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Easy yield mapping for precision agriculture
Omran Alshihabi, Kristin Persson and Mats Söderström

Department of Soil & Environment, Swedish University of Agricultural Sciences (SLU), Skara, Sweden

ABSTRACT  
Within precision agriculture, yield mapping is important in the evaluation of crop management 
and delineation of management zones. It can also be used to assess within-field yield potential, 
in order to guide different precision agriculture practices. However, some farmers do not have a 
yield monitoring system, and some who do may obtain incomplete or erroneous yield data. 
This study examined the accuracy with which winter wheat (Triticum aestivum L.) yield could be 
mapped in 18 fields in southern Sweden using a simple empirical relationship between 
Sentinel-2 (ESA, Paris, France) data, vegetation index (VI) maps and combined harvester data 
collected in nearby fields. The results showed that a decrease in map resolution to 40 m 
reduced the error in the yield maps obtained. Normalised difference water index (NDWI) was 
the most efficient VI, while a combination of satellite data from earlier and later plant 
development (booting and milk development stages) performed slightly better than data for 
other development stages and combinations. The best-performing model at a within-field scale 
(40-m resolution) had an average mean absolute error (MAE) of 0.40 tonnes ha−1 in a leave-one- 
field-out cross validation. When the prediction model at field-means scale was applied on 69 
farms in a 1055 km2 area, MAE was 0.75 tonnes ha−1 when comparing predictions with mean 
yields reported by farmers in a phone survey. Therefore, if adequate combined harvester and/or 
mean yield data are available, a modelling framework that translates satellite imagery into yield 
maps on-the-fly could be made available for different stakeholders via decision support systems 
for precision agriculture.
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Introduction

Knowledge of crop yield is essential for efficient use of 
natural resources in field crop production, as part of 
work towards the global Sustainable Development 
Goals (SDGs) (United Nations 2015). Yield monitors 
have been tested and used since the late 1980s and 
early 1990s and have been key in the development of 
precision agriculture, because they make it possible to 
define, quantify and characterise within-field variation 
in crop production (see early work by e.g. Schueller 
and Bae 1987; Schnug et al. 1993; Birrell et al. 1996; 
Stafford et al. 1996; Nissen and Söderström 1999). 
Yield monitors are mounted on combine harvesters 
and measure in real-time the amount of grain passing 
through the combine while the crop is being harvested 
(Reyns et al. 2002). However, it is still uncommon for 
yield maps to be a decisive component of the 
decision-making process in precision agriculture. From 
a more practical perspective, end-users cannot obtain 
the yield information until after the growing season, 

which might be a limitation for decision-making. Maps 
of field fertility or yield stability (i.e. generalised maps 
based on yield maps for many years) have been devel-
oped in research projects over recent decades (e.g. 
Blackmore 2000; Ping and Dobermann 2005; Blasch 
et al. 2020) but, like single-year yield maps, they are 
under-utilised (Basso and Antle 2020). Fields are often 
split into constantly high-yielding zones, constantly 
low-yielding zones and unstable zones that produce 
different yields e.g. depending on whether the season 
is wet or dry (e.g. Delin 2005; Maestrini and Basso 2018
and 2021).

Yield data from combine harvesters often include 
large numbers of defective observations during the 
passage of the combine harvester inside fields, as a 
result of e.g. flow delay, filling and emptying times, 
abrupt speed changes or partially-used cutting bar 
(e.g. Blackmore and Moore 1999; Thylén et al. 2000; Sim-
bahan et al. 2004; Sudduth and Drummond 2007). This 
may be one reason why many farmers who use the 
equipment find it difficult to create reliable yield maps. 
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Moreover, there is currently no system available for actu-
ally using yield maps. A French survey found that best- 
equipped farmers used their systems only for real-time 
visualisation during harvest and that fewer than 25% 
were producing and using yield maps (Lachia et al. 
2021).

