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Emerging multiscale insights on microbial
carbonuse efficiency in the land carbon cycle
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Microbial carbon use efficiency (CUE) affects the fate and storage of carbon in
terrestrial ecosystems, but its global importance remains uncertain. Accurately
modeling and predicting CUE on a global scale is challenging due to incon-
sistencies in measurement techniques and the complex interactions of climatic,
edaphic, and biological factors across scales. The link between microbial CUE
and soil organic carbon relies on the stabilization ofmicrobial necromass within
soil aggregates or its association with minerals, necessitating an integration of
microbial and stabilization processes in modeling approaches. In this perspec-
tive, we propose a comprehensive framework that integrates diverse data
sources, ranging from genomic information to traditional soil carbon assess-
ments, to refinecarboncyclemodelsby incorporatingvariations inCUE, thereby
enhancing our understanding of the microbial contribution to carbon cycling.

Earth SystemModels (ESMs) are indispensable tools for predicting the
planetary response to climate change1. The accuracy and reliability of
ESMs are crucial for informing climate projections that guide policy
decisions. Soils storemore carbon (C) thanplants, the surfaceoceanor

the atmosphere, and thus are critical for the functioning of the Earth
system2. While ESMs are becoming increasingly complex, their pre-
dictions of soil organic C (SOC) stocks have improved only marginally
in recent decades3,4.
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Microbial communities process most of the C entering the soil,
thereby shaping its fate5,6. Microbes metabolize multiple C sources,
including detritus, root exudates, and microbial metabolites7. The
energy needed to acquire C depends on whether the compounds can
be taken up directly or require prior enzymatic degradation8. Addi-
tionally, microbial community composition and functioning are influ-
enced by prevailing climatic conditions9–11. The general omission of
microbial community structure and related processes in C cycle
models has been suggested as one of the causes for their poor per-
formance in predicting SOC stocks and their responses to climate
change12,13.

Recognizing the impracticality of representing every conceivable
microbial metabolic pathway, many models combine a spectrum of
microbial processes into a single metric referred to as microbial C use
efficiency (CUE)14,15. CUE, as amodel parameter or as a systemproperty
emerging from multiple co-occurring processes, represents the frac-
tion of C uptake allocated to the production of new microbial

biomass16. Using this definition, CUE declines as more C is used for
respiration to generate energy (for substrate uptake, cellular main-
tenance, enzyme production) or for exudation (extracellular enzymes,
polysaccharides)17,18. This pragmatic approach streamlines the model-
ing of soil C cycling by incorporating the diverse fates of microbial C,
including biomass production, respiration, and exudation, thereby
providing a more comprehensive understanding of microbially-
mediated C-pathways.

However, accurately integrating the spatial or temporal dynamics
of microbial CUE into soil C models remains a significant challenge.
Most of the current C cycle models either lack explicit representation
of CUE or treat it as a constant value4, despite our understanding that
CUE varies under different environmental conditions. For example,
observations indicate significant variability in CUE at the global scale8,
which may be partially attributed to inconsistencies among measure-
ment techniques (Fig. 1a). Moreover, comparisons across ecosystems
reveal thatCUE is generally higher in grasslands than in croplands,with
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Fig. 1 | Variability of carbonuse efficiency (CUE) at a global scale. aObservation-
based CUE estimates at the global scale from C (13C and 14C) and 18O isotopic
labeling, stoichiometric modeling and other methods. Data were collected
from19,21,49,95,114. b CUE constants used in the MIcrobial-MIneral Carbon Stabilization
model (MIMICS) for two litter types (diamonds). Metabolic litter comprises plant
litter that decomposes easily, whereas structural litter is more resistant to

decomposition131. c Observation-based estimates for different ecosystems using
isotopic labeling114 or stoichiometric modeling19. d CUE values predicted using a
microbial model assimilating information on SOC profiles21. Data assimilation
integrates observed data into predictive models to refine model parameters and
improve estimation accuracy.
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forests consistently showing the lowest CUE values, regardless of the
measurement approaches used19,20 (Fig. 1c). CUEs derived from data
assimilation21 are also lower than those frommoredirectmeasurement
approaches (Fig. 1d).

Several attempts have been made to reflect or incorporate CUE
variations into models of litter22 or soil organic matter9,13 decomposi-
tion with the aim of assessing the implications for soil C cycling. For
example, incorporating an empirically-derived negative relationship
betweenmicrobial CUE and temperature into a microbial-explicit SOC
model improved the simulation of contemporary soil C stocks23. Zhang
et al.24 introduced the effects of substrate quality and soil fertility on
microbial respiration, highlighting the joint control of litter quality and
quantity on the steady-state SOC stocks. Wieder et al.25 enhanced the
understanding of CUE variation by including two types of decom-
posers with differing substrate preferences and CUE (Fig. 1b). These
examples suggest that more realistic representations of microbial C
transformations have the scope for improving model predictions of
soil C23,26. However, these predictions were poorly constrained by
observational data, calling their reliability into question21,27,28.

In this Perspective, we synthesize our understanding of CUE reg-
ulatory factors and databases for constraining numerical models, with
the aim of clarifying complexities, addressing controversies, and pro-
viding a holistic perspective on pathways to adequately reflect CUE
variations in C cyclemodels and their consequences for simulated soil
C stocks.

