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Parasitoid speciation and diversification
Peter Arvid Hambäck1, Niklas Janz2 and Mariana Pires Braga3

Parasitoid wasps may well be the most species-rich animal group 
on Earth, and host–parasitoid interactions may thereby be one of 
the most common types of species interactions. Understanding 
the major mechanisms underlying diversification in parasitoids 
should be a high priority, not the least in order to predict 
consequences from high extinction rates currently observed. The 
two major hypotheses explaining host-associated diversification 
are the escape-and-radiate hypothesis and the oscillation 
hypothesis, where the former assumes that key innovations are 
major drivers of radiation bursts, whereas the latter rather assumes 
that diversification depends on processes acting on the standing 
genetic variation that influences host use. This paper reviews the 
recent literature on parasitoid speciation in light of these major 
hypotheses to identify potential key innovations and host use 
variability underlying diversification. The paper also calls upon 
recent theoretical advances from a similar system, plant–butterfly 
interactions, to provide shortcuts in the development of theories 
explaining the high diversity of parasitoid wasps.
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Introduction
Coleoptera were long considered the most species-rich an-
imal order, but this view has recently been challenged by 
calculations suggesting that Hymenoptera may contain three 
times as many species as Coleoptera [1]. Recent years have 

also revealed substantial cryptic speciation among particu-
larly parasitoid Hymenoptera (e.g. [2,3]), often identified 
only through molecular markers, but species descriptions are 
likely also lagging due to the small size and the limited 
morphological variability of many parasitoid species, the 
difficulty in rearing larvae and thereby to describe host use, 
and the lack of taxonomic expertise. The high species di-
versity occurs despite, or perhaps because of, the complexity 
of the parasitoid lifestyle. Many parasitoids not only have to 
find and devour their prey but they often also take over the 
host through manipulations of the host physiology.

Recent years have seen substantial improvements in the 
understanding of Hymenopteran phylogenies and higher- 
order evolutionary history as a consequence of using 
molecular tools [4–8]. These studies show among other 
things that the parasitoid lifestyle evolved once in Hy-
menoptera but also that this innovation did not initially 
cause high diversification until their primary host groups 
began diversifying [5]. In fact, it has been suggested that 
the parasitoid lifestyle is not the main cause for high di-
versification but rather the high inbreeding rates due to 
common sib-mating, coupled with the haplodiploid 
sexual determination system that causes rapid local 
adaptation [9]. Interestingly, a key innovation leading to 
diversification instead seems to be the reversal to plant 
feeding in groups such as Eurytomidae and Cynipidae [5].

The expansion of molecular tools has similarly allowed 
an increasing number of full genome sequencing of 
parasitoid wasps (recent examples: [10,11–19]), which 
provide key resources for the exploration of evolutionary 
processes in host–parasitoid interactions, including spe-
ciation genomics [20]. Nevertheless, we have limited 
knowledge about the factors driving population differ-
entiation and diversification in parasitoid wasps and the 
possible role of coevolution in the diversification process 
of parasitoids. One reason for this lack of information 
may be that few studies have explored variation within 
species or between sibling species. To meet this chal-
lenge, and to trigger additional studies, we examine di-
versification hypotheses in relation to parasitoid 
Hymenoptera and how network analyses can be used to 
differentiate between hypotheses. We first briefly over-
view previous research on parasitoid speciation with a 
particular focus on host-associated diversification and 
thereafter discuss the roles of key innovations versus 
processes acting on standing genetic variation for di-
versification rates. While our focus is on parasitoid Hy-
menoptera, we also use theoretical developments from 
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other coevolutionary systems, such as plant–herbivore 
interactions, showing how different diversification pro-
cesses leave unique imprints in species networks that 
can be detected using recently developed analyses. 
Even though the lifestyle of parasitoids is quite parti-
cular, at least for those endoparasitoid species overtaking 
their hosts’ physiology, there are many similarities to 
plant–herbivore systems such as host use typically being 
restricted to one or a few closely related species [21].

Host race formation and population 
divergence
Speciation obviously involves multiple stages that end in 
some type of reproductive isolation. We will here not 
review the various stages involved in the speciation 
process but rather focus on the underlying causes for 
diversification, which in parasitoids is likely to involve 
mostly host use changes. Host-associated diversification 
in parasitoids differs from herbivores because host ex-
pansions in parasitoids may not only occur to closely 
related host species but may also follow the host lifestyle 
or even the phylogeny of the host plant consumed by 
their herbivore host [22]. For instance, Leppänen et al. 
[23] showed that parasitoids attacking leafminers may 
switch to unrelated leafminer hosts, but that leafminers 
are not attacked by parasitoids on free-living species.

