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Abstract
Purpose of the Review Recent technological innovations in Artificial Intelligence (AI) have successfully revolutionized many 
industrial processes, enhancing productivity and sustainability, under the paradigm of Industry 5.0. It offers opportunities for 
the forestry sector such as predictive analytics, automation, and precision management, which could transform traditional 
forest operations into smart, effective, and sustainable practices. The paper sets forth to outline the evolution from Industry 
5.0 and its promising transition into Forestry 5.0. The purpose is to elucidate the status of these developments, identify 
enabling technologies, particularly AI, and uncover the challenges hindering the efficient adoption of these techniques in 
forestry by presenting a framework.
Recent Findings However, the gap between potential and practical implementation is primarily due to logistical, infrastruc-
tural, and environmental challenges unique to the forestry sector. The solution lies in Human-Centered AI, which, unlike 
the Industry 4.0 paradigm, aims to integrate humans into the loop rather than replace them, thereby fostering safe, secure, 
and trustworthy Human-AI interactions.
Summary The paper concludes by highlighting the need for Human-Centered AI development for the successful transition 
to Forestry 5.0 – where the goal is to support the human workers rather than substituting them. A multidisciplinary approach 
involving technologists, ecologists, policymakers, and forestry practitioners is essential to navigate these challenges, lead-
ing to a sustainable and technologically advanced future for the forestry sector. In this transformation, our focus remains on 
ensuring a balance between increased productivity, nature conservation and social licence, worker safety and satisfaction.
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Introduction

Industry 5.0, also known as the Fifth Industrial Revolution 
(5IR), represents the next phase in the evolution of the indus-
trial sector (see Fig. 1), and is at the top of the agenda of 
the European Union [1]. Whilst Industry 4.0 was driven by 
the great successes in Artificial Intelligence (AI) and the 
associated urge to automate everything to replace humans, 
Industry 5.0 propagates a human-centred AI approach that 
no longer wants to replace humans but rather augment them 
making automation a “team-player” in joint human-AI 
activities [2]. Human-centered AI puts humans in control 
of AI, aligning AI with human intelligence, social values, 
ethical principles, and legal requirements to ensure secure, 
safe, trustworthy and controllable AI [3, 4]. In the context 
of forest engineering this might be of relevance when for 
example the selecting single trees for specific purposes and 
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respective management. We provide a brief overview about 
(i) the development from industry 1.0 to 5.0; (ii) the evolu-
tion from digital computers to digital transformation, and 
(iii) some fundamentals of machine learning – the workhorse 
of AI. The core of the review is to show use cases to be fur-
ther developed in human-centered AI within smart forestry 
and to provide a framework of Forestry 5.0.

From Steam to AI: The Industrial Revolution 
from I1.0 to I5.0

Embarking on a journey from the dawn of steam power 
to the forefront of artificial intelligence, Fig. 1 unveils the 
transformative industrial revolutions from Industry 1.0 to 
Industry 5.0.

Industry 1.0, the first industrial revolution (late eight-
eenth century to early nineteenth century) was character-
ized by the replacement of human power (mechaniza-
tion) [5, 6]. Industry 2.0 (late nineteenth century to early 
twentieth century) initiated by the transition from steam 
energy to electric energy [7], enabled further innovations 
such as assembly production lines for mass production [8]. 
Industry 3.0 (mid-twentieth century) was marked domi-
nantly by electronics, particularly digital information tech-
nology (IT), which mainly replaced human operators by 
computer-controlled machines [9, 10]. Industry 4.0 (early 
twenty-first century and ongoing) is based on the success 
of the Internet. It is driven by integrated, automated, and 
connected systems, bringing together physical and digi-
tal technologies and focusing on completely autonomous 
machines to optimize production [11, 12]. Machines, sys-
tems, and products can connect and communicate in real-
time, enhancing efficiency and promoting effective deci-
sion-making, which is the concept of a smart factory [13, 
14]. Managing the sheer amount of data available through 

those internet-connected systems requires dedicated high-
power tools, such as machine learning (ML) algorithms 
which learn from fused data, becoming capable to improve 
operations, predict outcomes, and even make decisions, 
in a fully automatic way, without human intervention [15, 
16]. Industry 5.0 (current and ongoing) focuses on the 
collaboration between humans and AI by placing humans 
at the centre of the decision-making process [17–19]. It 
follows the human-centered AI approach, which augments 
human capabilities instead of replacing humans [20, 21]. 
The role of a human-in-the-loop [22] is to guarantee that 
decision-making integrates the goals, understanding, crea-
tive capacities and common sense of humans [23].