Vegetation indices (VIs) from optical crop canopy 
measurements have since long been known to correlate 
with crop yield (e.g. Curran 1980; Ashcroft et al. 1990). 
New advances in satellite data acquisition and proces-
sing offer promise for satellite-based yield mapping as 
an alternative method to derive yield maps of individual 
fields at resolution relevant to precision agriculture. 
Current methods often rely on calibrated relationships 
between VIs and yield that are specific to individual 
locations and years, often with new ground measure-
ments needed for each new setting (Panek et al. 2020). 
Some studies combine satellite data with ancillary infor-
mation (Hunt et al. 2019; Franz et al. 2020; Shuai and 
Basso 2022). Both simple empirical relationships (e.g. 
Gaso et al. 2019; Söderström et al. 2021; Lyle et al. 
2023) and more complex machine learning models 
(e.g. Liao et al. 2023; Perich et al. 2023) are used, while 
other studies, incorporate satellite data into mechanistic 
crop models to make spatial predictions of yield for agri-
cultural fields (e.g. Bouras et al. 2023; Luo et al. 2023; 
Sadeh et al. 2024).

Ulfa et al. (2022) found only marginal differences in the 
performance of the different VIs tested, which mostly 
showed good predictions of the spatial pattern of yield, 
but only modest performance in terms of predictions of 
absolute yield (when assessed via within-field metrics 
with leave-one-field-out cross-validation). In terms of 
the crop development stage, data from the peak 
biomass stage showed the best performance in that 
study and combining data from the same VI but from 
multiple stages did not improve predictions. Results 
from stepwise analysis revealed that some simple combi-
nations of different VIs from different stages could give 
better absolute yield predictions but did not out- 
perform the single-index models alone, in terms of pre-
diction of the spatial pattern of the high and low-yielding 
areas. Stettmer et al. (2022) examined three different site- 
specific yield-mapping methods (tractor-borne sensor, 
satellite, combine harvester) for winter wheat (Triticum 
aestivum L.) to evaluate their precision and suitability 
for delineation of management zones for site-specific 
crop management. The study showed differences in the 
precision and accuracy of the investigated methods due 
to the deviations in the absolute yields, and the results 
were only suitable for yield potential maps to a limited 
extent, and further research was required to improve 
the results. Vallentin et al. (2022) examined the 

relationship between remote sensing data, soil and 
relief data and crop yield data in north-east Germany 
and concluded that the correlation is strongest when a 
field and its crop are spatially heterogeneous and when 
a suitable phenological stage of the crop is reached at 
the time of satellite imaging. They found that satellite 
images with higher resolution, such as RapidEye (Planet 
Labs PBC, San Francisco, CA, USA) and Sentinel-2 (ESA, 
Paris, France), perform better than the lower-resolution 
sensors of the Landsat 5, 7 and 8 series (NASA, Washing-
ton, CO, USA).

The aims of this study were to assess the accuracy 
with which winter wheat yield can be mapped by Senti-
nel-2 images through simple empirical models parame-
terised by combining yield data collected in a specific 
local area and to propose a modelling framework for 
after-harvest satellite-based yield mapping. The yield 
predictions were evaluated at different spatial resol-
utions and at different growth stages. In addition, yield 
predictions were evaluated when the models obtained 
were applied in predicting farm mean yields in a larger 
district in southern Sweden within the same satellite 
scene. Specific research questions were to determine: 

(1) Differences in the magnitude of error of yield maps 
produced using different VIs and VI combinations.

(2) The impact on model performance of using satellite 
images from different plant development stages and 
combinations of development stages.

(3) The optimal spatial resolution for yield mapping 
using this approach (20, 40 m or field mean).

(4) The accuracy of the models obtained when applied 
to estimate farm-average yield across a larger area.

Materials and methods

This work builds on a pilot study by Alshihabi et al. (2023) 
in which aspects of research questions 1–4 were 
addressed using top-of-atmosphere reflectance (L1C, Sen-
tinel-2). The same combined harvester data were used in 
the present study, but the remote sensing data were 
bottom-of-atmosphere reflectance (L2A, Sentinel-2). In 
addition, the models obtained were evaluated for more 
VI combinations and crop development stages, and for 
farm mean yields in a surrounding yield district by com-
parison with independent data from a yield survey.