Data availability and challenges
Terminology and definitions of microbial CUE
The concept of microbial CUE, the fraction of C uptake that is used to
produce microbial biomass16–18, is intuitively straightforward, but CUE
definitions vary depending on the ecological processes involved,

measurement methods, and scales of biological organization (e.g.,
population, community and ecosystem)14,17. Therefore, CUE can be
regarded as an emergent parameter, encapsulatingmultiple processes
within a single metric. It is useful in modeling as the number of pro-
cesses that canbemodeled is constrained by practical limitations (e.g.,
availability of data for calibration). Consequently, ecosystem models
often simplifymicrobial process complexity, which in reality, escalates
from the genomic to the ecosystem level (Fig. 2).

CUE is quantitatively expressed as the ratio of microbial growth
(μ) to C uptake (U)16,29, that is, CUE = μ/U. This ratio encapsulates the
efficiency with which microorganisms convert assimilated C into bio-
mass. Microbial uptake involves C assimilation for growth (μ),
respiration (R), and the secretion of extracellular enzymes and meta-
bolites (EX). Geyer et al.14 introduced a nested conceptual framework
for understanding CUE across different biological organization levels:
population (CUEP), community (CUEC), and ecosystem (CUEE). This
framework is useful for integrating C fluxesmediated by soil microbes
into models at various ecological scales (Fig. 2).

CUEP reflects the species-specific functioning of microbial taxa
(e.g., biosynthesis rate, exudate production) and thermodynamics of C
substrate metabolism that limits the proportion of C uptake used for
biosynthesis versus C lost from the cell (e.g., mineralized or exuded as
metabolites). Typically measured in cultured populations, the CUEP
formula adjusts for respiration (R) and exudation (EX) losses from the
uptake, expressed as CUEP = U�R�EX

U . CUEC incorporates additional
environmental and community factors influencing microbial metabo-
lism in natural communities consisting of multiple populations. It
focuses on grossmicrobial production prior to the recursive substrate
recycling of necromass and exudates, capturing the metabolic
response of microbial communities to substrates over short durations
(hours), and is similarly expressed as CUEC = U�R�EX

U .
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Fig. 2 | Schematic representation of a cluster of models integrating observa-
tional constraints on CUE at population (CUEP), community (CUEC) and eco-
system (CUEE) scales. The genome-scale metabolic model predicts the movement
of metabolites within a cell based on its genomic information. CUEP and CUEC can

be validated by short-term incubation measurements, while CUEE requires long-
term incubation measurements. Although the scales and processes governing CUE
expand from individual cells to entire ecosystems, there is a practical limit to the
extent they can be resolved in C cycle models.
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CUEE considers C retention as net microbial growth over longer
time scales (days to months), taking into account the drivers of CUEP
andCUEC aswell asmicrobial biomass turnover.On these time scales, a
significant proportion ofmicrobial biomass is converted to necromass
following microbial death (MD)30 such that CUEE = U�R�EX�MD

U ,
encompassing all aspects of microbial C processing, including death
and recycling processes.

Methods for measuring microbial CUE
Multiple approaches can be used to quantify CUE, such as isotopically
labeling substrates31,32, stoichiometricmodeling22,33 and others34. These
methods rely on different assumptions and capture distinct microbial
processes, which can explain the variability in CUE estimates across
methods8,35,36 (Fig. 1a), including differences in the response of CUE to
environmental changes37, and the relationship between CUE and SOC
(Fig. 3a, b).

Themost common approach formeasuring CUE is the tracking of
isotopically labeled compounds (14C, 13C labeled substrate, or 18O
water) introduced to the system. Carbon isotopes in microbial sub-
strates enable the differentiation between C allocated to microbial
biomass and that released through respiration. Although this labeling
technique is widely used, its results can be influenced by the choice
and combination of substrates31, as well as the incubation period14,38. A
significant limitation of this approach is that measured CUE reflects
only the efficiency of those microbes that use the introduced sub-
strates, not the entire microbial community. Furthermore, the varia-
tion in incubation times and temperatures across different studies
(Fig. 3c, d) presents a substantial obstacle to standardizing CUE
measurements.

The method using 18O-labeled water is based on the incorporation
of the 18O-atom intomicrobial DNAas ameasureof growth as compared

to catabolic C losses as CO2
32,39. This method has higher accuracy than

the C labeling method as it is not substrate specific, does not perturb
microbial metabolism like methods involving substrate addition, and
exhibits comparatively less variability over time35. Nonetheless, this
method faces limitations such as higher cost and demanding technical
procedures. Concerns also arise regarding the method’s foundational
assumptions, e.g., the presumption that water is the sole oxygen source
for microbial DNA synthesis and the hypothesis that all microbial cells
maintain a consistent DNA to biomass C ratio40. Furthermore, its
applicability in dry soils is challenging41.