Alan Turing created the groundwork for modern digital 
computers [24] and his 1936 work [25] on computable 
numbers introduced the “universal machine” (today called 
“Turing machine”), which could imitate any machine with 
the correct inputs and instructions. All modern digital 
computers are based on this general-purpose machine 
concept.

The invention of the transistor in 1947 lowered computer 
size, cost, and energy consumption while increasing depend-
ability and computing power, boosting digital computer suc-
cess enormously. The three success concepts of digital com-
puters include scalability, replicability and connectivity, and 
the breakthrough came with the availability of “big data” 
and computing power [26–28].

Digital transformation is the process of incorporating 
digital technology into all aspects of a business or society, 
resulting in significant changes to how organizations func-
tion and provide benefits to consumers [29]. The process 
goes beyond just converting processes into digital formats or 
setting up computer systems. Instead, it requires a compre-
hensive reconsideration of business models, strategies, and 
customer interactions in response to the fast-paced advance-
ments in digital technologies. The goal is to offer customers 

Fig. 1  The industrial revolution from Steam Engines to human-centered AI
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seamless and integrated experiences across multiple chan-
nels, enhancing their engagement and loyalty. Mobile appli-
cations, artificial intelligence chatbots, and customized 
recommendations all play a role in enhancing consumer 
experiences. The economic impact of digital transformation 
is significant. By improving operational efficiency, compa-
nies can lower costs and boost productivity, hence promoting 
economic growth. Additionally, digital transformation can 
also contribute to environmental sustainability [30].

Digital transformation fosters innovation, resulting 
in the emergence of novel industries and employment 
opportunities. Furthermore, improved data analysis can 
lead to more effective policymaking and resource alloca-
tion in public administration, enhancing social welfare. 
On a broader level, digital transformation can help address 
major societal challenges. For example, digital technolo-
gies are crucial in the transition to a more sustainable 
economy, through improvements in energy efficiency, the 
growth of renewable energy, and the development of cir-
cular business models [31].

Experts universally agree that the progress in artificial 
intelligence is the main driving force behind digital trans-
formation, with machine learning acting as its core opera-
tional mechanism. Prominent instances of this achievement 
include the highly prosperous large language models, popu-
lar known as ChatGPT created by OpenAI, or Bard devel-
oped by Google, and Aleph Alpha, which seeks to establish 
a leading position in European AI advancement, prioritiz-
ing ethical and transparent AI in accordance with European 
standards and legal viewpoints [32].

Today the widespread success of machine learning has 
led to AI gaining immense popularity in almost every field 
of application [33]. AI has a rich history in computer sci-
ence and focuses on the overarching objective of developing 
“intelligent” machines [24]. However, the concept of intel-
ligence lacks a precise definition, making it challenging to 
measure [34, 35]. The foundational principles of AI were 
initially developed in 1956 by a group of computer scientists 
during a workshop held at Dartmouth College. The session 
aimed to establish highly ambitious objectives for AI: “The 
study is to proceed on the basis of the conjecture that every 
aspect of learning or any other feature of intelligence can 
in principle be so precisely described that a machine can be 
made to simulate it. An attempt will be made to find how to 
make machines use language, form abstractions and con-
cepts, solve kinds of problems now reserved for humans, and 
improve themselves [36]”.

Consequently, it is imperative to recognize that AI is an 
overarching “umbrella” term denoting intelligent machine 
learning based systems capable of executing tasks tradition-
ally necessitating human cognition, including problem-solv-
ing, and decision-making. ML as the principal mechanism 
within AI, necessitates a precise foundational understanding. 

ML types can be systematically classified according to a) 
their learning approach, b) the tasks they undertake, and/or 
c) their structural and behavioural characteristics.

a) ML categorization based on learning approach

• Supervised Learning: The model is trained on a 
labelled dataset, which means the algorithm is pro-
vided with input–output pairs. The aim is to learn a 
mapping y = f (x) from inputs to outputs. Examples 
of this category are Linear Regression, Decision 
Trees, and Neural Networks.

• Unsupervised Learning: The model is trained on 
an unlabelled dataset, where the algorithm tries to 
identify patterns or relationships in the data with-
out explicit guidance. Examples used in forestry 
include Clustering (K-Means), Association (Apri-
ori), and Principal Component Analysis (PCA).

• Semi-Supervised Learning: This is an intermediate 
type that finds its place between supervised and 
unsupervised learning. It uses both labelled and 
unlabelled data for training: often a small amount 
of labelled data and a large amount of unlabelled 
data.

• Reinforcement Learning: In this category, an agent 
learns by interacting with a selected environment 
and by receiving rewards or penalties in return for 
its actions. The goal is to learn a policy that maxi-
mizes cumulative rewards over time. Examples 
of this category are Q-learning, Deep Q Network 
(DQN), and Policy Gradient methods.

b) ML categorization based on task

• Classification: Assigning data to predefined catego-
ries, e.g., healthy tree vs. infested tree.

