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A B S T R A C T

Plants are exposed to different types of biotic and abiotic stresses that reduce growth and yield. The review 
presents the negative effects posed by salinity, water scarcity and phytotoxic metals to the agriculture sector and 
underscores the protective role of natural and synthetic zeolites to improve the unfavourable growth environ-
ment. Furthermore, based on extensive literature review, zeolites (specifically natural zeolites) possess 
extraordinary adsorption capacity, highly functional nutrient and water holding and releasing characteristics. 
The enhanced and selective nutrient retention capacity of zeolites enables lower nutrient loss from soil, thereby 
minimizing the issue of water pollution through the leaching of excessive nutrients. The adsorption potential of 
zeolites against Na+, Cl- and various phytotoxic metals in soils improve the growth environment for the plants. 
Sepcifically, the addition of zeolites to soil facilitates improvements in water availability and better plant growth 
parameters: chlorophyll content, total protein concentration, and increased activity of antioxidant defense; 
eventually mitigating the unfavourable effects of environmental stresses such as extreme temperatures, drought 
or salinity. Natural zeolites, particularly clinoptilolite, were shown to be better in alleviating plant stresses such 
as salinity in comparison to synthetic zeolites; handling salt load of up to 100 mM of NaCl. Interestingly, zeolites 
can be used in combination with other substances such as compost, biochar or calcium-based materials to reduce 
salinity. The greater availability of hydrophilic active sites in zeolites enhances their water sorption strength, 
restricting the formation of liquid film required for growth of pathogens; delivering effective desiccant-like ef-
fects to protect the plants from several pathogens. In general, zeolite applications can be used as buffering agents 
to improve plant growth and to deliver better biological resilience during different unfavourable growth 
conditions.

1. Introduction

The exponential increase in population emanates to greater demand 
for food as well as higher production of food to meet the needs of 
communities (Alexandratos and Bruinsma, 2012; Baghbani-Arani et al., 
2017; Razzaq et al., 2021; Singh et al., 2023). Plants are exposed to 
different kinds of stresses which results in growth reduction and having 
lower crops yield. Agricultural stresses have been classified as biotic and 
abiotic stress (Gull et al., 2019; Suzuki et al., 2014). Biotic stress involves 
growth reduction caused by several pathogens like fungi, bacteria, 

nematodes, allelopathy and herbivores, to the plants. Salinity, floods, 
drought, heat, cold, radiation, and toxic metals are examples of abiotic 
stresses encountered by the plants (Berens et al., 2019; Liu et al., 2012; 
Song et al., 2022; Wu et al., 2023; Yuan et al., 2014; He et al., 2023). 
Globally, the loss in agricultural crops are caused by these biotic and 
abiotic stresses (González Guzmán et al., 2022; Gull et al., 2019). 
Therefore, the application of inorganic chemical fertilizers, investments 
of heavy equipment and high water usage, are becoming crucial ne-
cessities of the conventional agricultural sector to meet food and 
nutritional requirements of the increasing population (Abbott et al., 
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2018; Mondal et al., 2021). But these rigorous agricultural activities 
have resulted in the degradation of soil nutritional quality, phytotoxic 
metal adulteration, mixing of unused fertilizer with water resources, 
ultimately leading towards declines in soil health, crop production and 
food availability (Liu et al., 2012; Ming and Mumpton, 1989; Shaghaleh 
et al., 2024; Singh et al., 2023; Yang et al., 2018). Plants generally have 
evolved and developed effective mechanisms to tolerate stresses; further 
agronomic support from improved soil water availability, better soil 
physio-chemical characteristics and the use of chelating substances to 
imobilize phytotoxic metals, can further enhance plant growth, yield 
and resilience to unfavourable conditions (Abbott et al., 2018; Ahanger 
et al., 2016; Sani et al., 2023; Wong et al., 2020). The conventional 
agricultural practices mostly involve the use of nitrogen-based inorganic 
fertilizers and the biological availability of nitrogen for utilization by 
plants is often lesser; attributed to physio-chemical-related immobili-
zation within the rhizosphere, leaching, denitrification and evaporative 
losses of nitrogen (Hosono et al., 2013; Peña-Haro et al., 2010; Wang 
et al., 2020, Wang et al., 2022). Also, the release of nitrate from soil to 
water resources via nitrogen fertilizers application, deteriorate the 
ground water quality, causing adverse effects on human health such as 
blue baby syndrome, gastro-intestinal disorders and emission of nitrous 
oxide gas via denitrification (Aschebrook-Kilfoy et al., 2013; Wang et al., 
2022). Hence, zeolites prevent water pollution by minimizing the use of 
nitrogen fertilizers, giving rise to better practices in environmental 
sustainability. Another nutrient in fertilizer is phosphate, which can also 
cause eutrophication of water resources (Caspersen and Ganrot, 2018; 
Delkash et al., 2014). The retention of soil nutrients is an important 
challenge to improve the soil nutritional quality and crop productivity. 
As nutrients help to activate biochemical pathways and components of 
defense system in plants, therefore nutrient retention and availability 
within the rhizosphere contribute to improving resilience to drought, 
salinity and heat stress in crops (Ahanger et al., 2016; Alam, 1999; de 
Bang et al., 2021; El-Ramady et al., 2018) Hence, the modification of soil 
with organic compounds has got much attention for long term 
improvement in physical and chemical properties of soil (Abbott et al., 
2018; Chowdhury et al., 2024; Mahabadi et al., 2007; Sani et al., 2023; 
Sani and Yong, 2022; Wong et al., 2020). In this context, zeolites emerge 
as potential soil ameliorating agents, possess superior nutrient and water 
capturing capacity, cation exchange potential, and better water capture 
from seepages (Jha and Singh, 2016; Sarkar and Naidu, 2015). Zeolites 
have remarkable role in agriculture, medicinal and environmental pro-
tection fields (Polat et al., 2004). Zeolites have shown to increase the 
photosynthesis rate in plants (De Smedt et al, 2017). Zeolites are good 
fertilizers as well as functioning as chelating substances; they decrease 

the rapid release of nutrients from fertilizer to provide consistent 
availability of nutrients throughout the growth phases (Perez-Caballero 
et al., 2008). Several researchers have affirmed the potential of zeolites 
in improving the agricultural and horticultural plants quality and yield 
(Chen et al., 2017; Ghanbari and Ariafar, 2013; Nur Aainaa et al., 2018; 
Shahsavari et al., 2014). Furthermore, natural zeolites also exhibit 
adsorption potential against toxic metals such as cadmium, arsenic, 
lead, nickel along with other soil contaminants, preventing soil pollution 
(Kazemian & Malah, 2006). Zeolites prevent downstream water pollu-
tion issues by improving the nitrogen use efficiency of inorganic-based 
fertilizers, giving rise to environmental sustainability as well. Interest-
ingly, zeolites have further functionality and serving as plant protection 
substances. They can be utilized as particle films to cope with several 
crop diseases and pests. With their small particle size, zeolites were able 
to reduce heat stress and fungal diseases in plants (De Smedt et al., 
2015). Zeolites play a key role to protect the plants against drought, 
salinity and temperature stresses, ultimately help to improve plant 
growth and yield (Babaousmail et al., 2022; Rahimi et al., 2021; Sayed 
et al., 2010). The various types of stresses encountered by plants are 
shown in Fig. 1.