Stoichiometric modeling is a common method for indirectly
estimating CUE, which is based on the assumption that microbes
growing on plant detritus allocate C to produce enzymes and other
necessary components to acquire nutrients in the appropriate ele-
mental ratios at the whole-community scale29,33. This approach offers
the advantage of requiring only a limited number of parameters, such
as the activities of enzymes targeting C versus nitrogen (N) or phos-
phorus (P) acquisition and the C:N:P composition of the substrate and
microbial biomass, which can be constrained by existing observations.
However, it relies on highly simplified assumptions regarding ele-
mental ratios and C allocation36. This approach inherently suggests
lower CUE in soils with high SOC due to its focus on the metabolic
costs of nutrient acquisition under conditions where nutrients are
scarce relative to C. This outcome (Fig. 3b) starkly contrasts with the
positive correlation between CUE and SOC observed using isotopic
labeling techniques (Fig. 3a), which are commonly considered to
provide a more realistic insight into the relationship between CUE and
SOC. The isotope labeling method estimates microbial growth and
CUE by tracking the incorporation of labeled atoms into biomass or
DNA, reflecting intracellular biochemical transformations. In contrast,
the stoichiometry model method estimates CUE by analyzing the
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Fig. 3 | Impact of different research methods on the SOC-CUE relationship and
variability in incubation conditions across studies. Panels a and b illustrate
the relationships between soil organic carbon (SOC) concentration and CUE based
on a isotopic labeling methods (14C, 13C-labeled substrates, and 18O water) and

b stoichiometric modeling. Panel c presents the incubation durations, while
paneld shows the temperatures employed in studies using labeling and incubation
methods. Data sources: a21, b19, and c, d20.
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activities of extracellular enzymes and the stoichiometric balance
between organic matter and microbial biomass, focusing on extra-
cellular metabolic processes42. Therefore, caution is advised when
comparing results obtained from these two methods, even though
they use the same term (CUE). We do not yet know the extent to which
the stoichiometric and isotope methods are comparable. Until we
understand which patterns can be accurately captured by the simpler
stoichiometricmethod, we should rely on themore robust 18Omethod
for measuring actual CUE and the 13C method for CUE associated with
specific substrates.

In addition to the methods mentioned above, there are other less
commonly used approaches, including the use of 18O in water vapor to
minimize impact on soil moisture41, metabolic flux analysis17, and
calorespirometry43. Each method offers unique advantages and faces
specific limitations, grounded in their underlying assumptions and
theoretical bases35–37. These limitations not only affect the accuracy of
these methods but also introduce significant comparability issues.
Consequently, there is an urgent need to improve current methodol-
ogies and integrate innovative techniques to more accurately assess
soil microbial CUE.

Data gap
Given the methodological challenges in measuring CUE in situ, field
assessments ofmicrobial CUE are rare. The vastmajority of existingCUE
observations have been obtained from lab incubations. Yet, these CUE
observations remain scarce at the global scale, a situation which is
exacerbatedby the lackofharmonizationofobservations fromdifferent
measurement approaches. For some ecosystems, observations are few
or even nonexistent, including ecosystems that play a critical role in the
global C cycle, such as tropical rainforests, wetlands, and peatlands44,45.

Existing CUE measurements mostly come from studies of the lit-
ter and surface mineral soil16. Thus, our understanding of microbial
CUE in subsurface soil remains limited, which is problematic as large
amounts of C are stored in subsoils globally, and especially those of
wetlands and peatlands. The few existing studies indicate that micro-
bial CUE decreases with soil depth46,47 and that subsurface CUEmay be
less sensitive to warming31 but more sensitive to nutrient variations48.

Moreover, data on temporal variations in CUE are lacking. A
commonly overlooked factor that may contribute significantly to CUE
variability in soil ecosystems, regardlessofmethodology, is seasonality
in CUE. Seasonal changes are associated with significant variations in
substrate availability, temperature andmoisture, all of whichmay have
a substantial impact on the growth and respiration of soil micro-
organisms, thereby altering microbial CUE39. For example, CUE esti-
mated using the 18O incorporation method ranged from 0.1 to 0.7 in
soils from an agricultural field site and from 0.1 to 0.6 at a forest site
within one year49. It has also been reported that soil microbial CUE
exhibits significant fluctuations within a short period (daily) after
rewetting50,51. This temporal dynamic inCUE values could contribute to
the significant variability observed in CUE measurements.

Regulatory factors governing microbial CUE
The incorporation of soil microbial CUE dynamics into process-based
models necessitates a comprehensive understanding of a range of reg-
ulatory factors influencing CUE (Fig. 4). CUE at a specific biological level
is influenced by features of both the microbial community itself (bio-
logical controls) and its external environment (abiotic controls). These
factors frequently interact, particularly at the community and ecosys-
tem levels: abiotic controls can modify CUEC or CUEE by regulating
biological controls, while biological controls may induce adaptation to
abiotic factors, thereby influencing the impact of abiotic controls.

Biological controls
Microbial physiological state. Microbial CUE reflects the physiologi-
cal state of microorganisms. Under natural conditions, only a small

proportion (values vary from 1% to >20% in different studies52,53) of soil
microbial cells are metabolically active, and soil respiration primarily
originates from these metabolically active cells53. Nonetheless, a high
fraction of microbial cells in the soil are in a potentially active state (10
to 60% of the total microbial biomass), meaning that they are ready to
start using available substrates within a few hours after easily available
substrate is added. The shifts in physiological states of thesemicrobial
cells, resulting from changes in temperature, moisture, or substrate
availability, significantly impact CUE54. Consequently, CUEP or CUEC
measurement methods relying on substrate addition may over-
estimate CUE14, and shifts in physiological state can lead to seasonal
variations in CUE49.