• Regression: Predicting a continuous value, e.g., 
predicting forest fire risk as a function of selected 
factors, etc.

• Clustering: Grouping similar data points together, 
e.g., tree density, soil moisture, etc.

• Dimensionality Reduction: Reducing the number of 
random variables under consideration and obtain-
ing a set of principal variables, e.g. via Principal 
Components Analysis (PCA).

• Association Rule Mining: Discovering interesting 
relations between variables in large databases, e.g., 
via apriori.

c) ML categorization based on model structure or behav-
iour.

• Neural Networks & Deep Learning: Multi-layered 
neural networks, including Convolutional Neural 
Networks (CNNs) for image tasks, Recurrent Neu-

444 Current Forestry Reports  (2024) 10:442–455



ral Networks (RNNs) for sequential data, Trans-
former architectures for various tasks, and more.

• Ensemble Learning: Using multiple models and 
aggregating their outputs for better predictions. 
Examples: Random Forests, Gradient Boosting 
Machines (GBM), AdaBoost.

• Bayesian Learning: Based on Bayes theorem, it 
deals with probability inference. e.g., Naive Bayes, 
Bayesian Networks.

Use‑Cases for AI in Smart Forestry

Smart Forestry, “intelligent forestry”, or Forestry 4.0 
[37] uses a wide variety of technologies including sen-
sors [38], robots [39], cyber-physical systems [40], 
drones [41] and satellites [42]. We demonstrate that the 
application of AI-augmented technology can enhance the 
efficiency and effectiveness of forestry processes, includ-
ing planning, tree felling, transportation, and reforesta-
tion. We illustrate a range of common examples where AI 
is utilized in forest engineering. In the following, we will 
also use the overarching term AI here, as the reader now 
knows that in most cases it is based on machine learning.

Tree Species Identification

In 1976, Meyers [43] conducted a comprehensive analysis 
of the existing research on identifying tree species using 
aerial images and discussed the various elements that 
influenced the progress of this subject in different types 
of forests. His vision was further developed and today, 
AI is used for assessing individual tree detection (ITD), 
[44] and for characteristics including volume and crown 
dimensions. Standard techniques include Light Detection 
and Ranging (LiDAR) used via Airborne Laser Scanning 
(ALS), Mobile Laser Scanning (MLS), or Terrestrial 
Laser Scanning (TLS), each offering varying degrees of 
resolution, coverage, and detail suited to specific forestry 
analysis needs [45–54]. With regard to forest operations, 
tree species identification has the potential to increase pre-
cision and efficiency in forest management and harvest 
planning, especially when applying innovative logistics 
concepts such as the forest warehouse [55, 56], which 
requires a precise identification of all trees within a stand. 
Furthermore, tree results of automated tree species identi-
fication could support the drafting of accurate, geo-refer-
enced harvesting instructions, or harvesting plans. In fact, 
the tree identification algorithm could be programmed into 
the harvester on-board computer for automatically select-
ing the correct grading strategy for each species, and for 

drafting accurate production lists. In fact, tree species 
identification would be a prerequisite for autonomous for-
estry machines [57].

Tree Quality Assessment

Additionally, AI techniques would be important for quality 
assessment of standing timber as part of the tree selection 
during thinning [58], and potentially increase precision in 
the sorting of timber [59]. Accordingly, tree quality assess-
ment is prerequisite for autonomous forestry machines and 
has great potential to support forestry work both as an auton-
omous function and as decision support.

Automated Tree Selection

Such automation of tree selection could integrate, mediate 
and potentially solve the differences that occur in human 
selection when different actors are involved within the tim-
ber harvesting chain. Studies by Spinelli et al. (2016) [60] 
and by Eberhard and Hasenauer (2021) [61] showed that 
different agents (e.g. certified foresters, loggers, forestry 
students etc.) may select different trees for harvesting, even 
if they will agree for a majority of cases (approximately 
70%). While simulations show that such difference may have 
limited effects on the key stand parameters (e.g. DBH, tree 
height or standing volume) after 50-years of tree growth 
[61], the immediate effect on value recovery and site amen-
ity may still be large. For that reason, one may think about 
stakeholder concertation when selecting trees for harvesting 
or release; however, that would entail a cumbersome pro-
cedure with minimal potential for real-life application. On 
the other hand, such participatory process could be resorted 
to when drawing a tree selection algorithm, which could 
then be smoothly applied in the field, without further need 
for any cumbersome procedures. In turn, the eventual algo-
rithms could be easily designed for integrating the strong 
regional focus of most rule-based tree selection schemes, 
which makes generalization a very elusive target [62].