2. Zeolites

Zeolites were discovered in 1756 by Fredrich Cronstedt, a Swedish 
mineralogist (Polat et al., 2004). The term zeolite originated from Greek 
word meaning “boiling stones” as they effervescence by heating around 
200◦C. Zeolites have been reported as minerals located in volcanic and 
sedimentary rocks for around 200 years. In 1960s, they have been 
produced commercially around the globe (Polat et al., 2004). Zeolites 
are composed of alumino-silicates tetrahedral units interlinked into 
three-dimensional cage like structure (Munir et al., 2024; Nakhli et al., 
2017). The zeolite’s empirical formula is M2nO. Al2O3. xSiO2. yH2O. M 
represents the alkali or alkaline earth cation, n represents the charge of 
cation. The value of x in zeolite formula ranges between 2 and 10 and y 
value is between 2 to 7, having structural cations comprised of Si2+, Al3+

and Fe3+ and K+, Na+ and Ca2+ as interchangeable cations (Hemingway 
and Robie, 1984). In zeolites, negative charge present on aluminum ions 
is counterpoised by cations (Na+, K+ and Ca+2) positive charge. Inter-
estingly, zeolites have more than 50 strucutural configurations or forms. 
Clinoptilolite, erionit, chabazite and mordenite are a few examples of 
naturally occurring zeolites. There are more than 150 types of synthetic 
zeolites; including zeolite ZSM-5, X, Y and the type A zeolites (Król, 
2020). The distinctive properties of zeolite include ion-exchange, 
adsorption, filtration and catalysis.

Fig. 1. The various abiotic and biotic stresses affecting plants growing at unfavourable conditions
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Zeolites can be classified into low or high silica zeolite depending 
upon Si/Al (silica to aluminum) content. The higher Si/Al content is 
responsible for increased thermal stability, high acid resistivity, more 
hydrophobicity and reduced affinity for polar compounds (Szerement 
et al., 2021). Zeolites can be appropriately utilized for agronomic 
practices as slow release fertilizers, mitigating substances for polluted 
soil and for condition of soil, owing to their internal crystal structure and 
unique characteristics (Ming and Allen, 2001). Additionally, zeolites are 
bounteous geographically, cheap and easily available, they can be 
applied in management of practical field leading to sustainable agri-
culture (Farzad et al., 2007). The distinctive characteristics of zeolites 
could vary based on their natural or synthetic source of materials used 
for production (Noviello et al., 2021; Restiawaty et al., 2024).

2.1. Natural zeolites

Natural zeolites mostly originate from volcanoes from pyrogenic 
rocks either extracted in crystalline forms or in granular forms in sedi-
mentary rocks. Interestingly, zeolites are also abundant at bottom of 
ocean sediments, but these reserves are not easily accessible to humans 
(Noviello et al., 2021). The reaction of volcanic ash with basic lakes 
water could results in zeolites formation under natural circumstances 
(Krol, 2020). Natural zeolites are predominantly found across the globe 
and their deposits are widespread in Asia, Europe, Africa, Australia, New 
Zeeland and United states. Among naturally occurring zeolites, chaba-
zite, clinoptilolite, mordenite and erionite possess interesting charac-
terisitics and have the potential for commercial utilization (U.S. 
Geological Survey, 2021). The crystalline honeycomb framework of 
these minerals with minute cavities allows them to lose or gain water. 
They have been also considered as pozzolanic substances and employed 
as significant fraction of clay or tuff (Ahmadi et al., 2010). As natural 
zeolites are selective against phytotoxic metals and ammonium ions, 
these materials have be utilized in agronomy and ecological conserva-
tion projects (Velarde et al., 2024). The most advantageous zeolite 
existing in nature is clinoptilolite owing to its application as feed sup-
plement, molecular sieve and gas sorbent (Akyalcin et al., 2024). The 
excessive number of pore gaps, extreme temperature resistance and 
basic chemical framework is attributed towards large application of 
clinoptilolite. Pristine or composite clinoptilolite has been employed to 
enhance the physio-chemical properties of soil (Pirzad et al., 2014). 
Although natural zeolites are readily availaible, and their formation is 
not expensive; however, these natural zeolites have certain limitations 
to be used widely in the various industry. For example, in clinoptilolite, 
diameter of cavities is very small and measures around 0.30–4 nm, 
restricting the adsorption of huge organic and gaseous molecules. Also, 
the natural zeolites exhibit mild adsorption potential and the negative 
charge on the surface of zeolite allowing them to adsorb cations only 
(Restiawaty et al., 2024). In natural zeolites, Si/Al content cannot be 

varied, and is responsible for determining several physio-chemical 
zeolite characteristics. Adsorption, ion exchange and catalytic charac-
teristics of zeolite are associated with hydrophilicity and hydrophobicity 
of zeolite. The hydrophobicity can be increased by enhancing Si/Al ratio 
as Si-O-Si moiety is non-polar. Hydrophilic zeolites possess low Si/Al 
content and are involved in ion-exchange mechanism. As natural zeo-
lite’s Si/Al content is fixed, so their utilization is limited and needs to be 
modified (Munir et al., 2024). Zeolites exhibiting increased Si/Al con-
tent are also more thermo-stable. Furthermore, the geological reserves 
of natural zeolites are un-replenishable source; and the formation of 
zeolites exhibiting distinctive characteristics in laboratory involves 
many complex steps (Krol et al., 2020). The simple structure of a zeolite 
is shown in Fig. 2.

2.2. Synthetic zeolites

Around one hundred and fifty types of zeolites have been fabricated 
synthetically from natural precursors or synthetic silicates via hydro-
thermal process (Kordala et al., 2024). The laboratory preparation of 
zeolites involves specialized equipment, energy input, requirements for 
high temperature, high pressure and the availability of purified sub-
strates. Thus, the synthetic production of zeolites is considered to be 
expensive in comparison to harvesting natural zeolites; therefore, re-
searchers are looking for cheaper and readily assessable sources of ze-
olites to minimize the production cost (de Carvalho et al., 2024). Several 
natural silica sources such as clay minerals including kaoline, haloisite 
and volcanic glasses have been employed for fabrication of zeolites. 
Furthermore, the waste substances of aluminosilicates such as rice husk 
or fly ash have also been utilized to fabricate zeolite artificially (Krol 
et al., 2020).

The fabrication of zeolites via the hydrothermal process started in 
1950s for the first time. The precursor materials of aluminosilicates are 
heated for hours or days by spiking with basic solution having pH > 8.5 
till final product is achieved. Hydrothermal process is frequently 
employed protocol and involves temperature conditions ranging from 
80 to 350◦C (Kordala et al., 2024). Other processes such as dissolution, 
condensation and crystallization occur in the autoclaves at increased 
pressure and require optimum control of reaction conditions for suitable 
product (Kastanaki et al., 2024). Molten salt process, fusion method, 
alkali activation, microwave assisted synthesis and dialysis process are 
examples of other routes for synthetic zeolite (Kordala et al., 2024). A 
new ionothermal process has also been formulated to fabricate zeolite 
maintaining optimum pressure in open containers. This process utilizes 
ionic liquids, consisting of ions and exhibiting melting temperature 
under 100◦C. Ionic liquids have trivial vapour pressure, more chemically 
and thermally stable, enhanced ionic conductivity and catalytic prop-
erties, so employed in fabrication of organic, inorganic and biocatalysts. 
The pioneer zeolite synthesized ionothermally was AEL zeolite in 2004 

Fig. 2. The simplified structure of a zeolite exhibiting Al, Si and hydrogen bonding.
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(Cai et al., 2008). Recently, effective strategies were developed to 
formulate NaP synthetic zeolites hydrothermally by utilizing natural 
zeolite clinoptilolite. This process turned out to be a 
economically-feasible protocol as it used natural mineral as the pre-
cursor of alumionosilicates (Moreno-Torres et al., 2024).

Zeolite-A, zeolite-X, zeolite-Y, zeolite L, zeolite N-A, zeolite P, zeolite 
ZSM-5, zeolite O and zeolite ZK-4 are few examples of synthetic zeolites 
with interestingly properties to mitigate soil and water pollution 
(Kordala et al., 2024; Markovska and Irena, 2009).