Study area

The study was conducted in southernmost Sweden 
(Figure 1), in an area with about 50% arable land. 
Small-grain crops (winter wheat is most common), 
oilseed rape (Brassica rapa L.), sugarbeet (Beta vulgaris 
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subsp.) and potatoes (Solanum tuberosum L.) are com-
monly grown in the area.

Yield data

Two types of yield data were used: (a) within-field yield 
data collected by a combine harvester, and (b) farm- 
average yield data collected via interviews with 
farmers performed by the National Statistics Bureau, 
Statistics Sweden (SCB, Örebro, Sweden). The within- 
field yield data were obtained from 18 fields cropped 
with winter wheat (Figure 1). These fields were distrib-
uted across a 10 km × 4 km area and all were managed 
by the same farmer, using a John Deere yield monitor 
(John Deere, Moline, Il, USA). The farm-average yield 
data were for two Swedish yield districts, SKO 1213 
and 1214 (following the terminology of SCB) (Figure 
1), which occupy an area of some 1055 km2 within a 
single Sentinel-2 satellite scene (tile 33UUB). Sweden 
is divided into 107 SKOs for statistical purposes, with 
each SKO assumed to be relatively homogeneous 
with regard to the variation and level of crop yield 
from year to year. Therefore, it can be convenient to 

study the responses of an agricultural system at that 
spatial scale. A yield survey is carried out every year 
by SCB within all 107 SKOs, where randomly selected 
farmers are invited to report the average yields of 
crops cultivated on their farms. In the present study, 
SCB data for 69 farms with a total of 494 winter 
wheat fields within a 1055 km2 area were included, 
with yield reported as an average value for all fields 
on a farm.

Satellite data

Satellite images from Sentintel-2 (L2A processing level, 
i.e. orthorectified surface reflectance) for Zadoks crop 
development stages DC 49–85 (Zadoks et al. 1974) in 
the fields were downloaded from ESA (https:// 
dataspace.copernicus.eu/). Only images that were 
cloud-free for the selected fields on the four selected 
dates (4, 14, 29 June, 11 July 2019) were used. These 
acquisition dates coincided approximately with DC 
stages 49–54, 61–65, 71–75 and 83–85, respectively 
(based on data from the Swedish Board of Agriculture). 
The Sentinel-2 mission collects data in 13 bands, in the 

Figure 1. Location of yield districts (SKO) 1213 and 1214 near the city of Malmö in southern Sweden, within the 33UUB Sentinel-2 tile. 
Arable land is yellow and fields with winter wheat in 2019 are dark green. The locations of the 18 combined harvested fields are 
marked with light green circles. Other colours: beige = built-up area; green = forest; blue = water; grey = road network; white =  
other. Background map based on Swedish Environmental Protection Agency (2023) and Swedish Board of Agriculture (2019).
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visible to short-wave infrared region of the electromag-
netic spectrum (ESA 2024).

Data preparation

Combine harvester yield data were filtered to remove 
potential erroneous records. We used an interactive pro-
cedure based on the approach by Sudduth and Drum-
mond (2007), taking into consideration registrations in 
the combination of cutting board width (only full 
cutting board was kept), speed, time after start and 
before stop, and yield. The settings (min or max) of the 
filtering were adapted to the data variation in each 
field, based on visual inspection and the histograms, in 
order to remove outliers without affecting areas of 
true yield variation. Unfortunately, we have no uncer-
tainty estimation of the combined data. In this case, 
however, we parameterise and validate the models 
based on the same combine, which means what is pre-
dicted by the models is ‘yield as measured by this 
combine’. In a system, where multiple combines would 
be used together in a model, this would steer the 
model in different directions and to some extent be 
evened out. The best would of course be if all combined 
data used for model calibration would be well calibrated. 
That may be used as criteria for data sharing. The quality 
of the yield data was generally judged to be good and 
records were available for all parts of the fields (for a 
typical example, see Figure 2a). In order to combine 
yield data with Sentinel–2 data, two rasters with spatial 
resolutions 20 and 40, aligned with the Sentinel-2 grid, 
were generated from the combined harvester yield 
data. The raster cell values were calculated as a mean 
of all yield data records within each raster cell (typically, 
there were 14 measurements per 20 m grid cell and 56 
measurements per cell in the 40 m grid), to enable as 
direct comparison as possible between the satellite 
data and yield data. The raster layers generated were 