A sub-set of the tree’s selection applications is that of 
anchor-tree selection in cable yarding operations. Safe 
installation of a cable yarder requires careful selection of 
natural anchors, most often in the form of robust trees or 
stumps [63]. Anchor selection rules are necessarily simple, 
for fast application under field conditions, but AI would lend 
itself to developing better and more reliable rules that could 
be associated to a smartphone app, so that the user would 
simply need to input the base cable line parameters (mostly 
maximum tension at the anchor points) then aim at the for-
est to find suitable trees or stumps, based on their diameter 
and the angle that the cable would form when tied to any 
of them [64]. For tree harvesting in at least Central- and 
South Europe, forest managers traditionally mark trees prior 

445Current Forestry Reports  (2024) 10:442–455



to removal. Typical examples are thinning and shelter wood 
cuttings. Thinnings are applied within young to middle aged 
forest stands aiming to reach a special management target, 
such as enhancing the biodiversity of a stand, supporting 
renaturalisation processes [65] or promoting high-quality 
trees by reducing the within stand competition so that the 
growth rates per unit area will be concentrated to these high-
quality trees [66].

During the life span of a forest rotation, commonly 2 to 
3 thinning interventions are applied. However, thinning is 
expensive and using harvester combined with an automated 
tree selecting procedure is a substantial factor in reducing 
the harvesting costs, since it would increase the efficiency of 
a certified forester for selecting the trees [67].

Automated Harvesting

Forest engineering encompasses a crucial and groundbreak-
ing aspect: the utilization of autonomous harvesting machin-
ery that integrates various artificial intelligence functions 
and techniques. (Arbeitsmarke – Ansetzen zum automated 
forestry).

There is little doubt autonomous machinery will play 
an important role in forest operations in the future. Many 
machine functions already have the support of automation, 
and the implementation of remote control of the machine 
where an operator can operate a piece of equipment, typi-
cally in clear line-of sight, at least is commonly available. 
Teleoperation is where the operator works from a virtual 
environment with live video and audio feedback from the 
machine. Autonomous systems of the future are defined by 
being able to perform certain functions without direct con-
trol of a human operator [68]. This is a key step towards the 
precision forestry of the future [69•]. One important aspect 
is that they may cause less soil- and stem damage through 
the use of a lighter and more compact cab-less machine 
and reduce the risk of harvesting after catastrophic events 
by removing the operator from a risky workplace, as it has 
already been done for remote-controlled feller-bunchers [39, 
70].

Li & Lideskog (2021) [71] developed AI-applications to 
detect stumps and rocks etc. for the application of autono-
mous forest machines. Yang et al. (2023) [72] focus on navi-
gation autonomy to improve path planning, similar to e.g. 
Reinhart et al. (2020) [73] who presented a methodology 
on learning-based path planning for autonomous explora-
tion of subterranean environments using aerial robots; and 
Nevalainen et al. (2020) [74] who proposed a two-phase 
on-board process, where tree stem registration produces a 
sparse point cloud which is then used for simultaneous loca-
tion and mapping. Hera et al. (2023) explored the feasibility 
of autonomous forest operations extensively, and under-
scored the potential in autonomous forestry machinery, e.g. 

log extraction in the cut-to-length harvesting process whilst 
minimizing environmental impact [75].

To summarize, smart forestry technologies could enable 
more efficient and sustainable logging activities. Robots 
and drones, guided by AI algorithms, can identify which 
trees are mature enough for harvesting while preserving the 
younger ones.

Optimization of Wood Transport and Logistics

The optimization of timber delivery and timber truck routing 
have been a traditional field of interest for forest engineers 
for at least two decades (e.g. [76]). The advent of AI offers 
a unique opportunity to develop a set of powerful, effec-
tive and robust tools, which can substantially improve the 
efficiency of both harvesting and transportation processes, 
i.e., for:

a) Route Optimization: One of the most immediate appli-
cations of AI in wood transport is route optimization. 
Machine learning algorithms can analyze multiple 
variables such as road conditions, traffic patterns, and 
weather forecasts to identify the most efficient route 
for timber transportation. Dynamic routing can further 
adapt to real-time changes, thereby reducing fuel con-
sumption and minimizing travel time [77].

b) Load Optimization: AI can also be applied to maximize 
the load-carrying capacity of each transport vehicle. 
Through computational algorithms, the system can 
determine the optimal arrangement of logs, consider-
ing factors such as weight, volume, and type of wood 
[78]. This ensures that each trip is as productive as 
possible, reducing the overall number of trips needed 
and, consequently, the carbon footprint [79, 80].