Microbial community diversity and composition
Increased microbial diversity enriches the spectrum of metabolic
functions within a community, potentially leading to greatermicrobial
growth55 and CUEC by facilitating more efficient use of varied C
sources10,56. The composition of microbial communities, notably the
ratio of fungal to bacterial biomass (F:B), plays a critical role in
determining CUEC

57. Communities dominated by fungi can show
higher CUEC, attributed to their higher biomassC toN) ratios (C:N) and
their proficiency in decomposing complex organic materials58, or
lower CUE due to the high costs associated with resource acquisition
by decomposer fungi57. Therefore, this contrasting evidence from
plant litter studies indicates that the relationshipbetween F:B ratio and
CUE is context-dependent57,59. Alternatively, an approach categorizing
microorganisms into copiotrophs (r-strategists with low CUE) versus
oligotrophs (K-strategists with high CUE) has been promising for
estimating CUE60. For example, shifts from r-strategists to K-strategists
explain increased CUEC along a successional gradient in the south-
eastern Tibetan Plateau61.

Changes in community composition may also enable microbial
communities to alter their CUE in response to environmental changes
or fluctuations62,63. For instance, long-term warming experiments
indicate a decline in the temperature sensitivity of CUEC, suggesting
that shifts in microbial composition can maintain CUEC despite chan-
ges in temperature and substrate quality31. Similarly, modeling studies
suggest that changing microbial community composition can reduce
the sensitivity of CUEC to substrate quality64 and soil moisture
fluctuations65.

Biotic interactions
In the soil food web, biotic interactions such asmutualism, facilitation,
competition, and predation can shape CUEC

56. Interspecific microbial
competition drives accelerated growth rates, accompanied by the
release of secondary metabolites that can negatively affect CUEC

66.
Antagonistic interactions may trigger stress responses, further
diminishing CUEC

67. Conversely, facilitation enhances CUEC by broad-
ening species-realized niches, alleviating environmental stress, and
reducing extracellular enzyme production costs64. Biotic interactions
at higher trophic levels, such as predation, can variably affect CUEC by
altering microbial density and influencing the outcomes of inter-
specific competition68,69.

Abiotic controls
Temperature. Temperature significantly affects soil microbial CUE,
with respiration often increasing more than growth in short-term
incubations, resulting in a decrease in CUEP

9,34,70. The impact on CUEC
and CUEE is less clear

63, likely due to varied responses amongmicrobial
taxa71,72 and interactive effects with other environmental factors38,39,46,73.
Temperature shifts can lead to changes in community traits or select for
taxa with distinct life strategies, known as trait modification and trait
filtering, respectively74,75. However, limited research on howCUEP varies
among different taxa in response to temperature impairs our ability to
accurately predict changes in CUEC

76–78.
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The interplay between direct and indirect temperature effects on
soil microbial CUEC and CUEE complicates our understanding of the
impact of warming on CUE. Warming can intensify C-nutrient imbal-
ances, potentially diminishingmicrobial CUE79, but it can also improve
the efficiency of substrate utilization, thereby enhancing CUE32,72.
Expected reductions in soil moisture due to increased evapo-
transpiration under warming conditions80 add another layer of com-
plexity, with the combined impacts of temperature and moisture on
microbial CUE remaining inadequately explored10,81. Some soil C
models, includingMillennial82 andMIMICS25 have begun to account for
the temperature dependency of CUEC, indicating a growing recogni-
tion of the importance of including the dynamic response ofmicrobial
CUE to fluctuations in temperature.

Soil water availability
Increased soil moisture promotes microbial growth and CUE by
improving substrate diffusivity and accessibility, and lowering invest-
ment in osmolyte synthesis, as long as conditions remain oxic8,10,83.
Prolonged water stress reduces soil substrate accessibility and
increases the need to synthesize osmolytes to survive during dry
periods, leading to lower CUEC

83, even though the taxa that remain
active in dry conditions can maintain relatively high growth rates84.
Furthermore, drought reduces plant C inputs to the soil83, thus

potentially leaving microbes with fewer lower resources, resulting in
lower CUE. The intricate interplay of drought-induced changes in
microbial respiration and growth may leave CUE unchanged if the
affected processes balance each other78. High levels of soil moisture
may also reducemicrobial CUE. As soil pores fill with water, air spaces
and oxygen diffusivity decline, potentially leading to anaerobic con-
ditions if saturation occurs. Under O2 limitation, soil microbes shift
from aerobic to anaerobic respiration or fermentation, significantly
reducing energy yield and leading to decreased microbial growth and
CUE while having little impact on CO2 production rate due to upre-
gulated biochemical rates83.

Microbial responses to rewetting of a dry soil also cause rapid
changes in CUE, as shown in modeling studies50 and confirmed by
empirical evidence51. Upon rewetting, respiration increases while
growth lags behind, especially when the soil has been dry for a long
period51. As a result, just after rewetting, CUE is low and then increases
as growth recovers during the first days after rewetting. However, after
this initial pulseofmicrobial activity, CUEpeaks anddecreases again as
substrates released during rewetting are consumed51.