A small number of studies have examined the host-asso-
ciated diversification process for parasitoids in more de-
tail. The most well-documented case arguably involves 
parasitoids attacking Rhagoletis fruit flies [24,25], and 
particularly Diachasma alloeum (Braconidae), but other 
examples have been documented from a range of fa-
milies, including Nasonia vitripennis (Pteromalidae; [26], 
but see Ref. [27]), Asecodes parviclava (Eulophidae) [28], 
Aphelinus certus (Aphelinidae) [29], and Leptopilina japonica 
(Figitidae) [30]. These cases show ecological differentia-
tion where females preferentially lay eggs in the original 
host species, but population differentiation may also in-
volve phenological changes matching the host phenology 
[31]. This far, even though some studies show genetic 
variation connected to host use, few studies have con-
nected phenotypic differences and genomic changes (but 
see Ref. [32]), which limits our capacity to understand the 
ecological adaptations to different host species. An at-
tempt in this direction was the phylogenetic analysis of 
parasitoids and pollinators associated with figs, which 
suggested that interspecific competition, leading to host- 
associated differentiation, may be a major driver of di-
versification in this system [33].

The rate of population divergence leading to speciation 
is certainly affected by multiple processes, including 
sexual selection, symbiont-mediated changes, learning 
of host cues etc [34]. For instance, the role of sexual 
selection in speciation has been a hot topic for decades, 

where the most commonly discussed mechanism has 
been premating mate choice that evolves in combination 
with changes in some secondary sexual trait (for recent 
reviews on the topic, see Refs. [35,36]). In parasitoid 
wasps, secondary sexual traits are often cryptic to the 
human eye but may involve sexual dimorphism in body 
size or color [34]. For instance, male wings in some 
species have a different, and often species-specific, hue 
compared with female wings, which may provide a 
template for sexual selection [2,37]. There is no doubt 
that sexual selection has a role in the speciation process 
of many organisms, but in most cases by increasing po-
pulation divergence that arose due to some ecological 
process, such as host use changes [35]. Additional me-
chanisms underlying sexual selection in parasitoid wasps 
have been discussed, but their role in speciation and 
diversification is yet unclear.

Key innovations and adaptive radiations
A central problem in discussions about speciation is 
whether innovations affecting the genome preceded the 
diversification in ecological traits or whether speciation 
was rather a consequence of some ecological shift, for 
example, host shifts [25]. The adaptive radiation hy-
pothesis assumes that diversification follows some kind 
of key innovation that opens up a new resource base for 
the consumers on which to diversify [38]. In herbivores, 
these key innovations often involve adaptations allowing 
individuals to detoxify specific chemical compounds. For 
instance, adaptations to detoxify the mustard bomb al-
lowed butterflies to radiate on a large set of plants in 
Brassicaceae [39]. In parasitoid species, corresponding 
key innovations have been less explored but could in-
volve abilities to overcome immune responses or other 
types of defenses in their hosts, and where correlated 
defenses in other hosts thereafter can be exploited. One 
class of potential key innovations in parasitoids may in-
clude morphological adaptations in the ovipositor 
needed for attacking concealed hosts, even though the 
ancestral state of Apocrita was likely a species attacking 
wood-living beetle larvae [6]. For instance, parasitoids 
attacking free-living hosts are typically not able to lay 
eggs on leafminers [23], and problems may be even 
larger for hosts living inside of woody tissues. Previous 
studies suggest that sclerotization of the ovipositor or the 
presence of teeth on the tip varies depending on the 
parasitoid life history, where harder ovipositor or more 
teeth occur on species attacking hosts inside harder tis-
sues [40,41]. On the other hand, the ovipositor length 
seems to be a much more labile trait that is less pre-
dicted by parasitoid phylogeny [42] and is therefore also 
less likely to constitute a key innovation. Other potential 
key innovations may be virus domestication in Braco-
nidae and Ichneumonidae [7,14,43–46], which has likely 
had major consequences on their host use capacity. 
Recent studies also suggest viral involvement in host 
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race formation of Cotesia sesamiae (Braconidae) [32,47]. 
Innovations in other offensive traits have similarly re-
ceived some attention, for instance, that evolution of 
venom genes often involves co-option of other gene 
classes and neofunctionalization following gene dupli-
cation [48–50], but either of these innovations has yet to 
be connected to radiation events.