c) Harvest Planning Integration: AI algorithms can 
synchronize the harvesting plans with the logistics 
operations. For instance, machine learning models 
can predict when and where the next batch of wood 
will be ready for transportation, so as to optimize 
truck fleet deployment and maximize backhauling 
opportunities. This predictive capability allows for 
better planning of transport resources and, in the long 
term, cost reduction [81].

d) Resilience to Disruptions: Supply chain disruptions like 
road closures, vehicle breakdowns, or sudden demand 
fluctuations can have a significant impact on wood logis-
tics. AI’s predictive analytics and real-time monitoring 
capabilities enable the rapid identification and mitiga-
tion of such issues, making the supply chain more resil-
ient [15, 82, 83].

e) Environmental Impact assessment: AI models can be 
trained to optimize routes and loads not just for effi-
ciency, but also for minimizing environmental impact. 
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Algorithms can be designed to prioritize routes that 
are less likely to cause soil compaction, erosion, or 
damage to the surrounding ecosystem [83]. That is 
especially important for in-stand traffic: AI can match 
water table maps, weather forecasts and log distribu-
tion to calculate extraction paths that avoid sensitive 
terrain, thus minimizing environmental impact and 
maximizing vehicle mobility. Life-cycle assessments 
(LCA) can be incorporated into the decision-making 
process to ensure sustainability [84]. Water and soil 
properties detection: Minimizing ecological disrup-
tion is paramount. AI can be programmed to detect 
areas with high soil moisture [85], to ensure low soil 
compaction, avoid nutrient depletion, and prevent 
damage to the remaining stand [86] – a good exam-
ple here is also the work of Flisberg et al. (2021) [87]. 
Moreover, LCA can be integrated into AI algorithms 
to guide more sustainable practices.

f) Energy-Efficient Operations: through data analytics, 
AI can recommend energy-efficient operating modes 
for vehicles or machinery involved in wood harvesting, 
extraction and transportation, contributing to overall 
sustainability goals [69, 81, 88].

Supply Chain Management and Disruptions

Having a supply chain from forest to factory without 
interruptions is crucial for efficient performance. Here, 
AI-based modelling and simulating can be employed to 
optimize logistics, predict demand, and better manage 
resources [89]. When disruptions occur, such as natural 
hazards or capacity bottlenecks, AI systems can assist 
humans, who are stressed in such moments, to adapt the 
supply chain. Machine learning algorithms can forecast 
and mitigate these challenges, making logistics more 
resilient while minimizing negative social and environ-
mental impacts [90].

Forest Visualization

Having access to high-resolution data allows the develop-
ment of virtual forests with modern immersive visuali-
zation technologies simulating forest environments [91]. 
Such applications could be used for simulation, education 
and training. The use of game-based simulations is very 
promising for boring but legally required training aspects, 
for example, where repetitive tasks must be drilled [92]. 
Simulations (via Augmented Reality, or Virtual Real-
ity) are also very helpful for forest management e.g. to 
improve safety for heavy machinery operators [93]. Simu-
lations can be used for communication among stakehold-
ers but also for the greater public [94].

Forest Damage Detection and Health Monitoring

AI is used to assess the health status of trees aiming to iden-
tify areas that are at risk and to implement preventive meas-
ures by equipping sensors and satellites with multispectral 
and hyperspectral imaging.

For example, AI is used for wildfire identification [33], 
which is central for environmental degradation, but hard to 
discover at an early stage. A faster and more accurate detec-
tion and set alarm can profoundly support humans to identify 
risk areas, plan fire prevention measures and/or successfully 
act. Georgiev et al. (2020) [95] presented an approach for 
autonomous early fire detection, which is based on a system 
with high degree of reliability. To provide the autonomous 
capabilities to the proposed system, they have developed an 
object detection method, based on a convolutional neural 
network. To have a better field of view over the observed 
area, instead of traditional lookout towers and satellite-based 
monitoring, they used the live video feed from an unmanned 
aerial vehicle (UAV), which patrolled over the risky area. 
To make better predictions on the fire probability, they did 
not use only the optical camera of the UAV, but also an on-
board thermal camera. Cyber-physical systems can monitor 
environmental parameters such as temperature, humidity, 
and wind speed to assess the risk of forest fires. Moreover, 
AI is used for early identification of bark beetle infestation 
[96]. For example, Andresini et al. (2023) [97] explored 
the achievements of ML to perform inventory mapping of 
bark beetle infestation hotspots in Sentinel-2 images. Their 
aim was to produce a prediction of the bark beetle infesta-
tion masks. They used an explainable AI technique to study 
the relevance of spectral information and explain the effect 
of both self-training and spectral vegetation indices on the 
mapping decision. Knebel et al. (2022) [98] tested a bark 
beetle early warning system with audio data, data on phero-
mones and information for a drought stress assessment of the 
affected trees, which were all collected and used as a basis 
for an AI-based analysis.