Nutrient availability
The availability of nutrients such as N and P significantly affects
microbial growth and respiration according to the concept of

Fig. 4 | Framework of biological and abiotic determinants of CUE in a carbon
cycle context. The darker-colored area in the figure indicates biological controls;
the lighter-colored area indicates abiotic effects. The arrows depict implicit rela-
tionships and the width of the arrows corresponds to the levels of scientific

certainty: confident assertions are represented by thick lines, while less confident
assertions are indicated by thinner lines. These confidence levels are based on the
expertise of the authors.
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stoichiometric homeostasis which assumes constrained biomass C:N:P
ratios of microbial cells29,64. Consequently, CUE decreases with
increasing substrate C-to-nutrient ratios and increases with nutrient
amendment when organic substrates are nutrient-poor22,29. Several C
cyclemodels, such as the one proposed byManzoni et al.85 and its later
implementation24, have integrated CUE dynamics as a function of
stoichiometry. In contrast to the homeostasis concept, recent findings
highlight the capability of microbes to store and use nutrients dyna-
mically, contributing to a stable CUE across different environments by
separating growth and respiration processes from immediate nutrient
availability86. This resilience to nutrient stress suggests that future C
modeling should incorporate microbial nutrient storage dynamics for
enhanced predictive accuracy.

Soil pH
Soil pH influences microbial CUEC and CUEE by affecting the bacterial
community composition and acting as a potential stressor87. It also
impacts CUE by altering microbial community composition88, nutrient
solubility83, andmetal toxicity (e.g., aluminum87). Habitats with neutral
pH generally have higher bacterial diversity and biomass compared to
acidic or alkaline soils7. The response of community composition to a
shift in soil pH from acidic to neutral corresponded with a significant
increase in CUEC

87,89. However, recent research indicates a complex
interplay between soil pH, microbial community composition, and
CUE dynamics, evidenced by both negative correlations90 and a
U-shaped response curve, pinpointing a critical threshold at pH 6.491,
although the calculations to document this are complex and may
necessitate refinement.

Soil texture and structure
Microbial growth is intricately linked to substrate accessibility,which is
influenced by soil environmental conditions like texture and soil
structure. Approximately 40–70% of soil bacteria are associated with
microaggregates and clay particles92. The structural complexity of the
soil environment also plays a crucial role in shaping the community
structure and function of soil microorganisms at the ecosystem level93.
Heterogeneity of soil structure and composition creates diverse
microhabitats that influence microbial interactions, diversity, dis-
tributions, and activity, as well as ecosystem processes like nutrient
cycling and organic matter decomposition94. Still, limited information
exists on the relationship between soil texture or structure and
microbial CUE. A recent meta-analysis found a significant positive link
between microbial CUEC or CUEE for glucose and soil clay content95,
which was attributed to increased clay content enhancing substrate
adsorption96, thereby limiting substrate availability to microbes97, and
resulting in higher microbial CUEC or CUEE.

Substrate quality
Substrate quality, defined by the chemical characteristics of organic
matter that influence its decomposability, such as the C:N ratio and
molecular composition, significantly impacts soil microbial CUE98. A
“high-quality” substrate typically has a lower C:N ratio, indicating a
balanced N content relative to C, and a lower content of recalcitrant
compounds, which generally leads to faster decomposition and higher
CUE by providing C and nutrients that microbes require for growth
and metabolism8. Compounds requiring multiple enzymatic steps for
degradation can lead to reduced efficiency in building biomass. Poly-
meric substrates like lignin and cellulose need depolymerization
before cellular uptake, whereas smaller substrates readily diffuse
across membranes62. Takriti et al. (2018) found a positive association
between soil CUEC and ratios of cellulase to phenol oxidase enzyme
activity potential, whichwas considered to be indicative of soil organic
matter (SOM) substrate quality46. Different substrates necessitate dis-
tinct metabolic pathways, resulting in different respiration rates per
unit C assimilated8,99. Frey et al. (2013) observed lower microbial CUEC

when soils were amended with oxalic acid or phenolic compounds
compared to glucose, despite similar molecular sizes31.

Microbial CUE increaseswith the chemical energy permole of C in
the substrate, highlighting the importance of substrate chemistry for
microbial CUE variability in soil8. This relationship is akin to the con-
cept of energetic imbalance100, which parallels the idea of stoichio-
metric imbalance. The energy content of soil microbial biomass and
substrate canbequantifiedby the degree of reduction (γ), which refers
to the average number of electrons available per C atom for bio-
chemical reactions, indicating the energy density of the substrate or
biomass8. The degree of reduction of soil microbial biomass (γB) is
typically around 4.2, while that of substrate (γS) usually varies between
1 (e.g., for oxalate) and 8 (methane)8. Most of the substrates used by
soil microorganisms have a γS of 3 (e.g., various organic acids), 4 (e.g.,
glucose and other carbohydrates), and rarely 5 or higher (e.g., leucine,
polyhydroxyalkanoates or lipids)8. When γS is lower than γB, the sub-
strate’s energy content is insufficient to meet microbial demand,
necessitating the oxidation ofmore substrate per unit of C assimilated,
thereby reducing CUE101. These insights form the basis of the stoi-
chiometric modeling for indirect CUE estimates.