3. Role of zeolites in agriculture

3.1. Effects on soil properties

The physical characteristics of soil include bulk density, aeration, 
porosity of soil, water retention potential and particle density (Bittelli 
et al., 2015). Generally, zeolite can alter soil porosity, pore size 
dispersal, pore connectivity and tortuosity, depending on structure and 
quality of soil, zeolite type of zeolite and also on reaction conditions. 
Researchers have reported the zeolite impacts on infiltration rate of soil 
(rate at which water enters to soil), hydraulic conductance (ease at 
which water proceed through soil pores), water proportion, water 
detention potential and management of fertilizers leaching in soil 
(Comegna et al., 2023; Prisa et al., 2023). The bulk density of soil is the 
important feature which impacts the stability of topsoil. The amendment 
of soil with zeolite minimizes the bulk density, which changes the water 
holding potential and porosity of soil/ (Mondal et al., 2021). The water 
content of soil is important for growth of plant, control of temperature of 
soil as well as activity of soil microbes (Bittelli et al., 2015). Zeolites, 
either natural or synthetic, are well-known for their water holding po-
tential and have been considered as an effective amendment to enhance 
water availability under critical conditions of drought in drylands.

A study conducted on Solanum lycopersicum Mill. seedling revealed 
that the modification of soil with 30 % clinoptilolite zeolite resulted 
improved soil water holding potential up to 260 % entire plant growth 
and physiological output (Méndez Argüello et al., 2018). As zeolites 
alter the pore size dispersal of soil, wilting point (where no water is 
assessable) and field capacity (soil water content after excess water 
drainage) of soil can also be modified under zeolite addition. The 
administration of synthetic zeolite to loamy soil changes wilting point 
from 26 to 46 % and field capacity from 41 % to 59 % (Belviso et al., 
2022). In another study, natural zeolite and bentonite enhanced water 
capturing potential, field capacity and moisture content in sandy soil 
(Hassan et al., 2013). Similarly, natural zeolite clinoptilolite enhanced 
water content by 3.6–14.7 % in loamy soil owing to increase in micro-
porosity of soil (Ibrahim et al., 2021). Zeolite modified soil resulted in an 
increase in water holding potential from 0.4 to 1.8 % under conditions of 
drought and in normal conditions, water holding capacity of soil 
increased from 5 to 15 % in comparison to non-modified soil. The zeo-
lites used in the study was natural zeolites; known as mordenites and 
have sizes of less than 0.25mm (He and Huang, 2001). Another study 
involving the application of 5 kg m− 2 clinoptilolite zeolite to sand dune 
soil revealed that soil salt and water content has been increased to 1.4 
and 20 % respectively. The amount of cations such as sodium, potas-
sium, magnesium and calcium has been increased with the increase in 
soil salinity (Abideen et al., 2014; Shoukat et al., 2020). The study 
affirmed that zeolites enhanced the cation exchange potential as well as 
quantity of cations on soil surface, which can be released at the cost of 
salts present in saline water (Inglezakis et al., 2012). Hence, a lowered 
salinity environment on test plants was effectively delivered by reduced 
salt accretion in the soil subsurface. The greater pore volume of zeolite is 
responsible for increased water holding capacity in their framework 
(Mondal et al., 2021). The amendment of silty clay soil with 8 g kg− 1 

zeolite enhanced the hydraulic conductivity. The ease of transportation 
of water within soil, employed to design irrigation system is called hy-
draulic conductivity (Gholizadeh-Sarabi and Sepaskhah, 2013). Loamy 

and sandy soils showed increased water detention and minimum infil-
tration speed and hydraulic conductance by amending with zeolite. The 
rate of infiltration and hydraulic conductivity was effectively declined 
by up to 26 and 19 %; during theexposure of loamy soil to clinoptilolite 
zeolites (Ibrahim et al., 2021). The rate of infiltration was conversely 
associated with zeolite administration reflecting the increased soil water 
retention and lowering the leaching of salt and nutrients. The micro-
porous structure of zeolites generally reduces the permeation of water 
into the soil matrices (Comegna et al., 2023). In another research, syn-
thetic zeolites (even with a small amount added) affected the hydraulic 
and transport characteristics of the test soil by altering the pore size 
distribution. The alteration of macroporous soil region towards the 
microporous is considered advantageous as it resulted in reduced 
mobility of nutrients, water and pesticides. Zeolite addition also 
decreased crack areas in silty soils. Specifically, the test soil modified 
with zeolites of up to 8 g kg− 1 revealed reduction in crack depth up to 
50 % in dry and muddled soil (Razmi and Sepaskhah, 2012). 
Lime-zeolite addition to clay soil enhanced its properties of swelling, 
compressive strength and plasticity. The index of plasticity declined to 
9.4 % by adding zeolites; and the swelling can be completely eliminated 
by incorporating zeolites. Moving forward, this unique property may 
help to replace conventional stabilizing substances with minerals to 
improve various structures such as pavements (Khajeh et al., 2023). In 
another study, zeolite application to soil increased the water availability 
for plant usage by up to 50 % (Ramesh et al., 2010).

A study was conducted to examine the effects of four natural cli-
noptilolite on Bermuda grass “Tifdwarf”; grown on sandy soil modified 
with 8.5 % zeolite. The quantity of transpiration water in sand has been 
found to increase from 1 to 16 %, with the addition of zeolite; demon-
strating the increase in water content of the modified soil (Wehtje et al., 
2003). Natural zeolite enhanced the ventilation porosity and water 
holding strength of chernozem (black fertile soil). Soil porosity has been 
enhanced by adding 10 % zeolite and water holding strength by 20 % 
addition of zeolite to soil (Ma et al., 2018). The combination of micro-
spheric zeolites with sodium alginate and gelatin was interesting; the 
resultant property was a soil booster with effective water retention and 
antimicrobial potential (Lu et al., 2023).

3.2. Effects on the nutrient holding capacity

The nutrient holding capacity of soil can be enhanced by addition of 
zeolites as soil physical, chemical and biological characteristics are 
affected by zeolitic minerals. Zeolites show increased sorption selec-
tivity against ammonium ions (NH4

+) owing to their enhanced cation 
exchange potential. The positive charge of NH4

+ and zeolite’s negative 
charge sites has been responsible for electrostatic interactions facili-
tating NH4

+ adsorption by zeolite (Englert and Rubio, 2005). This high 
attraction of zeolites for ammonium ions have been utilized to retain and 
release NH4

+ in soil. The Si/Al ratio of zeolite, their pore size, pH, contact 
time, cations of zeolite and percentage of other ionic substances present 
in soil/water has been found accountable for detainment of ammonium 
ions by zeolite (Sarkar and Naidu, 2015; Wang et al., 2022). Zeolites 
exist in diverse forms due to the variation in zeolite framework or nat-
ural flaws in their structure and cation exchange potential of a few 
natural zeolites have been found three times more as compared to other 
soil minerals (Kazemian et al., 2012; Malekian et al., 2011; Ramesh 
et al., 2015). Hence, the recogniton of the effective adsorption charac-
terisitics in several forms of zeolites is paramount to understanding how 
these interesting compounds minimize the NH4

+ loss and improving ni-
trogen retention in soil.

The combined applications of zeolite and fertilizers to soil minimizes 
the nitrogen percolation, decline in release of greenhouse gases and 
inhibits the discharge of nutrients into soil (Behzadfar et al., 2017). 
Researchers have found reduction in loss of ammonia by using fertilizers 
along with zeolite in comparison to utilization of pristine fertilizers 
(Palanivell et al., 2016). In order to enhance the nitrogen use efficiency 

A. Javaid et al.                                                                                                                                                                                                                                  Plant Stress 14 (2024) 100627 

4 



(NUE) in agro practices and to decrease the loss of nitrogen via leaching, 
physiochemical characteristics of zeolites such as superior cation ex-
change potential has been utilized (Sarkar and Naidu, 2015). Nitrogen 
percolation and nitrogen use efficiency (NUE) are interlinked to each 
other as lowering groundwater leaching of ammonium ions via addition 
of zeolite will result in enhancement of NUE (Ming and Allen, 2001). 
One of the naturally present zeolites having increased permeability for 
ammonium ions is Clinoptilolite. In a study, experiment has been per-
formed on Clinoptilolite column loaded with pulse of urea and ammo-
nium nitrate solution. The results depicted the leaching of minute 
amount of ammonium ions/ nitrogen up to 3 % from Clinoptilolite 
column as compared to sand column in which leaching was found to be 
17 %. Hence, an overall reduction of 82 % in leaching was observed 
(Piñón-Villarreal et al., 2013). In another experiment, columns filled 
with 2 and 8 g kg− 1 of Clinoptilolite, pulse loaded with solution of 
ammonium nitrate showed reduction in ammonium/ nitrogen leaching 
up to 43 % and 50 % correspondingly (Sepaskhah and Yousefi, 2007). 
The biological transformation of soil ammonium ions to nitrate (NO3 