The human-in-the-loop model is essential for validating 
AI predictions and refining machine learning models based 
on expert knowledge. It can predict risks such as bark beetles 
and fires with high accuracy, but incorporating human-in-
the-loop ensures that these predictions align with human 
intuition and expertise, especially in complex or borderline 
cases.

Reforestation

Recently, deforestation has threatened Earth's natural cycles. 
Drones can efficiently plant seeds over large, deforested 
areas, guided by AI algorithms that identify the optimal 
planting locations [99]. The use of drones to spread seed 
aggregates has been trialed around the world as a means of 
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regenerating tree cover in remote areas. High seed appli-
cation rates, impressive seed germination rates and lower 
labour costs can be achieved. In addition, drones equipped 
with appropriate sensors can be useful in analysing the suc-
cess of seeds after sowing, from the early germination stage 
through to canopy development.

Once the location data is captured, artificial intelli-
gence, particularly machine learning algorithms, can be 
used to process the captured images in the data prepa-
ration, feature extraction, model training and prediction 
stages. The segmentation techniques usually involve the 
implementation of watershed-based algorithms or convo-
lutional neural networks. The use of machine learning in 
the characterization of tree parameters improves the speed, 
accuracy and reliability compared to conventional image 
processing techniques [100]. A human-in-the-loop expert 
can adjust these algorithms based on knowledge about 
local ecosystems, thus ensuring successful reforestation 
projects [101].

Fertilizing

AI based fertilizing systems can efficiently identify 
plants in need for fertilization, drones can later fertilize 
those specific plants optimizing the fertilization proce-
dure. To this end, aerial images can first be taken with 
a drone to show the condition of the tree crowns. The 
application of fertilizers via drones depending on tree 

health will lead to cost savings in the industry and pos-
sibly increase production [102].

Towards a Framework of Forestry 5.0 
with Human‑Centered AI

Forestry 5.0 represents the next generation of forest 
management and practices, leveraging advanced AI 
technologies to enhance sustainability, productivity, 
and resilience. This concept builds on the principles of 
Industry 5.0 [103] and Agriculture 5.0 [104], including 
human-centered AI [105] as a synergistic approach to 
reconcile artificial intelligence with human intelligence, 
addressing human social values, ethical principles and 
legal requirements to ensure safe, secure and trustworthy 
AI with the human-in-control.

In our Forestry 5.0 framework (Fig. 2) the main goals are 
to ensure climate healthy forests, ecologically friendly forest 
operations with sustainable wood products for an economi-
cally and ecologically satisfied customer. The three main 
fields of forestry to achieve these goals include forest man-
agement, forest operations and wood technology.

In our view, Forestry 5.0 has the potential to bridge the 
gap between forest experts and AI experts by fostering 
their collaboration. We perceive forest experts as individu-
als engaged daily in, with, or for the forest, and advocate 
for AI to assist them in their endeavours. Additionally, we 

Fig. 2  Our envisioned framework for Forestry 5.0
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acknowledge scientists as forest experts depending on the 
context. We regard AI experts primarily as computer scien-
tists who specialize in the development, analysis, and appli-
cation of AI technologies, and we also recognize the diverse 
range of specialists contributing to the AI field. We see no 
immediate need to delineate between different types of AI 
experts, as each brings valuable perspectives and skills to 
the advancement of AI for Forestry 5.0.

Forest experts are responsible for managing forests in a 
way that the resilience of future forests, the provision of 
biodiversity and multiple forest ecosystem services are 
increased, and ecosystem damage and social and economic 
effects caused by climate change are reduced or avoided. In 
view of the complexity of the subject, the multi-objective 
forest management aims pursued, the growing share of 
uncertainty and the increasing complexity in decision-mak-
ing forest experts must tackle needs to be supported through 
AI experts. In turn, AI experts bring specific expertise about 
algorithms, machine learning models, data analytics, robot-
ics, and big data analytics, but usually have no forest exper-
tise. In the context of Forestry 5.0, we envision that these 
two domains collaboratively work together in the following 
ways:

• Data Collection and Interpretation: Forest experts 
can guide AI experts on what kind of data to collect 
for meaningful analysis. This might include data on 
tree growth, species distribution, soil conditions, cli-
mate patterns, work procedures and more. AI experts 
can then design suitable systems for collecting this 
data efficiently — perhaps using IoT devices or drones 
— and apply ML- algorithms to interpret the data, 
extract meaningful trends and ultimately derive useful 
knowledge.