SOC-CUE relationship
The relationship between CUE and SOC concentration at the ecosys-
tem level can be positive, negative, or non-existent, depending on the
interactions amongmultipleprocesses21,92,96,102–104. HigherCUE can lead
to increased SOC through biosynthesis and accumulation of microbial
by-products—facilitating SOC formation via the entombing
effect16,102,105 — or conversely, trigger SOC decline through the priming
effect by ramping up microbial biomass and enzyme activity9. While
some studies suggest a negative correlation between CUE and
SOC103,104,106, the majority of research supports a positive
relationship21,74,107,108, indicating that higher CUE is often linked to
increased SOC levels. In a recent study, Tao et al.21 employed obser-
vational data and data assimilation algorithms and found that, on a
global scale, CUE is positively correlated with SOC concentration,
arguing for CUE as the major determinant for SOC formation. How-
ever, subsequent arguments have raised methodological concerns
which might have obscured the importance of microbial community
dynamics27 and SOC stabilization processes109.

Indeed, the link between microbial CUE and SOC is contingent
upon the stabilization ofmicrobial necromasswithin soil aggregates or
its association with minerals96,102,105. This stabilization process, pivotal
for enhancing SOC, is significantly influenced by physico-chemical soil
properties, which vary greatly and determine the potential for necro-
mass protection110,111. Positive SOC-CUE relationships could be antici-
pated in soils with high physicochemical C stabilization potential and
microbial communities that convert simple chemical substrates into
necromass111. Conversely, when soil microbes face environmental
stress, the relationship between CUE and SOC becomes less pre-
dictable. Particularly under conditions where nutrients are limited
relative to carbon, the increased microbial respiration required to
maintain stoichiometric balance leads to a decreased CUE29,33. Further
reductions in CUE may be driven by environmental challenges such as
low oxygen or pH88,106, as well as the physiological costs of microbial
competition66. However, these stressors on microbial activity may
differently affect SOC, potentially leading to either a negative or neg-
ligible correlation between CUE and SOC106. It’s worth noting that in
organic-rich soils, such as peat, C stabilization relies more on the
accumulation of undecomposed plant material than on necromass
formation112, making the link between CUE and SOC less direct.
Therefore, the CUE-SOC relationship in organic soils is expected to
differ from mineral soils where C is mainly stabilized by mineral
associations.

Additionally, it is important to recognize the distinct sensitivities
of microbial CUE and SOC to environmental changes, as their
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responses are not synchronized. Microbial CUE can adjust rapidly,
fromdays tomonths, in contrast to SOC, whichmay take years or even
decades to respond to a measurable extent49,113. Data from two meta-
analyses highlight this disparity, showing that although fertilization
positively affects both CUEC and SOC37,114, the response ratios of CUEC
were not significantly correlated with the response ratios of SOC, or
even microbial biomass C content (Fig. 5a, c). Here, the “response
ratio” is calculated as the ratio of the measured value in the treatment
to the value in the control. Furthermore, the response ratios of
microbial CUEC were not significantly related to treatment duration
(within ten years of treatment) (Fig. 5b), whereas the response ratios of
SOC increased significantly with experiment duration (Fig. 5d).
Therefore, SOC gradually approaches a new equilibrium over several
decades, whereas CUE achieves equilibrium almost immediately. This
discrepancyunderscores the importance of considering the state (SOC
andmicrobial biomass) dynamicsof anecosystemwhen evaluating the
interplay between microbial CUE and SOC dynamics.

Usingmodels and data across scales to clarify themicrobial role
in C cycling
Integrating genomic data with CUE and C models. With the rise of
high throughput sequencing technology, the use of genomic datasets
to help calibrate or validate C models has become both feasible and
affordable. This capacity is especially valuable when predicting CUE115.
As genomic data related to microbial traits becomes more readily
available at both the population116 and community levels through
metagenomics117, there is a growing need to effectively integrate this

data into C cycle models. This integration requires models that can
handle complexmicrobial interactions, from individual populations to
entire communities (Fig. 2).

One way to integrate genomic data is by converting the genetic
sequences of microbes into information on metabolic pathways (e.g.,
cellulose degradation, lignin degradation, nitrogen reduction, and
fermentation) using genome-scale metabolic models (GEMs)118. GEMs
take into account the microbe’s environment, such as substrate avail-
ability, and predict the transformation of metabolites within a cell
based on its genomic information. This process allows for the calcu-
lation of CUE at the population level by analyzing substrate use and
CO2 production

118. For community-level CUE, GEMs can be combined
into microbial community models that simulate interactions between
different microbial taxa: The ‘computation of microbial ecosystems in
time and space metabolic modeling platform’ (COMETS) extends
GEMs to include dynamics of microbial growth and interactions, pro-
viding a tool for predicting CUEC under various environmental
conditions115.