− ) 
can also be prevented by zeolite via phenomenon of nitrification. This 
conversion can lead towards nitrate water pollution. Natural zeolites 
like Clinoptilolite having reduced pore sizes in crystal framework can 
easily accommodate ammonium cations. The microbes undergoing the 
conversion of ammonium to nitrate ions are not accessible to zeolite 
pores. Hence, when ammonium ions are adsorbed and retained by 
zeolite voids, nitrifying microbes cannot access ammonium ions, ulti-
mately preventing the phenomenon of nitrification (Baerlocher et al., 
2007). The reduction in nitrogen percolation particularly in aerated soils 
was achieved by inhibiting the nitrification mechanism by zeolites 
(Gholamhoseini et al., 2012). The addition of 10 % (w w − 1) clinopti-
lolite tuff to sand in which source of nitrogen was supplied by ammo-
nium sulphate, reduction in leaching of NO3 

– from clinoptilolite 
modified sand has been found to be 86 % than un-modified sand. The 
decrease in NH4+ leaching came out to be 99 % (Nakhli et al., 2017).

The availability of soil nutrients has been increased by the applica-
tion of zeolite along with other substances to soil, which in turn in-
creases the growth of plant as well (Colombani et al., 2015; Lim et al., 
2016). It was reported that the modification of soil by fly ash along with 
clinoptilolite increased the amount of nitrogen in soil in comparison to 
individual application of fly ash or clinoptilolite. Thus, enhanced 
nutrient retention resulted in lesser loss of nutrients, thereby minimizing 
the water pollution by nutrient leaching (Lim et al., 2016). Hence, ze-
olites possess an extraordinary potential to prevent nitrate water 
pollution also by minimizing the biological transformation of soil 
ammonium ions to nitrate (NO3 

− ), in addition to improved nutrient 
retention by plants.

Another essential plant nutrient is phosphorous, which exist mainly 
in the form of phosphate (PO4 

3− ) in soil (Lambers, 2022). Phosphate 
ions carry negative charge, which bind easily to soil matrix 
(Gholamhoseini et al., 2012; Shi et al., 2019). The various adsorption 
and fixation processes results in the fixation of phosphate ions in soil 
matrices (Lambers, 2022; Moharami and Jalali, 2014). The continuous 
application of high amount of phosphates in fertilizers for cultivation 
results in the saturation of soil adsorption sites; often resulting in 
leaching of phosphates in surface run off and causing environmental 
issues in waterbodies and ground water (Sharpley et al., 2007; Sun et al., 
2023). As zeolites possess negative charge on its surface and do not 
exhibit anion exchange potential. Hence, it has no role in phosphate 
leaching, when mixed to soil (Elliot and Zhang, 2005).The experiment 
has been conducted on soil modified with natural zeolite clinoptilolite, 
which is added at the rate of 10 % (w w − 1) along with ammonium 
phosphate solution. The results showed that the sorption of phosphate in 
modified soil is same as in un modified soil (Nakhli et al., 2017). The 
utilization of slow release fertilizers (SRF) is a potent method to lessen 
the nutrients uptake rate by roots of plants and nutrients release rate by 
fertilizers (Ni et al., 2010). But, the use of zeolites as slow-release fer-
tilizers is restricted to positively charged nutrients like potassium (K+) 

or ammonium (NH4
+), which can be loaded on sites of zeolite. So, the 

un-modified zeolite is unable to load anionic nutrients like phosphate. 
But phosphate can be released slowly and controllable manner by using 
combined zeolite and mineral dissolution (Chesworth et al., 1987). The 
ion exchange process enables apprehension of dissolved cations by ze-
olites, increasing dissolution and cations for ion exchange has been 
provided by mineral dissolution. Thus, ion exchange and dissolution 
processes operate each other (Omekeh et al., 2015).

Zeolites possess extraordinary selectivity for potassium ions (K+) as 
compared to sodium, calcium and magnesium ions, making it hard to 
eliminate potassium from exchange sites, expediting maximum sorption 
of potassium ions by roots of plants via ion exchange within zeolite and 
root (Rivero and Rodríguez-Fuentes, 1988). Hence, K+ loss via surface 
run off and leaching of ground water may be declined though supple-
mentation of zeolite as SRF (Ming and Allen, 2001). Zeolite capped 
fertilizers demonstrated effective water holding capacity and lowered 
the rate of nutrients release by fertilizers to the soil. Furthermore, zeo-
lites, especially chabazite and bentonite, also exhibited adsorption ca-
pacity for iron and zinc micronutrients (Yuvaraj and Subramanian, 
2018). The high concentrations of zinc, manganese and copper were 
observed in leaves of beans by increasing the addition of zeolites to soil 
(dosage of around 90 kg ha− 1). Hence, the maximum availability of 
macro- and micronutrients in soil can be improved with the addition of 
zeolites (Hazrati et al., 2017). The functional roles of zeolites in plants 
are highlighted in Fig. 3.

3.3. Gradual herbicides release by zeolite

As zeolites exhibit high porosity and possess unique honey comb-like 
structure, they possess extraordinary capacity to store and release her-
bicides gradually. ZSM 5 zeolite, a synthetic type of zeolite having high 
hydrophobicity due to high silica percentage as compared to alumina, 
possess 5 Angstroms (Å) pore diameter has the potential to adsorb class 
of herbicides called triazine. ZSM 5 binds to triazine in its intracrystal-
line space and release it gradually (Corma and Garcia, 2004). The 
phenylurea group of herbicides have been adsorbed by aggregates of 
humic acid-zeolite (Sangeetha and Baskar, 2016). However, atrazine has 
been released from soil or water by Clinoptilolite zeolites (Salvestrini 
et al., 2010). The effectivity of herbicide to manage the weed floras has 
been increased by gradual release of herbicide due to zeolites, resulting 
in weed free crops. A prolonged detention time of zeolite aided herbicide 
on leaves of weed improves the effectivity of herbicidal mechanism of 

Fig. 3. The protective roles of zeolites in plants to ameliorate biotic and 
abiotic stresses
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action (Shirvani et al., 2014). Selected zeolites suitable for improving 
the physio-chemical properties of soil are listed in Table 1.

4. The potential of zeolites to improve resilience to abiotic stress

4.1. Salinity stress

The high amount of salt ions either in water sources employed for 
plants cultivation having electrical conductivity level > 1.0 mS/cm or in 
soil extracts having EC level > 2 mS/cm, represents one of the extensive 
global abiotic stresses in agriculture sector called as salt stress (Ondrasek 
et al., 2022). Salinity is one of the paramount obstacles to viable agri-
culture worldwide, adversely impacting the crop growth via disruption 
of biochemical, structural and physiological functions of plants (Arif 
et al., 2020). Salinity is adversely affecting greater than 6 % of land 
worldwide (Mahmoud et al., 2019). In nature, the salinity stress is 
caused by a sodium salt, primarily sodium chloride (Negahban et al., 
2014; Wu et al., 2023; He et al., 2023). It has been revealed that salinity 
stress along with adverse ecological imputations will turn more 

censorious owing to rapid global warming. For example, the recurring 
drought stress associated with elevated air temperatures, high sea level 
and the enhanced propensity of low-quality grey water (Ondrasek et al., 
2022). The immoderate amount of salt in water or soil negatively im-
pacts the cultivation of crops. The enhanced accretion of Na+ and 
effluence of Ca+ and K+ from cytosol have been responsible for negative 
impacts of salinity, resulting in cellular homeostasis imbalance and 
deficiency of nutrients (Kamran et al., 2019). Salinity stress has also 
been linked to the induction of osmotic load in plants, suppressed rate of 
photosynthesis, pigments hydrolysis and disproportion in uptake of 
nutrients and absorption of water (Mahmoud et al., 2019; He et al., 
2023). Salinity also actuates the plant cells death via excessive genera-
tion of reactive oxygen species and initiation of oxidative stress in 
plants. The disruption of DNA and proteins, degradation of membranes, 
peroxidation of lipids, are the negative impacts of reactive oxygen spe-
cies (Das and Roychoudhury, 2014). The impacts of salt stress on plants 
have been mentioned in the Fig. 4 below.