converted into point layers (pixel centroids), for which 
information from the different bands of Sentinel – 2 
were extracted (re-sampled by bilinear method) and 
then clipped within buffer zones inside the field bound-
aries (15 m for the 20 m resolution raster and 25 m for 
the 40 m resolution raster), to ensure boundary cells 
were omitted and to avoid edge effects (Figure 2b).

Five normalised difference indices were calculated for 
each satellite image: (i) normalised difference vegetation 
index (NDVI), (ii) normalised difference water index 
(NDWI, combination of near-infrared and shortwave 
infrared bands), (iii) normalised difference red-edge veg-
etation index (NDRE75, bands in the red-edge region), 
(iv) normalised difference drought index (NDDI, based 
on NDVI and NDWI, believed to be sensitive to 
drought) and (v) green-red vegetation index (GRVI, 
based only on bands of visible light). The choices of 
the VIs were selected to correlate with different crop 
properties and to cover different regions of the electro-
magnetic spectrum: biomass and general crop vigour 
(NDVI, NDRE, and GRVI), water stress in the crop 
(NDWI, and NDDI). GRVI is based on visual bands, 
whereas the other indices also use infrared bands. The 
indices were computed using Equations 1-5, respect-
ively, where r is reflectance and subscript numbers 
denote Sentinel-2 bands (Rouse et al. 1974; Adamsen 
et al. 1999; Sims and Gamon 2002; Gu et al. 2007; 
Zhang et al. 2017).

NDVI =
r8 − r4

r8 + r4
(1) 

NDWI =
r8A − r11

r8A + r11
(2) 

NDRE75 =
r7 − r5

r7 + r5
(3) 

Figure 2. (a) Left: filtered and quality-controlled combined yield recordings for one of the fields studied and (b) Right: masked point 
layer and the raster with a spatial resolution of 20 of the same field, where darker hue indicates higher yield.
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NDDI =
NDVI − NDWI
NDVI+ NDWI

(4) 

GRVI =
r3 − r4

r3 + r4
(5) 

Data analyses

Univariate and multivariate linear regression models 
were used for yield predictions based on single VIs or 
pairwise combinations of VIs (e.g. NDVI-NDRE75, NDVI- 
NDWI, and NDWI-NDRE75). This was done for the 
different resolutions (20, 40 m and field mean) for the 
four individual plant development stages and for all 
combinations of 2–4 development stages. This resulted 
in a total of 675 date-VI combinations (225 per resol-
ution). Models were evaluated by the leave-one-field- 
out cross-validation approach, using the R programming 
language (R Core Team 2023). For this, one entire field 
was left out and the other fields were used to develop 
a model to predict yield in the left-out field. The pro-
cedure was repeated until all fields had been left out 
once. Predicted values from the cross-validation were 
compared with the corresponding observed values, by 
computing mean absolute error (MAE) for all three 
spatial resolutions and coefficient of determination (r2) 
for a linear regression line between predicted and 
observed values for the 20 m and 40 m resolutions. 
This was done individually for each field. The evaluation 
metrics were computed using Equations 6 and 7, where 
oi and pi are observed and predicted values, respect-
ively, for a pixel or a field (i) and o̅ and p̅ are mean of 
all n observed or predicted pixel values, respectively.