Dynamic host repertoires and diversification
An alternative to the escape-and-radiate hypothesis is 
the oscillation hypothesis, which posits that diversifica-
tion of species lineages is rather a consequence of eco-
logical processes acting on standing genetic variation 
[51]. This hypothesis originates from the observation 
that host repertoires within a species show high varia-
bility both geographically and over time. Even though a 
species may use only single species locally (realized host 
repertoire), the fundamental host repertoire may be 
much broader, which allows for gains or switches of re-
sources when opportunity arises. An expansion of the 
host repertoire through, for instance, a geographic range 
shift may trigger host-associated differentiation on the 
old and novel hosts, where diversification may arise 
through multiple such events. The mechanisms under-
lying the oscillation and the adaptive radiation hy-
potheses are expected to lead to different imprints on 
the species interaction network, where innovations ty-
pically lead to modular networks, whereas resource use 
variability is expected to lead to more nested networks 
[52]. Studies of butterfly–plant networks indicate that 
both processes are involved and typically explain dif-
ferent parts of the historical process [53].

The role of host repertoire variability and range shifts for 
diversifications in parasitoids is yet unknown, but these 
mechanisms have recently been proposed for two other 
highly specialized enemy groups, parasites, and diseases 
[21,54,55]. The main assumption underlying the oscil-
lation hypothesis is that species tend to have broader 
fundamental than realized host repertoires. Even though 
many parasitoid species use only one host locally, it is 
well known that many species also have the capacity to 
successfully attack other species, should the opportunity 
arise, for example, during a range shift. In fact, re-
commendations underlying the introduction of para-
sitoid wasps for pest control strongly suggest that 
alternative host use in the introduced range should be 
considered before release and in particular for species 
related to the expected host [56–58]. The literature is 
also replete with examples of changed resource use fol-
lowing parasitoid introductions (for a recent example, 
see Ref. [59]). Even though these diet expansions in-
volve human-assisted migrations, natural range shifts in 
either hosts or parasitoids may similarly cause species to 
be exposed to novel interactors, with the potential of 
triggering host-associated diversification. In butterflies 

and other herbivores, fundamental niche spaces are ty-
pically defined only by chemical or morphological 
properties of the host plant. In parasitoids, fundamental 
niches may be determined both by host properties and 
by properties of the plant host consumed by the herbi-
vore host. For instance, the fundamental niche of a 
parasitoid attacking leafminers may include species with 
a similar lifestyle irrespective of taxon identity.

Exploring diversification theories
No studies in host–parasitoid systems have yet at-
tempted to explore the relative role of key innovations 
and host repertoire variability in host–parasitoid systems, 
leaving the question unresolved on mechanisms under-
lying the extreme diversity of parasitoid wasps. 
Theoretical analyses provide a solution to this question, 
where different diversification models give different 
imprints on network properties. Key innovations fol-
lowed by adaptive radiations will lead to a modular 
network, which often consists of closely related enemy 
species but may also involve unrelated enemy species 
that have diversified in a similar fashion. For instance, 
the capacity to defuse the mustard bomb in Brassicaceae 
has caused adaptive radiations in both butterflies and 
beetles, which then would show up as a joint module in a 
network involving both groups. Host repertoire varia-
bility and range shifts will result in a different network 
pattern, either fully nested or nested within modules 
[52]. Thus, a simple way to look for signs of radiations 
and oscillations is to quantify modularity and nestedness 
in parasitoid–host networks and then test (i) whether 
phylogenetic diversity within modules is lower than 
expected by chance and (ii) whether ancestral hosts are 
used by many parasitoids widespread in the phylogeny 
(Figure 1). Before any analyses can be done, however, a 
robust interaction data set that describes the structure of 
clade-level parasitoid–host networks need to be com-
piled, that is, phylogenetic trees for the parasitoid and 
the host clades and interaction data at the taxonomic 
level of interest, but such data set are often difficult to 
compile for many parasitoid group. The last test also 
requires some knowledge about the coevolutionary his-
tory between the studied clades.