Salt stress negatively affect the plant height, fresh and dry weight of 
roots, dry weight of plant, length of stalk and number of leaves. A study 
performed on Chinese cabbage under saline environment revealed that 
the saline load suppressed the height of plant up to 23 %, leaves ratio up 
to 22 %, length of stalk 32 %, dry weight of plant 131 %, fresh and dry 
mass of roots up to 165 % and 170 % respectively (Romadhan et al., 
2022). Salt stress generally reduces plant growth (Ghoreishiasl et al., 
2017; Wu et al., 2023; He et al., 2023). A wide variety of precautionary 
and retrieval strategies have been revealed to combat salt stress in crops 
or to enhance salinity resistance in plants. For instance, transfer of 
halophytic traits to glycophytes to enhance their salt resistance, as 
halophytes can tolerate salt while glycophytes are sensitive to salinity. 
Another strategy is propagation and genetic scheme which involves 
choosing and creating salt resistant prototype. Genetic alteration of 
plant varieties also propagates salt tolerance in plants. For example, rice 
variety Pusa Basmati 1 has been transformed genetically via AmSOD 
gene utilizing gene transfer tool microprojectile bombardment. The re-
sults of this study showed that progenies were not only salt-tolerant but 
also revealed enhanced productivity (Sarangi et al., 2019). Modification 
of plant genome is another approach to induce salt resistance in plants 
via genome modifying tools such as CRISPR/Cas9 tool. For example, 
CRISPR/Cas tool has been employed in a study to edit genome of rice 
imparting it salt resistance. The gene modification targets SOS gene 
involved in signaling mechanism which shields the plant from saline 
stress (Farhat et al., 2019). These techniques remained the attention of 
researcher for prolonged period of time and turned out to be successful 
as well to combat salinity load in plants. However, these approaches 
present several limitations as the strategies rely on high throughput 
technology and protocols are time consuming. Other constraints include 
uncertain genetic gain and divergent interactions between genotype and 
surroundings (Sarangi et al., 2019). Conventionally, leaching is also 
employed to reduce salt stress, but it has been found unsuitable and 
costly approach under certain scenarios (Negahban et al., 2014).The 
remediation of negative effects of salinity on crops can be achieved 
economically via application of natural modifications to growth medium 
like zeolites, which are abundant in volcanic rocks globally 
(Tsintskaladze et al., 2016).

4.1.1. The plausible mechanisms of zeolites in regulating salinity tolerance
Zeolites, particularly the natural zeolites have crystal-like nano-

porous substance with distinctive physio-chemical characteristics 
encompassing orifices or cavities, behaving as molecular sifter (Munir 
et al., 2024). The negative charge on natural zeolite is stabilized by 
positively charged cations, providing a suitable allurement for positively 
charged ammonium ions or potassium ions, so they may be discharged 
when needed by plants. As zeolite possesses open infrastructure having 
crisscross arrangement of pores, providing it huge surface area for 
confining and interchanging essential nutrients (Munir et al., 2024). The 
adsorption potential of zeolite against sodium and chloride ions 

Table 1 
The roles of selected zeolites in improving physio-chemical properties of soil and 
soil nutrient acquisition.

Zeolite type Soil properties Zeolite effects References

Mordenite Water holding 
potential

Water holding capacity 
increased from 0.4 to 
1.8 %

(He and Huang, 
2001)

clinoptilolite 
and 
vermiculite

Salt & water 
holding 
potential

Cation’s increase, soil 
salt and water content 
increase 1.4 and 20 %

(Inglezakis et al., 
2012)

Clinoptilolite Hydraulic 
conductivity

Reduction in crack 
depth up to 50 % in soil

(Razmi and 
Sepaskhah, 2012)

Clinoptilolite Water holding 
potential

water availability to 
plant increases up to 
50 %

(Ramesh et al., 
2010)

Clinoptilolite Water holding 
potential

Water content increase 
from 1 to 16 %

(Wehtje et al., 
2003)

Chilean natural 
zeolite

Nutrient 
holding 
potential

NH4
+ adsorption (Englert and 

Rubio, 2005)

Clinoptilolite 
and fertilizers

Nutrient 
holding 
potential

Reduction in nitrogen 
percolation

(Behzadfar et al., 
2017)

Clinoptilolite Nutrient 
holding 
potential

Reduction in loss of 
ammonia

(Palanivell et al., 
2016)

Clinoptilolite Nutrient 
holding 
potential

Reduction of 
ammonium ions/ 
nitrogen leaching up to 
82 %

(Piñón-Villarreal 
et al., 2013)

Clinoptilolite Nutrient 
holding 
potential

NH4
+ adsorption, 

Decreased conversion 
of ammonium ions to 
nitrate (NO3 

− )

(Baerlocher et al., 
2007)

Clinoptilolite Nutrient 
holding 
potential

Reduction in NH4+

leaching to 99 %
(Nakhli et al., 
2017)

Clinoptilolite 
with fly ash

Nutrient 
holding 
potential

Reduction in loss of 
nutrients

(Lim et al., 2016)

Zeolite as SRF Nutrient 
detention

Maximum sorption of 
potassium ions by roots 
of plants. Reduction in 
K+ loss

(Ming and Allen, 
2001)

Chabazite & 
Bentonite

Nutrient 
detention

High adsorption for 
iron and zinc 
micronutrients

(Yuvaraj and 
Subramanian, 
2018)

ZSM 5 Zeolite Gradual 
herbicides 
release

Adsorption of 
herbicide triazine

(Corma and 
Garcia, 2004)

Humic acid- 
Zeolite

Gradual 
herbicides 
release

Adsorption of 
phenylurea group of 
herbicides

(Sangeetha and 
Baskar, 2016)
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entrapped them in cavities, eventually allowing zeolite to enhance soil 
characteristics. The adsorption of sodium ions by zeolite inhibits its 
uptake to plant shoots, eventually reducing salinity. The cation ex-
change potential of zeolite allows the exchange of soil Na+ ions with 
zeolite Ca+2 ions, which are essential for plants cellular actions and 
structural stability. As natural zeolite is mild basic in nature, its appli-
cation with fertilizers can maintain pH of soil, eliminating the lime 
requirement to neutralize acidity of soil (Noori et al., 2006).

4.1.2. Zeolite potential in improving salinity tolerance
The distinctive characteristics of zeolite such as enhanced cation 

exchange potential, cost-effectiveness and structural stability endorsed 
zeolite as successful agents against salt or water stress in plants (Bybordi 
et al., 2016; Ippolito et al., 2011). The porous structure of zeolite can 
encompass large diversity of cations like sodium, potassium, calcium 
and magnesium. Due to slackly bound nature of these positively charged 
ions, they can be interchanged with other ions present in solution 
(Bybordi et al., 2016). For example, in a study conducted on ryegrass 
(Lolium perenne L.), the amendment of soil with ordinary and potassium 
rich zeolite under saline stress, resulted in reduction of sodium con-
centration. It has been observed that sodium amount has been declined 
up to 44.36 % in plant shoots and 21.31 % in plant roots by both kinds of 
zeolites. Furthermore, zeolites amendment of soil resulted in an increase 
in water and chlorophyl content, total proteins concentration and 
increased activity of peroxidase (POD) and superoxide dismutase (SOD) 
enzymes, eventually mitigating the harmful impacts of salinity (Rahimi 
et al., 2021). The weight of the plant has been enhanced by using natural 
and synthetic zeolite modified soil to cultivate Raphanus sativus L. It was 
confirmed in results that total dry weight, air fresh weight and total fresh 
weight has been increased in plant grown on saline soil. The effectivity 
of natural zeolite clinoptilolite was greater than synthetic zeolite to 
prevent salinity (Noori et al., 2007).