MAE =
􏽐n

i=1 | pi − oi|

n
(6) 

r2 =

􏽐n
i=1 (oi − o̅)( pi − p̅)

������������������������������������
􏽐n

i=1 (oi − o̅)2 􏽐n
i=1 ( pi − p̅)2( 􏼁2

􏽱 (7) 

These two evaluation metrics have different strengths 
and weaknesses. So for identification of the best 
model, they were combined. Thus for each resolution 
and field, the mean of ranks of 225 values of MAE 
(smaller to larger) and r2 (larger to smaller) values were 
computed and then averaged for all fields. The model 
with the smallest mean rank values was considered to 
be the best model. The final models were parameterised 
using all data (no field left out) and deployed across the 
fields for the production of yield maps. The best model 
was also deployed on the mean VI values for each of 
the SCB farms. The yield values obtained in interviews 
with farmers were compared with these predicted 
yields, to assess the possibility of upscaling the local 
mapping model to the district level.

In the present study, we tested relationships between 
crop yield and one or more, satellite-based vegetation 
indices from one or more occasions that could be used 
to map yields. The rationale behind this is that the 
crop vigour during the season should reflect the yield 
level, irrespective of the cause of the yield level. It did 
not form part of this study to explore the drivers of 
spatial yield variation in the eighteen fields.

Results

Descriptive statistics

The fields mapped with the combine harvester ranged 
between 4 and 51 ha is size, with 1,500-16,000 yield 
records per field. Descriptive statistics on the yield values 
for the 18 fields are presented in Figure 3. The mean 
yield of the fields ranged from 7.4 to 10.2 tonnes ha−1. 
There were no very low-yielding fields, but there was 
some variation in the yield levels in different fields and in 
the magnitude of within-field variation. Thus the average 
yield level, measured as the degree of spread, varied 
from one field to another (as indicated by the midlines, 
interquartile ranges (boxes) and non-outlier ranges (whis-
kers) in Figure 3), regardless of field area. Some fields 
were homogeneous (e.g. field no. 16) and some were het-
erogeneous (e.g. field no. 5, where the yield was much 
lower in a sandy part of the field – the average yield was 
around 6.5 tonnes ha−1 in that part compared to around 
9 tonnes ha−1 in the rest of the field).

Overview of model performance

The results of the leave-one-field-out cross-validations 
showed in general acceptable performance of the model 
for practical application, but with some variation in predic-
tion accuracy between date-VI combinations and resol-
ution. Mean MAE for the 18 fields ranged between 0.49 
and 0.81 tonnes ha−1 for the 225 date-VI combinations 
at 20 m resolution, and between 0.40 and 0.75 tonnes 
ha−1 at 40 m resolution. The corresponding ranges for 
mean r2 were 0.17-0.52 (20 m) and 0.20-0.60 (40 m). 
Figure 4 shows the ranks for the date-VI combinations at 
40 m resolution. The best model was linear regression 
between NDWI from the first and the third image acqui-
sition date (approximately corresponding to winter 
wheat booting and milk development).

Performance of different VI combinations

Figure 5 shows boxplots of MAE and r2 for the 18 fields 
for the different VI combinations in the best date-VI 
combination (dates 1 and 3, i.e. 4 and 29 June) and 
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Figure 3. Descriptive statistics on observed yield per field (nos. 1-18). A cross indicates mean, midline indicates median and a box 
indicates the interquartile range (IQR), where whiskers indicate the highest and lowest observation within 1.5 × IQR from the 
midline. Observations outside whiskers are outliers.

Figure 4. Mean of ranks of mean absolute error (MAE) and r2 for the 225 date-vegetation index (VI) combinations at 40 m data res-
olution. The predictor set with the smallest (i.e. best) mean rank is marked with a bold red frame. Thin red frames indicate the pre-
dictor set for which field-wise MAE and r2 values at the field level are presented in Figures 5 and 6.
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best within-field resolution (40 m). The effect of date on 
the satellite image for NDWI is shown in Figure 6. The 
performance of VIs and VI combinations other than 
NDWI was relatively similar based on MAE, with some-
what lower but comparable r2 for GRVI. Mean MAE 
value varied between 0.40 tonnes ha−1 for NDWI to 
0.48 tonnes ha−1 for NDRE75 and 0.52 tonnes ha−1 for 
NDVI, the corresponding r2 values were 0.59, 056 and 
0.43. Combining two VIs did not substantially improve 
the performance compared with using the indices on 
their own (Figure 5).

