storage/inhibition compounds but
may cause more severe phenotypic alterations at 16°C, where oxi-
dative conjugation appears to be attenuated. Furthermore, our
results suggest that an increase in IAA at low temperature contri-
butes to the observed root hair phenotype, and thus partially
explains the pcp-1 phenotype, but does not account for all RAM
alterations.

Since our results showed that the endogenous auxin content
was elevated and ectopically localized in the stele of pcp-1, we
decided to explore the possibility of PIN protein mislocalization.
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expression, as well as additional images can be found in Supporting
Information Fig. S5.
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To account for auxin flow in the stele, cortex, and columella, we
chose to examine PIN1, PIN2, and PIN7 (Ruiz Rosquete
et al., 2012; Fig. S8a) Overall, it appeared that in both genotypes
these PIN proteins localized as previously reported in the litera-
ture (Fig. S8a–d). Though PIN1 and PIN2 protein
localization seemed to be aberrant in pcp-1 at 16°C at a first
glance, closer examination prompted us to conclude that this was
possibly rather due to morphological defects of cells in the inner
stele (Fig. S8b,c). Furthermore, PIN7 signal strength was very
low in pcp-1 at 16°C (Fig. S8d). Taken together it thus seems
possible that aberrant centripetal auxin flow through PIN1 and
PIN2, coupled with a lack of PIN7 mediated basipetal flow could
cause an accumulation of auxin in the stele, as observed in pcp-1.

In summary, these results suggest that PCP regulates patterning
processes in the A. thaliana root, presumably through the regula-
tion of auxin homeostasis and flow, though it will be important
to confirm PIN protein localization and expression with fluores-
cent markers, which provide better resolution.

Inhibition of auxin response partially rescues the pcp-1
RAM phenotype

Our data shows that the loss of PCP causes temperature-
dependent defects in root development, characterized by ectopic
WOX5 expression, root hair misspecification, and an increase
in endogenous IAA content. Based on these findings, we
decided to treat seedlings with 10 lM auxinole, a known auxin
response inhibitor (Hayashi et al., 2012), or 100 nM IAA, to
mimic the increased auxin content at low temperature. Auxinole
treatment had no major effect on the root length of Col-0 or
pcp-1, while some root waving was observed, which is consistent
with previous observations (Hayashi et al., 2012). Interestingly,
we recorded a decreased root hair density in pcp-1 grown at
16°C in response to the auxinole treatment (Fig. S9a). IAA
treatment induced root shortening in both genotypes and tem-
peratures (Fig. S9b). We observed, however, that root shorten-
ing and increase in root hair density was more pronounced in
Col-0 at 16°C, suggesting that elevated IAA and low tempera-
ture may have an additive negative effect on root development.
We also found that pcp-1 reacted more sensitively to exogenous
IAA at 23°C, which may be a result of either the elevated endo-
genous IAA content or due to a disruption of other buffering
mechanisms. At a microscopic level, we did not observe any dis-
cernable differences in RAM architecture in Col-0 in response
to auxinole or IAA treatment (Fig. S10a). However, our obser-
vations revealed that auxinole treatment at 16°C markedly
improved RAM architecture in pcp-1, while IAA treatment wor-
sened the phenotype, inducing cortical cell swelling. We did
not observe any cortical cell swelling at 23°C, implying a
temperature-dependent disruption of auxin homeostasis in pcp-
1 mutants (Fig. S10b).

Based on these findings, we were curious to see whether
WOX5 expression was affected in response to these treatments.
We found that auxinole treatment induced a laterally widened
area of WOX5 expressing cells in both the control and pcp-1 at
23°C (Figs S3c, S10c). At 16°C, we observed a similar effect,
while mutants depicted less ectopic WOX5 expression in the stele
(Fig. 5a,c). Interestingly, while IAA treatment induced no signifi-
cant changes in GFP signal in the control at either temperature,
we observed a significantly higher number of WOX5 positive
cells in pcp-1 crossed with pWOX5::ER-GFP at 23°C (Figs 5d,
S3b, S10d). We observed no significant increase in WOX5 posi-
tive cells in pcp-1 at 16°C (Figs 5b,d, S3b).

In conclusion, we found that 10 lM auxinole partially sup-
pressed the pcp-1 root hair phenotype and improved RAM archi-
tecture, while treatment with 100 nM IAA at 16°C induced
macroscopic phenotypic similarities between Col-0 and pcp-1.
Furthermore, auxinole treatment reduced ectopic WOX5 expres-
sion in pcp-1 at 16°C, while IAA treatment increased it at 23°C,
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Fig. 4 pcp-1mutants have higher amounts of IAA in the root meristem.
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indicating that pcp-1 mutants may have a defect in auxin response
regulation.