The potential of zeolites in reducing salinity stress was conducted for 
many species. For example, the barley plants were irrigated with 16 dS 
m− 1 saline water, which reduced the leaf area of up to 44 %, height of 
plant up to 25 % and 60 % dry weight of plant; conversely, zeolite 
amendment restored the biomass in salinity stressed barley. The levels of 
nutrients were also restored in zeolite modified soil such as iron (19 %) 
and manganese (10 %) (Al-Busaidi et al., 2008). In another study, the 
effects of salt stress (50 mM, 100 mM, and 150 mM NaCl. ) on lettuce 
were alleviated (up to 15%) using zeolite modified soil (Babaousmail 
et al., 2022). The research conducted on Ixora coccinea L. and Poa pra-
tensis plants grown in zeolite medium also confirmed the reduction in 

salt stress (de Sousa et al., 2023; Negahban et al., 2014). The Poa pra-
tensis plants were grown in variable concentrations of zeolites such as as 
5 %, 10 % and 15 % along with sand. Plants were supplied with 0.24, 3.4 
and 6.4 dS.m-1 saline water regularly for six months. The application of 
15 % zeolites resulted in thereduction of sodium or potassium leaching; 
and enhanced quality of turf and sodium absorption ratio (Negahban 
et al., 2014). In another research performed on saline stressed wheat 
plants, the application of zeolite delivered an increase in plant biomass, 
increased size of seeds of up to 58.8 %, and seed number of up to 57.5 %. 
The quality of soil was improved and especially forthe retention of nu-
trients by zeolites. From the various findings, zeolites can be used to 
mitigate the negative effects of 100 to 150 mM salt concentration in soil 
(Ma et al., 2023). As salinity stress reduces the length of root and shoot 
along with reduction in their dry weight, pot experiments on rosemary 
plant have been performed using zeolite and chitosan application. Ze-
olites were added to soil in concentrations of 0, 4 and 8g kg-1 and salt 
concentration applied was 0, 50 and 100 mM. The growth of plants 
exposed to salinity without the addition of zeolite declined with respect 
to root/shoot length and their dry weight along with reduction in 
photosynthetic pigments and oil productivity. The addition of zeolite 
reversed the negative impacts of salt stress on productivity and the 
overall growth as shown in Fig. 4. In comparison to plants grown 
without zeolite amendments, the treated plants showed suppressed 
amount of salt in root and shoot (Helay et al., 2018). In another study, 
the effects of zeolites in alleviating salt stress was in lettuce plants. The 
study also employed yeast and salicylic acid to investigate their effects 
on salinity stress mitigation. Plants were exposed to 0 mM, 50 Mm, 100 
mM and 150 mM salt amount. The results demonstrated that applying 
0.5 % zeolite to the test plants enhanced its growth under saline stress of 
0 and 50 mM, but failed to improve under higher saline (100 mM and 
150 mM) treatments (Babaousmail et al., 2022). Zeolite addition 
(3.2g/10 kg soil) to salinized soil; the treatment was favourable for these 
Chinese cabbages with improved stalk length (up to 39 %), leaf dry 
weight of (23 %), and fresh and dry biomass of up to 172 % and 133 % 
respectively (Romadhan et., 2022) (Fig. 5).

4.1.3. Combination of zeolite with other substances to reduce salinity
Zeolites have also been used in combination with nanoparticles such 

as titanium oxide nanoparticles to mitigate salinity stress in plants. The 
increase in growth and photosynthetic pigments has been observed in 
Mentha piperita L. plants, by applying zeolites with TiO2 nanoparticles 
under conditions of 100 mM salinity stress. The levels of potassium ions 
and phenols were raised by zeolite/ TiO2 exposure, which corresponded 

Fig. 4. The effects of elevated salt (NaCl) levels on various physiological parameters in plants
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to the enhancement of defensive substances (phenols) and osmotic 
regulators (potassium) in plants (Mohammadi et al., 2024). The com-
bination of zeolites and biochar also showed crucial role in enhancing 
shoot length, diameter, fruit yield and quality, when applied to mango 
plant under salt stress conditions. The study also reported that zeolites 
were more effective in improving plant performance as compared to 
biochar (Harhash et al., 2022). Zeolites can be used with other sub-
stances to alleviate saline stress in certain species. The combined effects 
of zeolites, calcium and organic compounds (Ze-Ca-OC) amalgam 
(100mg /L) on salinity reduction was investigated in research conducted 
on a bread wheat variety (0, 50, 100- and 150 mM salt concentrations). 
The results demonstrated that the zeolite/calcium/organic compound 
amalgam were effective in restoring wheat growth under high saline 
conditions (Elsaw et al., 2023). In another study involving canola, the 
mixture of zeolite/calcium silicate ameliorated the negative effects of 
high salinity. Zeolite in combination with calcium silicate generated 
maximum productivity of canola oil up to 57 % in canola variety, under 

moderate salt stress (Ghoreishiasl et al., 2017). It was reported that the 
combination of compost and zeolites, along with raised bed planting 
method, reduced the saline stress of up to 37 % in wheat plants and 41 % 
in maize plants. The productivity of wheat and maize plants were also 
been enhanced 16 % and 35 %, respectively (Aiad et al., 2021). In 
conclusion, the use of zeolites can be considered as an effective 
amendement to restore the growth of many species in saline soils.

4.2. Drought tolerance

Drought stress is one the major challenges of agriculture sector, 
affecting plant growth, development and yield (Ahmadalipour et al., 
2019; Zhang et al., 2022). Water shortage results in the limitation of 
crop cultivation worldwide (Abdelkhalik et al., 2019) The reduction in 
resources of water is linked with climate change, mis-management of 
water bodies and rainfall decrease, eventually causing adverse effects on 
growth and yield of plants (Besser and Hamed, 2021). Drought stress 
leads to dehydration in cells of plant, decrease absorption of nutrients, 
disturbance in hormonal production (abscisic acid, cytokinins) in plants, 
disruption in plant cell membrane selectivity in addition to suppression 
of photosynthetic rate and carbon dioxide utilization (Shehata et al., 
2022). The adverse impacts of drought stress on plants have been 
depicted in Fig. 6

The adverse effects of water deficits in plants can be relieved by 
delivering effective structural, physiological and biochemical modifi-
cations (Abdelaziz et al., 2021; Ishfaq et al., 2024; Gupta et al., 2020). 
These alterations include collection of osmolytes to conserve water 
under conditions of water stress, eventually resulting in biomolecules 
structure stabilization (El-Mogy et al., 2022). The water use efficiency is 
also improved and accumulation of osmolytes in plants under drought 
stress is essential to increase crop yield and productivity (EL-Bauome 
et al., 2022; Gupta et al., 2020). In this context, multiple agricultural 
practices have been encouraged to enhance water use efficiency and 
productivity of drought stress plants such as the use of nano fertilizers, 
microbes, modification of soil with biochar and organic substances and 
better irrigation practices in soil having reduced water retention po-
tential (Abbott et al., 2018; Ahmadian et al., 2021; Hazrati et al., 2017; 
Sani and Yong, 2022). The strategic amendment of soils with several 
nutrients, biostimulants or water retaining substances such as zeolites 
has been considered as favorable agent to decrease water stress in plants 
(Hazrati et al., 2017; Mahmoud et al., 2022; Sani et al., 2023). Zeolite 
amended soil resulted in improvement of soil moisture, water retention 
and water use efficiency, enhancing crop yield. Thus, utilization of 

Fig. 5. The tole of zeolites in ameliorating the negative effects of elevated salt 
levels on growth

Fig. 6. The effects of water deficits on plant development and physiology in habitats with low water availability.
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zeolite emerges as in-expensive and feasible method to reduce ecological 
stresses such as water stress in plants (Ghamarnia & Daichin, 2013; 
Hazrati et al., 2022). The beneficial impacts of natural zeolites on plants 
include improvement in nutrient amount, photosynthetic rates, plant 
biomass accumulation, water proportion, hormones productivity, anti-
oxidant substances and quality and quantity of crop yield (Amirahmadi 
et al., 2022).