• Predictive Modelling: AI experts can develop predic-
tive models based on the data and insights provided by 
the forest experts. These models can predict future forest 
growth, the spread of diseases or pests, the impacts of 
climate change, or the potential outcomes of different 
forest management strategies.

• Intelligent Automation: AI experts can work with for-
est experts to develop intelligent automation systems 
that improve forestry operations. For example, they 
could design a robotic system for planting or harvest-
ing trees using input from forest experts to ensure the 
system works effectively and minimally impacts the 
environment.

• Education and Training: Forest experts and AI experts 
can learn from each other, fostering an exchange of ideas 
that leads to innovative solutions. Forest experts can gain 
a better understanding of AI and its potential applications 
in forestry, while AI experts can deepen their knowledge 
of forest ecosystems and the challenges they face.

• Forest Engineering Education: The increasing pen-
etration of information, communication and artificial 
intelligence and the interconnection of software and 
hardware in all forestry processes through digital trans-
formation requires a different way of thinking and acting, 
especially in the field of engineering education [106]. 
Lifelong learning and transdisciplinary education are a 
must, and teaching must include sustainability, resilience 
and human-centred design, as well as practical courses in 
data literacy and data management, and experience with 
human/AI and machine/robot/computer interaction [17].

In summary, the integration of AI in forest management 
and subsequent supply chains offers a gamut of opportunities 
for optimization, resilience, and innovation. It enhances tra-
ditional practices like tree marking by adding layers of effi-
ciency and sustainability, creating a comprehensive system 
that benefits both the industry and the natural environment. 
Bridging the gap between the potential of AI-enhanced for-
est management and the next phase of human–machine col-
laboration, it’s clear that the journey from traditional prac-
tices to advanced, sustainable forestry requires a nuanced 
approach. This transition not only promises to augment 
human capabilities and decision-making but also paves the 
way for personalized, ethical, and community-engaged forest 
management strategies, i.e.:

Human–Machine Collaboration

Embrace and promote collaboration between forest workers 
and advanced technologies. Use AI and automation to assist 
in tasks that are dangerous or strenuous for humans, such as 
felling trees or fighting forest fires. That will free humans 
from the burden of those menial tasks and allow them to 
focus on other more complex tasks that require judgement, 
decision-making, and complex motor control.

Personalized Forestry Management

Use data analytics, AI, and machine learning to tailor for-
est management practices to specific forests or even spe-
cific areas within a forest. This could involve optimizing for 
different goals like timber production, biodiversity, carbon 
sequestration, or recreation based on local conditions and 
societal needs – essentially one further step in the direction 
of precision forestry.

Sustainable Practices

Forestry 5.0 should incorporate a strong focus on sustain-
ability, making use of intelligent technologies to optimize 
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the use of resources, reduce waste, and enhance the health 
and resilience of forests. This could involve techniques such 
as precision forestry, where data and digital tools are used 
to precisely manage forests at a granular level, improving 
sustainability and productivity.

Reskilling and Upskilling

Invest in education and training to equip the forestry 
workforce with the skills needed to work effectively with 
the new technologies. This could involve skills in data 
analysis, remote sensing, operating drones or other auto-
mated equipment, and managing complex decision-making 
processes.

Health and Wellbeing

Use AI not only to optimize operations but also to improve 
the working conditions and experiences of forest workers. 
This could involve using AI to improve safety, for example 
by predicting and preventing accidents [107], or to provide 
decision-support tools to assist workers in complex tasks, 
and to manage emergencies whenever prevention would 
fail. Emergency management is an especially difficult task, 
because effective decision-making can be hindered by cogni-
tive and/or emotional overload, and that is when automated 
assistance can become a lifesaver.

Community Engagement

Utilize digital platforms and technologies to increase 
engagement with local communities, stakeholders, and 
citizens. This could involve sharing data and insights 
about forest health, soliciting input on management 
decisions, or using citizen science to gather data and 
insights. Furthermore, public digital platforms could help 
explain to the general public what they often perceive as 
“deforestation” or “tree murder”, thus relieving public 
concern and removing wrong perceptions around forest 
management.

Ethics, Inclusivity and Legal Issues

Ensure that the benefits of Forestry 5.0 are distributed equi-
tably and that the transition is managed in a way that is 
fair to workers, local communities, and indigenous groups. 
This could involve education and retraining programs, as 
well as policies to promote equitable access to the benefits 
of new technologies. Incorporating the importance of legal 
considerations, particularly under the European AI Act, 

it’s imperative to navigate the transition to Forestry 5.0 
with a keen eye on compliance and ethical standards. This 
involves not only ensuring equitable distribution of benefits 
and fair management practices but also adhering to legal 
frameworks that govern AI usage, thereby safeguarding the 
rights of workers, communities, and the environment while 
fostering innovation and trust in new technologies [107, 
108], which requires explainable AI [109] with human-
centered visualization techniques [110].