An alternativemodeling approach at the community level is based
on traits (e.g., quantity of cellulase produced, maximum rate of reac-
tion (Vmax) of cellulose decay by cellulase, Vmax of cellulose-monomer
uptake, and turnover rate), such as the DEMENT model, which uses
data on microbial traits to simulate substrate use and CO2

production119. This model can predict both CUEP and CUEC under dif-
ferent environmental conditions and over time. However, translating
genomic data into traits remains challenging120. Genomic datasets
typically indicate the presence or absence of certain genes or
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Fig. 5 | Contrasting responses of SOC and CUE to fertilization. Correlations
between ln-transformed response ratios of microbial CUE and ln-transformed
response ratios of (a) SOC and (c) microbial biomass C (MBC); and the correlation
between experiment duration and ln-transformed response ratios of (b) CUE and
(d) SOC. The response ratio is calculated as the ratio of the measured value in

treatment to the value in the control. Data are from meta-analyses27,37,114. Both
datasets include observations from all three methods of CUE measurement, i.e., C
labeling, O labeling, and stoichiometry modeling as indicated by symbol colors
in a–c.
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pathways, but additional information, such as that from GEMs or
experimental data, is necessary to accurately map these genes to
functional traits in the models.

Validating genomic and trait-based models is crucial and can be
achieved using community-level genomic datasets, which offer
insights into microbial strategies that affect CUE, such as nutrient
recycling and stress tolerance117,121. Combining these models with tra-
ditional CUE measurements and omics data allows for the creation of
detailed maps of community-level CUE, offering new insights into C
cycling dynamics and providing input information for C cycle models.

A major challenge in this field is the high computational demand
of integrating omic data into complex models. One solution is the
development of computational emulators that can simulate the
dynamics of microbial models more efficiently, bridging the gap
between detailed, small-scale models and broader applications in C
cycle studies122. This approachpromises to improve our understanding
of microbial contributions to C cycling, leveraging the power of
genomic data to inform and validate complex ESMs.

Harmonization of CUE measurements and aligning measured
and modeled CUE
Harmonizing soil microbial CUE measurements across different
methods, i.e., aligning results from different methodologies, poses a
challenge due to the differences across measurement techniques.
While adopting a universal protocol for CUE measurement—a single,
standardized measurement method— would be ideal, it may not be
feasible given the complexities of CUE. Therefore, a more practical
approach involves providing a clear and comprehensive description of
the methodologies used in different studies. This detailed reporting
should include informationon thephysiological processes considered,
such as maintenance, enzyme production, biomass generation, and
mortality rates. This level of detail helps in understanding and com-
paring results across studies, as well as in selecting appropriate data
for model calibration17.

In contemporary soil C models that explicitly incorporate micro-
bial processes25,82, the CUE is close to empirically measured CUEC. To
achieve a uniform approach to CUE measurement, microbial models
that resolve key processes influencing CUE, such as uptake, respira-
tion, exudation, andmicrobial death could be used17. Suchmodels can
generate CUE metrics that align with different measurement meth-
odologies by incorporating a complete or partial set of theseprocesses
into their calculations. Furthermore, these models can be adapted to
conduct numerical experiments with specific substrates or to incor-
porate isotopic tracers (e.g., 13C, 14C, 18O) to simulate outcomes from
labeling experiments. This adaptability allows for the exploration of
hypotheses regarding discrepancies in measurements under diverse
conditions by modifying model boundary conditions. Additionally,
microbial models serve as foundational tools for integrating microbial
metabolism into broader global C models, potentially enhanced by
machine learning emulators for improved scalability and applicability.

Constraining CUE using model-data fusion
Data assimilation encompasses a collection of techniques, including
Bayesian inference, that refine biogeochemical models by integrating
observational data. This process not only updates model parameters
to reflect the most likely values based on available data but also
quantifies their uncertainties, thus bridging the gap between empirical
observations and theoretical models107. This approach is particularly
valuable for parameters like microbial CUE, which are challenging to
measure directly in the field due to technical limitations. An innovative
application of data assimilation is demonstrated by Tao et al.21, who
developed the PROcess-guided deep learning and DAta-driven
(PRODA) approach123,124. This method integrates global-scale SOC
data with a microbially explicit model to produce a global map of
microbial CUE. PRODA employs traditional Bayesian data assimilation

to estimate parameters at specific sites and then uses deep learning to
extrapolate these site-specific parameter estimates to a global scale.
The result is a set of parameters that optimally align with observed
data, offering a detailed view of microbial CUE and SOC storage pat-
terns worldwide, along with other soil C cycle dynamics such as
decomposition rates, environmental impacts on soil respiration, and
vertical C transport21.

Despite the potential of approaches like PRODA to harness large
datasets for enhancing our understanding of the soil C cycle, their
computational intensity—stemming from the extensive data sampling
required by Bayesian inference—may limit their application in models
with complex structures. The next wave of data assimilation techni-
ques will likely integrate process-based models with deep learning
algorithmsmore seamlessly121. Such advancements could offer quicker
parameter optimization and facilitate comparisons across different
models, paving the way for more accurate and comprehensive
assessments of microbial CUE and C cycle dynamics on a global scale.