The application of zeolite along with zinc on canola plants increased 
the relative water proportion, oil content and productivity of plant in 
addition to decreasing the resistance by stomata and canopy tempera-
ture (Shahsavari & Dadrasnia, 2016). Another study conducted on Aloe 
vera under water stress environment showed that addition of 8 g of 
zeolite to test plants enhanced the water use efficiency and number of 
leaves, improving growth and yield (Hazrati et al., 2017). The addition 
of the calcium type of zeolites, improved the soil water retention po-
tential and growth of barley plant. The utilization of sub surface irri-
gation with zeolite modification reduced water loss, stored high water in 
lower horizons, improved leaching of salt and helped plant to use water 
efficiently (Al-Busaidi et al., 2011).

The growth and productivity of rice crop have been restored under 
water stress environment by the addition of 15 t ha–1 zeolite. The rates of 
photosynthesis, leaf area index, water use efficiency, quality and yield of 
grain increased effectively by using zeolites, irrespective of water sup-
ply. The head rice rate has also enhanced and a decrease in rice chalk-
iness has also been observed, which validates the reduction in use of 
water in agriculture by zeolite supplementation (Zheng et al., 2018). 
The stress of water deficit was declined in rapeseed plant by zeolite 
addition of up to 15 t ha–1 and selenium up to 30g L-1. The plant growth 
rate, total dry weight and leaf area index enhanced prominently by 
zeolite and selenium supplementation (Sayed et al., 2010). The potential 
of plants to survive under drought stress can be improved by using ze-
olites. The physiological and structural traits of Mallow plants, such as 
biomass, length of roots and shoots, stomatal conductance, and chlo-
rophyll content, have been significantly enhanced under water deficit 
conditions by soil modification with 8 gm of zeolites (Ahmadi Azar et al., 
2015). The other studies performed on grass pea, amaranth, fenugreek 
and potato plants also confirmed the effectiveness of zeolite applications 
for improving drought resilience in plants(Baghbani-Arani et al., 2017; 
Karami et al., 2020; Ozbahce et al., 2018; Pirzad and Mohammadzadeh, 
2014). The negative effects of drought stress were reduced by clinopti-
lolite zeolite treatment in grapevines. The plant biomass, concentration 
of phenolic compounds and sugar were also restored in zeolite-treated 
grapevines under water stressed conditions (Catalado et al., 2024).

In a study, conducted on bean plants, the addition of hydrogel 
polymer, zeolites and glutathione enhanced the physiological proper-
ties, growth and yield of plants under conditions of simulated drought. 
Administration of zeolite and GSH minimized the levels of peroxidase 
and catalase antioxidant enzymes up to 21.8 and 15.5 % respectively 
under conditions of irrigation regimes. With more research, zeolites are 
emerging as antitranspirants and soil conditioner; working effectively as 
a plant "strengthener" during water shortages in agriculture sector by 
improving the water use efficiency of crops (Elseedy et al., 2023). 
Zeolite amalgamation with salicyclic acid reported favorable impacts on 
water stressed wheat plants. The administration of 1 mM salicyclic acid 
and 8 g kg-1 zeolite to wheat plants under conditions of water shortage 
ameliorated the negative effects of drought. The concentration of cata-
lase and proteins increased up to 18 and 20 % respectively and hydrogen 
peroxide levels has been decreased in water stressed plants. Zeolite 
application also enhanced the biological properties of wheat with 
greater grain productivity, (Sedaghat et al., 2022). Recently, another 
study reported the effects of zeolites on the biological status of grapevine 
canopy and biochemical constituents of their leaves (Cataldo et al., 
2024).

4.3. Resilience to phytotoxic metals

Elevated levels of heavy metals and metalloids such as arsenic, 
cadmium, cobalt, copper, molybdenum, manganese, nickel and others 
cause negative effects to ecosystem and humans (Alloway, 2013; Kim 
et al., 2017; Liu et al., 2012; Nabulo et al., 2010; Tow et al., 2019; Tan 
et al., 2010). Interestingly, trace amounts of these metals are naturally 
present in soil and they are required for proper growth and development 
of plants (de Bang et al., 2021). As these metals and metalloids cannot be 
degraded, their increased concentrations cause toxicity and harmful 
effects on plant growth(Antoniadis & Damalidis, 2014; Li et al., 2009; 
Liu et al., 2009). Municipal and house-hold waste, mining and industrial 
practices and agriculture activities are responsible for soil contamina-
tion with heavy metals (Certini et al., 2013; Palansooriya et al., 2020; 
Tuovinen et al., 2016; Yang et al., 2018). Stabilization and solidification 
processes are mostly utilized to mitigate heavy metals contamination of 
soil by immobilizing them. The solubility and mobility of phytotoxic 
metals are known to be reduced by the technique of stabilization. So-
lidification involves encapsulation or adsorption of these metals to 
compounds or minerals having high binding affinity (Conner and 
Hoeffner, 1998). The mitigation of soil metal contamination by the 
modification with phosphates, carbonates or zeolite mineral involves 
process of stabilization or solidification, declining the availability and 
uptake of metals by plants (Chen et al., 2000; Park et al., 2011). A 
summary of the phytotoxic effects of heavy metals on plants is illustrated 
in Fig. 7.

Natural and modified zeolites have been effectively used for the 
stabilization of toxic metals such as lead, cadmium and nickel in 
contaminated soil, eventually reducing their uptake by plants. The 
remediation of the metals by zeolites include either an ion exchange or 
adsorption mechanism (Castaldi et al., 2005; Colella, 1999). The Pb 
pollution study demonstrated that zeolite addition improved the soil 
physio-chemical characteristics to faciliate better cation exchange po-
tential by zeolites; eventually lowering the uptake of lead by rapeseed 
plants. The rise in soil pH was a major factor contributing to immobi-
lizing the Pb in the Pb test soil. To lower the soil lead levels, the opti-
mized amount of zeolites added was about 10g kg-1 (Li et al., 2009). In 
another similar study, adequate lead suppression in plants was achieved 
by adding a combination of zeolites and humic acid to the test soil (Shi 
et al., 2009). The potential of zeolites in removing metals such as cad-
mium, nickel, lead and zinc was confirmed for ryegrasss by using a 
zeolite load of 2.5 % (Contin et al., 2019). The immobilization of 
phytotoxic metals and lowering their uptake and organ-to-organ transfer 
by plants through zeolite application is considered a very important tool 
for growing plants in polluted and/or degraded soils. The effects of 
various zeolite applications on plants encountering different stresses are 
highlighted in Table 2.

5. Zeolites in crop protection from biotic stress (pathogens)

Zeolites have emerged as the agronomic protecting substances 
against multiple pathogens. They can be employed as particle films to 
alleviate diseases and pathogens in plants. Zeolites can effectively 
adsorb carbon dioxide and be harnessed as a coating leaf surfaces to 
safeguard them from microbes (bacteria, fungi) and insects (De Smedt 
et al., 2015; Fontana and Campbell, 2004). The greater availability of 
hydrophilic active sites in zeolites enhances their water sorption po-
tential and rendering them as highly effective desiccants (Ng and Min-
tova, 2008; Percival and Boyle, 2009). In addition, the coating of 
zeolites on the leaf surfaces produces a "water barrier fence", thereby 
isolating the disease inoculums from the foliar surfaces (Fontana and 
Campbell, 2004). In a study, zeolites protected the plants from apple 
scab (Venturia inaequalis) by the restricting liquid film. The absorption of 
the water condensates by zeolites restricted the water liquid film syn-
thesis, essential for pathogens for propagule germination (Puterka et al., 
2000). In another experiment conducted on tomato plants, the addition 
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of chabazite zeolites (up to 3-6 mm) , along with useful bacteria, resulted 
in larger plant yield and with better fruit quality. The study also 
demonstrated that the addition of chabazite to the growth media pro-
tected the species from the pathogenic Phytophthora infestans and Lei-
vellula taurica; thereby protecting the species from biotic stress 
(Domenico, 2020). Zeolites have also been found effective against other 
fungal species Fusarium oxysporum and Verticillium dahlia. The 
modification of soil with zeolite supports plant health and turned out to 
be most appropriate strategy to combat with disease causing fungi 
(Kefalogianni et al., 2017).