Discussion: Current State and Future 
Prospects of Forestry 5.0

Forestry 5.0 is an emerging field with varying levels of 
maturity across its components. In the following we discuss 
a few issues on how far we are from practical implementa-
tion, highlighting ongoing research, early implementations, 
bottlenecks, and potential solutions.

Research Level Applications in AI

Research Stage: AI models for predicting tree growth, 
disease spread, and forest health are in active research. 
AI models are being developed to analyze satellite 
imagery and sensor data for better forest management 
insights.

Challenges: Developing models that can generalize across 
diverse forest ecosystems and handle the vast complexity of 
ecological data.

Early Implementations in IoT, Robotics and Data 
Analytics

1 Internet of Things (IoT).
  Practical Implementations: IoT devices and sensor 

networks are being deployed in pilot projects for real-
time monitoring of environmental conditions, wildlife 
tracking, and resource management.

  Challenges: Scalability, data integration from diverse 
sources, and ensuring reliable and long-term operation 
in harsh environmental conditions.

2 Robotics and Automation.
  Practical Implementations: Drones are used for aerial 

surveys, monitoring forest health and reforest. Autono-
mous ground vehicles are in development for mainte-
nance tasks.

  Challenges: High costs, technical complexity, and 
ensuring the safety and reliability of autonomous sys-
tems in forest environments.
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3 Data Analytics:
  Practical Implementations: Data analytics platforms 

are being used to process and interpret large datasets 
from various sources, aiding in decision-making and 
strategic planning.

  Challenges: Data integration, ensuring data quality, 
and the need for advanced analytical tools capable of 
handling large volumes of complex data.

Bottlenecks and Possible Solutions

Technological Integration

Bottlenecks: Integrating diverse technologies into a cohesive 
system is challenging due to compatibility issues and the 
complexity of forest ecosystems.

Solutions: Developing standardized protocols for data 
exchange, investing in interoperable technologies, and fos-
tering collaborations between technology providers and for-
estry experts.

Cost and Accessibility

Bottlenecks: High costs of advanced technologies and lack 
of accessibility for small-scale foresters.

Solutions: Research into cost-effective alternatives, gov-
ernment subsidies, and public–private partnerships to lower 
costs and increase accessibility.

Regulatory Frameworks

Bottlenecks: Lack of clear regulations and policies sup-
porting the deployment of advanced AI technologies in 
forestry.

Solutions: Advocacy for policy development, inter-
disciplinary collaboration to shape regulations, and pilot 
projects to demonstrate the benefits and safety of new 
technologies.

Skill Development

Bottlenecks: Insufficient training and expertise among for-
estry professionals to use advanced technologies.

Solutions: Developing specialized training programs, 
integrating AI education into forestry curricula, and offering 
continuous professional development opportunities.

Whilst significant progress has been made towards real-
izing Forestry 5.0 already, the future journey involves over-
coming substantial technical, economic, and regulatory 
challenges. Through focused scientific research and collabo-
ration among stakeholders, the practical implementation of 
Forestry 5.0 can be accelerated, paving the way for a more 
sustainable and efficient forestry sector.

Conclusions

In conclusion, the fusion of AI and forest expertise pursued 
by Forestry 5.0 can not only alleviate mundane tasks but also 
contribute to the broader goals of sustainable forest manage-
ment. The application of Industry 5.0 principles to the for-
estry sector is a crucial transformative step. The convergence 
of forestry expertise with advanced technologies will bring 
forth a new era of sustainable forestry practices, which will 
better achieve all the environmental, economic and ecologi-
cal goals of forestry – in line with social, ethical and legal 
issues. Forestry 5.0 has the potential to revolutionize the 
forest industry, facilitating precision management of forest 
and non-forest resources, enhancing working productivity 
and reducing undesired environmental impacts. This is most 
crucial when fighting climate change. This transformation 
is underpinned by a human-centered approach to artificial 
intelligence, where technology serves to augment human 
skills and knowledge rather than replacing them. By lever-
aging the strengths of both humans and machines, Forestry 
5.0 can empower forest experts to make data-driven deci-
sions, improve operational efficiency, and promote sustain-
able practices. This shift towards Forestry 5.0 will not only 
address the pressing challenges facing the forestry sector but 
also pave the way for a future where human ingenuity and 
technological innovation will work in harmony to sustain 
and protect our valuable forest ecosystems.

Our wish for the future is AI fairness, open science, and 
open data — AI ecosystems for the benefit of all people on 
our planet.
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