Long-term SOC records and ecosystem manipulation
experiments
Ecosystem manipulation experiments and observations of natural
gradients offer invaluable insights into how microbial communities
and CUE adapt to global change factors. Especially insightful are field
experiments (or studies leveraging natural gradients) that alter envir-
onmental factors such as soil temperature, precipitation patterns, or
nutrient levels76,125 over long durations. These experiments provide
critical data on the enduring effects of global change drivers on CUE,
while simultaneously highlighting the limitations of current models
and enhancing our comprehension of ecological processes. Integrat-
ing the results from these experiments with model simulations, sup-
ported by proven site modeling protocols and extra observational
data, is crucial for steadily enhancing the accuracy and complexity of
models126.

Incorporating radiocarbon (14C) data and long-term SOC records
into models is also vital for refining CUE forecasts across longer
(decadal to centennial) time scales. This temporal information is
essential for capturing the dynamics of CUE over time, thereby
improving the precision of models in depicting spatial and temporal
fluctuations127.

Diagnosing CUE from existing models or simulation archives
In global C modeling, approaches to quantify the environmental
impact on organic matter decomposition and stabilization differ sig-
nificantly. An effective method for estimating microbial CUE at the
ecosystem level as emerging from model simulations involves the
calculation of the ratio between soil heterotrophic respiration (R) and
gross decomposition (D) within these models. Gross decomposition
refers to the sumof all C fluxes transferred between themodeled soil C
pools that are mediated by microbial processes, excluding physically
mediated transfers (e.g., sorption, aggregation, or leaching). This
includes all C removed from organic matter pools, whether it is lost as
CO2 or transferred to another pool (SI-Text 1). This ratio effectively
quantifies microbial-mediated C losses from SOC pools, integrating
both growth (anabolic processes) and respiration (catabolic pro-
cesses). Under steady-state conditions, it is assumed that hetero-
trophic respiration aligns with microbial C uptake, resulting in the
formula: CUE = 1 - R/D. The steady-state assumption implies that
microbial communities and SOC stock are stable in time (i.e., in equi-
librium with boundary conditions). This is an approximation of real
systems where SOC varies due to anthropogenic and natural changes
(e.g., Holocene climatic variations). This diagnosedCUE, emerging as a
property inherent to the model, is not susceptible to the equifinality
issues that can affect the underlying intrinsic model parameters (like
CUEC), and it does not necessitate the incorporation of explicitly
microbial models, offering a simplified yet insightful metric. These
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model-based CUE estimates, derived from long-term flux averages
(e.g., 20 years), represent stable C stocks. In contrast, measurement-
based estimates, taken over shorter periods, are more susceptible to
significant CUE variations due to asynchronous fluctuations in com-
ponents such as respiration and degradation, potentially introducing
estimation inaccuracies. This timescale discrepancy likely accounts for
the greater variability observed inmeasurement-based CUE compared
to model-based CUE. We propose this “model-diagnosed CUE” as a
novel metric, designed to estimatemicrobial CUE frommodel outputs
without direct measurements of microbial uptake.

Analyzing diagnosed CUE and its relationship with SOC across
various models, such as those evaluated in the Trends in the land
carbon cycle (TRENDY)model intercomparison project2, facilitates the
identification of differences attributable to unique model structures
and assumptions. For example, warming-induced CO2 emissions
should be higher inmodels with lowdiagnosed CUE compared to high
CUE as the warming-induced stimulation of microbial activity will
result in relatively more C being respired than cycled within the soil
systems. This approach further allows the benchmarking and sub-
sequent refinement of diagnosed CUE estimates using observed
CUEE data.

For instance, we derived CUE estimates from simulations con-
ducted with two different versions of the Organizing Carbon and
Hydrology In Dynamic Ecosystems (ORCHIDEE) land surface model128,
which differ in the SOC model deployed. The CENTURY SOC model
(Fig. S1), which is widely used but does not resolve microbial pro-
cesses, uses first-order decay, while the MIMICS model (Fig. S2)
resolves microbial physiology, providing a more mechanistic under-
standing of microbial processes. The resulting global CUE maps (the
average of simulation results over 20 consecutive years) revealed
significant spatial variability (Fig. 6a, b). While the two maps showed a
good correlation (Fig. 6c), the CUE values diagnosed from theMIMICS
model were higher than those from the CENTURY model (Fig. 6d).
These findings underscore the importance of incorporating

observational data into model calibration efforts to enhance the
accuracy and reliability of SOC predictions by realistically resol-
ving CUE.

In conclusion, the inherent structure of a model significantly
shapes its outcomes, making the integration of empirical data with
data-constrained models a fundamental step toward realistic
predictions129,130. Precisely delineating the spatial and temporal
dynamics of CUE in models that specifically address microbial activ-
ities is crucial for the reliability of their predictions of SOC status and
dynamics. Moreover, future soil C models must navigate the intricate
balance between the complex regulatory mechanisms of CUE, other
processes governing SOC formation and stabilization, and the practi-
cality of model use to promote more precise projections of CUE
responses under diverse environmental scenarios. This Perspective
underscores the importance of combining different data sources with
sophisticated modeling techniques to refine global CUE predictions.
By incorporating genomic data, standardizing measurement proto-
cols, applying data assimilation practices and critically evaluating CUE
within existing frameworks, our comprehension of the global
dynamics of microbial CUE can be markedly improved. This Perspec-
tive provides a roadmap for establishing an effective modeling
approach to accurately represent global soil microbial CUE and its
interactions with other biological and abiotic processes that regulate
SOC dynamics.
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