In addition to the role of zeolites as desiccants, they can be used 
against insects. The non-sorptive particles of zeolites detach the outer 
cuticle (epicuticular) of insects via erosion. The large insects’ epicutic-
ular lipid molecules cannot pass into the inner cavities of zeolites; and 
detaching the external cuticle of insects via the adsorption of lipid 
molecules on surfaces of the zeolites. The hydrophobicity of zeolites is 
responsible for this adsorption, resulting in quick loss of water from 
body of insect, causing its death via desiccation (De Smedt, 2016). The 

use of zeolites was demonstrated as a preventive agent against Tuta 
absoluta, a pinworm affecting tomato plant (De Smedt, 2016). The 
insecticidal potential of zeolites was also confirmed for cowpeas against 
Callosobruchus maculatus. The treatment of cowpeas with 5 g m-2 syn-
thetic zeolites for 36 hours resulted in mortality of Callosobruchus mac-
ulatus adults of up to 100 % (Lü et al., 2017). Zeolite addition to wheat 
showed shielding effect against three global stored grain insects: Sito-
philus oryzae, Tribolium confusum and Oryzaephilus surinamensis. The re-
sults also demonstrated that Oryzaephilus surinamensis was highly 
vulnerable to zeolite load (Rumbos et al., 2016). Additionally, natural 
zeolites also induced mortality in red flour beetle and rice weevil; when 
exposed to wheat of up to 21 days (Andrić et al., 2012). Natural zeolite 
clinoptilolite showed insecticidal effectivity against Acanthoscelides 
obtectus, adult been weevil. Zeolite addition to dry beans also delivered 
100 % mortality of Acanthoscelides obtectus within one day exposure 
(Floros et al., 2018).

The pantry pestscaused reduction in yield and quality of wheat and 
cereal based agricultural crops. Tribolium confusum and Callosobruchus 

Fig. 7. The effects of high levels of heavy metals on cellular processes in plants

Table 2 
Effects of various zeolites in enhancing resilience to abiotic stresses in different species

Type of Zeolite Plant types Stress Type Effect of Zeolite References

Potassium rich 
Clinoptilolite

Lolium perenne 
L.

Salinity Na+ declined 44.36 % in shoots and 21.31 % in roots. Water, 
chlorophyl, POD, SOD increase.

(Rahimi et al., 2021)

Clinoptilolite Raphanus sativus 
L.

Salinity Total dry weight & total fresh weight of plant increase. (Noori et al., 2007)

Synthetic Ca-type 
zeolite

Barley Salinity Iron (19 %) & manganese (10 %) increase in soil. (Al-Busaidi et al., 2008)

Natural zeolite lettuce Salinity Leaves growth enhanced by 15 % (Babaousmail et al., 2022)
Zeolite with zinc Canola Drought Water proportion, oil content and plant productivity increase. (Shahsavari and Dadrasnia, 

2016)
Natural zeolite A. vera Drought Water use efficiency, number of leaves, plant growth increase. (Hazrati et al., 2017)
Natural zeolite Rice Drought Increase photosynthesis rate, leaf area index, water use efficiency (Zheng et al., 2018)
Zeolite with selenium Rapeseed Drought Plant growth rate, total dry weight & leaf area index increase. (Sayed et al., 2010).
Zeolite Mallow Drought Increase plant length, stomata conductance, shoot fresh weight and 

chlorophyl
(Ahmedi et al., 2015)

Zeolite and 
vermicompost

Fenugreek Drought Leaf area index and plant yield increase. (Baghbani-Arani et al., 
2017)

Natural zeolite Rapeseed (Pb) toxicity Reduction in Pb uptake. (Li et al., 2009)
Zeolite with humic acid Wheat (Pb) toxicity Reduction in Pb uptake. (Shi et al., 2009)
Natural zeolite Ryegrass Metal toxicity (Cd, Ni, Pb 

and Zn)
Plant biomass and nutrients increase. Cd, Ni, Pb and Zn concentration 
reduced.

(Contin et al., 2019)
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maculatus has been considered as most harmful pests of wheat and 
cowpea respectively. The application of nano zeolite having size 40-50 
nm to seeds of wheat and cowpea revealed mortality of Tribolium con-
fusum after 14 days subjection, while after 3rd day exposure, mortality of 
Callosobruchus maculatus was induced. The death of insects increased 
with the increase in zeolite dosage and contact time (Ibrahim and Salem, 
2019). Zeolites were proven effective against other pantry insects as well 
such as reticulate-winged trogiid (Lepinotus reticulatus), Liposcelis 
decolor, Acarus siro and Stegobium paniceum (Agrafioti et al., 2023). 
These studies confirmed the role of zeolites in protecting crops from 
various kinds of pathogens, eventually enhancing crop quality and 
quantity, leading towards cleaner agricultural production. The protec-
tive roles of selected zeolites against several pathogens are listed in 
Table 3.

6. Conclusions

There is an increasing interest in using natural and synthetic zeolites 
in agriculture, particularly as protective agents to combat various 
stresses and achieving agricultural sustainability. Many studies have 
reported improvements in the physiological, morphological, and 
biochemical features of the test plantsfollowing zeolite application to 
the soil. In addition, zeolites (specifically natural zeolite) possess 
effective adsorption capacity, nutrients and water holding potential help 
to improve the growth environment for plants. Zeolites provide several 
useful features in soil conditioning, decontamination, reducing bulk 
density and enhancing its porosity. In addtion, zeolites facilitate the 
conservation of essential nutrients such as ammonium (NH4

+), phosphate 
(PO4 

3− ), potassium (K+), and sulfate (SO4
2− ), thereby improving tje 

growth and productivity of plants. As some zeolites exhibit high porosity 
and unique honeycomb like structure, they possess extraordinary ca-
pacity to store and release herbicides. The increase in water use effi-
ciency (WUE) by zeolites supports conservation of water, reduction in 
crop canopy temperature, encouraging better development and yield of 
crops in conditions of drought and heat stresses. The activation of 
antioxidant enzymes by zeolites help to reduce reactive oxygen species 
(ROS). The adsorption of Na+, Cl- and phytotoxic metals by zeolites 
through cation exchange potentially immobilizes them in soil, restrict-
ing their uptake in plants. Certain zeolites have interesting agronomic 
biocontrol properties against multiple pathogens. These zeolites can 
coated on leaf surfaces as a "shilding agent" to safeguard them from 
pathogenic microbes and insects. Some of thenatural, synthetic and 
nano-zeolites can be harnessed as desiccants to reduce the availability of 
water for pathogens; in some cases, causing their mortality to be 100 %.

Future perspectives

The usage of zeolites in agricultural practices have been well estab-
lished by researchers, but further investigations are required to study the 
minimum dosage and long-term impacts of zeolites on soil properties in 
unfavourable environment. Both natural and synthetic zeolites have 
been harnessed to improve resilience to abiotic stress resilience in 
plants; but natural zeolites emerged to be more effective and economical 
solution for agriculture. For example, natural zeolite clinoptilolite per-
forms better in alleviating abiotic stresses such as salinity in comparison 
to synthetic zeolites. For example, zeolites were proven effective in 
counterbalancing the negative effects of salt load of 100 mM concen-
tration in plants. Based on extensive literature review, the zeolites are 
able to improve the quality, growth, and yield of crops by up to 50 %. 
Moving forward, the greater use and effectiveness of synthetic zeolites in 
agriculture require more research. As the excessive usage of chemical 
fertilizers are responsible for increases in greenhouse gases, soil acidi-
fication and water pollution, the greater use of zeolites as alternate 
fertilizing materials could be a promising solution towards reducing the 
various negative environmental issues.
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