Low-temperature root transcriptomics in response to IAA
and auxinole

Auxinole treatment partially rescued pcp-1 RAM defects at 16°C,
while IAA treatment at 16°C induced a macroscopic phenotype
in Col-0, which was reminiscent of pcp-1. We decided to make
use of these treatments to identify genes, which are potentially
responsible for the developmental defects observed in pcp-1. Our
mRNA sequencing results showed that only a small number of
genes was specifically affected by the treatments, and that most
differentially expressed genes were found between genotypes
(Fig. 6a,b). We decided to assess our data for clusters of genes
that would fulfill the following criteria: (1) induce expression
changes in IAA-treated Col-0, to resemble expression levels in
pcp-1, and (2) induce expression changes in auxinole-treated pcp-
1, to resemble Col-0. Using Euclidean distance measurement
with the ward.D clustering method implemented in the 3D
RNA-Seq analysis application (Guo et al., 2021), we identified
one cluster that fulfilled both requirements and showed opposite
expression changes in response to the different treatments. Gene
ontology (GO) enrichment of this cluster showed that it was,
among others, enriched in processes linked to root and root hair
development, and response to auxin (Fig. 6c,d; Table S8). These
results were confirmed using DIANE (Cassan et al., 2021), which

employs the Poisson mixture models clustering, thus modelling
the distribution of the underlying data (Gao et al., 2023). Using
the same criteria as described above, we found that one cluster
matched our requirements, and GO enrichment of this
cluster gave nearly identical results (Fig. S11a,b). We decided to
also explore the possible network clusters from DIANE and found
one cluster, which was also enriched for epidermal cell and root
developmental processes (Fig. S11c,d). We then examined
whether the expression of known root meristem and cell cycle
regulators (Fig. S12) in our RNA sequencing data reflected our
previous experimental results. We found that WOX5 expression
was strongly elevated in pcp-1 and reduced in response to auxi-
nole treatment. The same was found for WOX7 expression.
Finally, WOX11, which links auxin signaling and root system
architecture (Sheng et al., 2017), was elevated in pcp-1. While
auxinole treatment did not reduce WOX11 expression, it did
revert the expression ratio of some isoforms to that observed in
Col-0 (Fig. S12a–c), suggesting that the splicing of at least some
genes, which modulate root architecture, is influenced by the
auxin response in pcp-1. The expression of the cell cycle indica-
tors, which were examined in microscopy of the PlaCCI, was in
line with our observations (Fig. S13a–c). Interestingly, of the two
cell cycle regulators which are inhibited by WOX5, only the
expression of CYCD1;1 was reduced in pcp-1, while CYCD3;3
seemed unaffected (Fig. S13d,e). Furthermore, the expression of
important inhibitors of WOX5 expression, such as CLV1 and
MGP, were induced by 10 lM auxinole in pcp-1 (Figs S12d,
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Fig. 5 Auxinole treatment partially rescues the
pcp-1 cold-sensitive phenotype, while it is
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sample number. Statistical test: Two-way
ANOVA with post hoc Tukey analysis, P < 0.05.
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are not significantly different. Additional images
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S14d). This may suggest that the observed phenotypic rescue of
pcp-1 through auxinole treatment may be due to the induction of
WOX5 inhibitors.

Finally, we inspected the numbers of AS events between geno-
types. While the total numbers of differentially expressed tran-
scripts were not substantially affected by treatments (Fig. 7a), the
number of specific AS events showed that treatment with 10 lM
auxinole reduced the number of differential splicing events
detected between Col-0 and pcp-1 (Fig. 7b).

Discussion

Among the multitude of environmental signals, which plants
need to adjust their growth and development to, our research