The most thorough way to quantify the contributions of 
radiations and oscillations for a given clade would be to 
reconstruct network evolution using a model such as that 
of Braga et al. [60]. A caveat, however, is that the current 
model does not account for host evolution (i.e. the host 
phylogeny is fixed across the diversification of the sym-
biont clade), which implies that the model works less well 
when the host clade diversifies at a rate similar to the 
enemy clade, which could be the case for host–parasitoid 
systems. The model may nevertheless provide relevant 
results when applied to data at the level of higher host 
taxonomic groups (e.g. families or genera), provided that 
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host use is sufficiently conserved. Assumptions under-
lying the oscillation hypothesis can also be tested directly 
for parasitoids, such as the presence of a ‘genetic memory’ 
(expressed in the fundamental host repertoire), which 
could be a mechanism underlying phylogenetic con-
servatism in host use, as shown in butterflies [61,62].

A complicating factor for these analyses is that host use in 
parasitoids may cluster not by the host insect directly but 
rather by the host plant of their insect host, by the host 
feeding mode or even by habitat [22]. For instance, it 
seems that unrelated leaf miners with a similar lifestyle 
share parasitoid enemies, suggesting an additional di-
mension for host repertoire and speciation dynamics. 
Network analysis can be useful in identifying the factors 

that determine parasitoid clustering (taxonomy or traits of 
hosts or host plants). These networks may be tritrophic 
(plant–herbivore–parasitoid) but may be subdivided into 
bipartite networks for analyses. For each network, module 
composition can be investigated to determine whether 
closely related parasitoids tend to attack similar herbi-
vores or herbivores that use similar host plants. If modules 
are not composed of closely related parasitoids, that 
finding indicates that phylogenetic conservatism in host 
use is low. The number of tritrophic networks involving 
plants, herbivores, and parasitoids is indeed increasing 
[22,63–65], providing useful templates for further ana-
lysis. Depending on how well herbivore–plant and para-
sitoid–herbivore interactions are described, an alternative 
approach could be to build networks between parasitoids 

Figure 1  
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Network structure reflects the evolution of parasitoid–host interactions. Modularity and nestedness are not mutually exclusive but represent the ends 
of a gradient. A network, for example, between parasitoid genera and host genera, that is completely modular and closely related parasitoids interact 
with the same host suggests that the modules were formed by host shifts to the novel hosts followed by radiations. On the other hand, a completely 
nested network where specialists interact with the ancestral host suggests that oscillations in host range have happened, with at least one event of 
host range expansion (i.e. colonization of new hosts while also maintaining ancestral hosts) followed by specialization closer to the tips of the tree. In 
this example, the tips of the phylogenetic trees represent parasitoid species, and the dashed lines represent an arbitrary clustering into parasitoid 
genera. Different colors represent different host genera, and each circle at the tips of the tree represent interaction with a host species.  
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and herbivore–plant pairs. This approach would allow 
direct comparisons between the importance of herbivores 
and plants for parasitoid host choice but would only make 
sense if sampling effort is high enough to avoid false 
negatives (herbivore–plant pairs that have not yet been 
identified as hosts by the parasitoids).

Conclusions
Processes explaining the mega-diversity of parasitoid 
Hymenoptera are yet poorly understood, and a more 
comprehensive analysis of diversification processes is 
obviously hampered by limitations in host use data and 
phylogenetic information. Possibly, this information can 
be more rapidly gathered using metabarcoding tools [63], 
even though these tools do not distinguish between 
successful and unsuccessful host attacks. In addition, 
there is a need to understand whether key innovations are 
equally important for diversification in parasitoid wasps as 
for herbivore groups, and what those key innovations may 
be. The escape-and-radiate hypothesis assumes that key 
innovations open a wide resource base providing novel 
opportunities for diversification. Such untapped oppor-
tunities could be due to previous adaptations in defense 
traits, for example, egg laying inside plant tissues, that 
may have caused host diversifications. The potential im-
portance of such a chain of events in host–parasitoid 
systems is yet unknown and therefore also the role of key 
innovations in parasitoid diversification. Similarly, the 
oscillation hypothesis for diversification in parasitoid 
Hymenoptera deserves further exploration. In either case, 
perhaps Askew [9] was right all along, that the common 
pattern of sib-mating coupled with the haplodiploid sex 
determination system, leading to rapid local adaptation, is 
the major explanation underlying the extreme diversity of 
parasitoid wasps. However, testing such a hypothesis will 
be a major challenge.
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