focuses on ambient temperature. The relevance of temperature-
dependent AS is supported by the findings of Calixto
et al. (2018), who reported that changes of only 2°C induced
measurable differences in AS. Interestingly, this seems to be parti-
cularly evident for mutants affected in PCP/SmE1/SmEb, where
different degrees of developmental defects were observed in con-
trol temperatures ranging from 20°C to 23°C (Capovilla
et al., 2018; Huertas et al., 2019; Wang et al., 2022; Hong
et al., 2023; Willems et al., 2023). Notably, Willems et al. (2023)
observed that the pcp-1 shoot phenotype disappeared at 26°C,
while we observed full suppression of the RAM phenotype at
27°C. Two paralogs of the SmE gene can be found in A. thaliana
(Cao et al., 2011), i.e. PCP and PCP-LIKE (PCPL/SmE2/S-
mEa/AT4G30330), which only differ by two amino acids
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Fig. 6 RNA sequencing data reveals gene cluster associated with root morphology. (a, b) Differentially expressed genes are mostly due to genotype. Only
a low number of genes is misregulated in response to auxinole and/or IAA to treatment. (c) Heatmap of all differentially expressed genes with the cluster
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(Huertas et al., 2019). There is some indication that PCPL
expression could be induced by elevated temperatures (Capovilla
et al., 2018), while other studies showed that the main difference
of PCP and PCPL lays in their transcriptional regulation (Dikaya
et al., 2024). Hence, one possible explanation is that the expres-
sion of PCP and PCPL is gradually modulated to provide suffi-
cient SmE protein over a wide temperature range.

The pleiotropic phenotype of pcp-1 complicates determining
the exact mechanisms by which PCP regulates abiotic stress
responses. However, using several marker lines, chemical treat-
ments, root hormone profiling and transcriptomic analyses we

have aimed to contribute to the understanding of this topic.
We found that the loss of PCP causes hypersensitivity to low-
ambient temperatures, marked by a drastic reduction in meristem
size, and early differentiation. Our data suggest that cell prolifera-
tion is strongly inhibited in pcp-1 at 16°C, shown by an elevated
and ectopic pWOX5::ER-GFP expression, as well as reduced
expression of mitotic markers. These observations support pre-
vious findings, which have shown that WOX5 overexpression
strongly reduces the number of mitotic cells in the proximal mer-
istem (Savina et al., 2020). Furthermore, we could show that the
observed RAM defects are at least partially linked to elevated
endogenous auxin, and the establishment of ectopic auxin max-
ima in the stele of pcp-1. Recent investigations into RAM organi-
zation have suggested that WOX5 acts upstream of auxin
biosynthetic genes and regulates their expression (Tian
et al., 2014; Savina et al., 2020). The ectopic WOX5 expression
in pcp-1 could thus contribute to the additional production of
auxin and partially explain the ectopic auxin maxima in the vas-
culature. Finally, our results indicate that elevated auxin and low
temperature have an additive negative effect on root development
and that the inhibition of auxin response partially suppresses the
observed developmental defects in pcp-1.

A recent study has shown that WOX5 interacts with
PLETHORA (PLT) proteins (Burkart et al., 2022). Interestingly,
they observed a widening of the WOX5 expression domain in
plt2, plt3 mutants, which is partially reminiscent of our observa-
tions in pcp-1 at 16°C. The study highlighted the interaction of
WOX5 and PLT3 in nuclear bodies (NBs), which depends on
the prion-like domain (PrD) of PLT3 (Burkart et al., 2022).
While proteins with PrDs have been shown to be important for
plant temperature perception (Jung et al., 2020; Legen
et al., 2024), the (dis-)assembly of NBs is also sensitive to tem-
perature fluctuations (Meyer, 2020). Burkart et al. (2022)
hypothesized that the recruitment of WOX5 to NBs by PLT3 is
concentration dependent. In our conditions, PLT3 expression
is mildly elevated in pcp-1 (Fig. S15), while the inhibition of
auxin response reduced WOX5 (Figs 5, S10, S12), as well as
PLT3 expression (Fig. S15). This makes it possible that WOX5
may be recruited to NBs in pcp-1 at 16°C. NBs have various
functions and are classified into different groups based on their
composition (Mu~noz-D�ıaz & S�aez-V�asquez, 2022), but Burkart
et al. (2022) have shown that PLT3-dependent NBs recruit
RNA, which is a strong indication that these are involved in
RNA metabolism. Out of the RNA-recruiting NBs, only nuclear
speckles are currently known to also recruit transcription factors
(Mu~noz-D�ıaz & S�aez-V�asquez, 2022), which thus provides a
strong link to the formation of spliceosomal complexes. Further-
more, some nuclear speckle RNA-binding proteins have already
been identified as regulators of auxin-related developmental path-
ways and stress response (Bardou et al., 2014; Bazin et al., 2018).
Taken together, the observations from previous studies and the
results presented here raise the questions whether (1) WOX5-
PLT3 containing NBs are formed in pcp-1 roots, (2) if their for-
mation is directly auxin responsive, and (3) how, if at all, these
influence splicing and/or gene expression regulation in response
to temperature.
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It appears that other splicing related proteins also contribute to
the regulation of auxin: A recent study has shown that PCP inter-
acts with the Sm-LIKE protein 7 (LSM7). The loss of LSM7
causes sensitivity to high and low temperatures, which appears to
be connected to significant alterations in auxin-related pathways,
particularly the production of IAA storage and inactivation com-
pounds (Nardeli et al., 2023). While we have not examined the
expression of specific GH3 genes in detail here, it is well known
that they are centrally involved in plant stress response (Woj-
taczka et al., 2022; Luo et al., 2023), and it will be interesting to
elucidate their connection to AS and temperature response.
Another example of the intricate balance between splicing, auxin-
related signaling, and RAM maintenance comes from investiga-
tions of MERISTEM-DEFECTIVE (MDF ), which is strongly
expressed in the QC and encodes for a serine/arginine rich (RS)-
domain protein (Casson et al., 2009). RS-domain proteins are
generally classified as RNA-binding proteins involved in splice
site recognition (Sahebi et al., 2016; Li et al., 2023). Interest-
ingly, MDF was shown to be associated with spliceosomal com-
plexes and located to nuclear speckles (de Lux�an-Hern�andez
et al., 2022). mdf-1 displays cell division defects and meristematic
cell death, causing strongly impaired root development (de Lux�a-
n-Hern�andez et al., 2022), and aberrant radial patterning
(Thompson et al., 2023). Furthermore, mdf-1 does not establish
a correct auxin maximum, possibly due to strongly decreased
levels of PIN2 and PIN4 (Casson et al., 2009). This observation
was later expanded with transcriptomic analyses, which estab-
lished that enriched GO categories in mdf-1 relate to, among
others, auxin transport, response and signaling (de Lux�an-Hern-
�andez et al., 2022; Thompson et al., 2023). It was thus concluded
that MDF-mediated splicing may control cell division and devel-
opment (de Lux�an-Hern�andez et al., 2022) as well as promote
meristem function and auxin-mediated pathways (Thompson
et al., 2023). In contrast to these observations, we found that pcp-
1 established ectopic auxin maxima along the stele, particularly at
low temperatures. These results were confirmed by our hormone
profiling, which showed significantly higher levels of IAA in pcp-
1. Additionally, our PIN protein localization experiments did not
find reduced PIN1 or PIN2 signal strength between Col-0 and
pcp-1. However, we observed faulty PIN1 and PIN2 localization
in pcp-1 mutants, possibly due to morphological defects in vascu-
lar and cortical cells possibly causing a centripetal auxin flow, and
reduced PIN7 signal at 16°C. The loss of PIN7-mediated basipe-
tal auxin flow could consequently contribute to auxin accumula-
tion in the root. Taken together, it thus seems that PCP, contrary
to MDF, is required to restrict auxin-mediated pathways and
suppress meristematic markers. Finally, it is well established that
root development is also governed by auxin’s antagonist, cytoki-
nin (Zluhan-Mart�ınez et al., 2021), but cytokinin measurements
in pcp-1 were uninformative (Table S5). It has, however, been
shown that the loss of the pre-mRNA splicing factor 3 (RDM16)
causes a reduction in cytokinin levels, while it does not affect
auxin (Lv et al., 2021). It is, therefore, probable that different
splicing factors may regulate alternative hormonal pathways.

The loss of PCP also causes early differentiation at low tem-
peratures, highlighted by the early onset of root hairs, and the

misspecification of epidermal cells causing an abnormal root hair
pattern. Additionally, we observed that pcp-1 mutants displayed
aberrant periclinal and anticlinal cortical cell divisions, which
became less severe after treatment with auxinole, and more severe
with IAA. Auxin has been shown to have a strong impact on the
regulation of cell shape and division through modulation of
the cytoskeleton (Garc�ıa-Gonz�alez & van Gelderen, 2021; Vad-
depalli et al., 2021). In line with these observations, a recent
study has shown that activation of cortical auxin response induces
anticlinal and periclinal cell divisions, as well as abnormal root
hair patterning (Kim et al., 2022). While our pDR5::SAND auxin
response marker showed no activation in the cortex of pcp-1, we
observed that cortical cell morphology and root hair density was
partially rescued in response to auxinole, while root hair density
increased in response to IAA in Col-0 at 16°C. The effect of tem-
perature on root hair development is mostly unexplored (Vissen-
berg et al., 2020), thus studying the sum of effects in mutants
such as pcp-1 on root hair development in low temperature could
open new research possibilities.

In conclusion, our findings, supported by previous studies,
strongly suggest that AS is highly sensitive to minor temperature
fluctuations and plays a pivotal role in root meristem mainte-
nance. This is possibly achieved through the sophisticated control
of phytohormone homeostasis and meristematic activity.
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