Figure 6 presents boxplots of MAE and r2 for the 18 
fields for the different date combinations in the best 
index (NDWI) and best within-field resolution (40 m). The 
best performance in predicting yield was obtained for 
date 1 and then date 3 (DC 49–54 and DC71-75, 

respectively). Combining more than one date only 
improved the models very slightly in terms of mean MAE 
and r2.

Performance at different resolutions

For the best date-VI combination (dates 1 and 3, NDWI), 
the MAE of field means was in general better than that of 
pixels, while both MAE and r2 values were better at 40 m 
resolution than at 20 m resolution (Figure 7).

Spatial patterns of observed and predicted yields

For the best model (based on NDWI from booting and 
milk maturity, 40 m resolution) observed yields and pre-
dicted yields (from the leave-one-field-out cross- 

Figure 5. Boxplots of (a) field-wise mean absolute error (MAE) and (b) coefficient of determination (r2) from leave-one-field-out cross- 
validation for models based on all vegetation index (VI) combinations. Best date combination (4 June together with 29 June) and best 
resolution (40 m) only. A cross indicates mean, midline indicates median and box indicates the interquartile range (IQR), where whis-
kers indicate the highest and lowest observation within 1.5 × IQR from the midline. Jittered points are individual values.
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validation) were mapped together so that spatial vari-
ation patterns could be visually compared (example in 
Figure 8).

Evaluating the best model for the development 
of management zones

In practice, it is common to use yield maps to delineate 
management zones. In Figure 9, the predicted yield 
(aggregated mean value for four zones per field) is 
plotted against the observed yield for the 18 fields. As 
can be seen from the plot, the highest predicted yield 
fell within the zone with the highest observed yield 
and the lowest predicted yield fell within the zone 
with the lowest observed yield. However, some fields 
showed signs of model bias (consistent over-prediction).

Test on independent farms

The field mean yield prediction model for the best 
date-VI combination (date 1 and 3, NDWI) was used 
to predict the mean yield of all 69 farms in the SCB 
yield survey, representing a larger region. The results 
showed relatively good agreement (points largely fol-
lowing the 1:1 line; Figure 10). MAE was 0.75 tonnes 
ha−1 and r2 was 0.25. There seems to be a slight so- 
called conditional bias with overestimation of low 
values and underestimation of high values, a 
common effect in empirical modelling. In this case, it 
means that the satellite-based yield maps do not 
show the full variation range However, when interpret-
ing this diagram, one should bear in mind that the 
observed data are uncertain and it is unknown 

Figure 6. Boxplots of (a) field-wise mean absolute error (MAE) and (b) coefficient of determination (r2) from leave-one-field-out cross- 
validation for models based on all combinations of satellite image dates. Best index and best resolution only (NDWI, 40 m). A cross 
indicates mean, midline indicates median and a box indicates the interquartile range (IQR), where whiskers indicate the highest and 
lowest observation within 1.5 × IQR from the midline. Jittered points are individual values. Date 1: 4 June (Zadoks plant development 
stage DC 49-54); date 2: 14 June (DC61-65); date 3: 29 June (DC71-75); date 4: 11 July (DC83-85).
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whether the predicted or observed values are more 
correct. In this case, the ground truth is based on 
phone interviews with farmers, who have assessed 
their farm average winter wheat yield in tonnes per 

hectare. More information on the data collection and 
the national statistics that are based on it are given 
by SCB, Statistics Sweden (2019) and the Swedish 
Board of Agriculture (2019).

Figure 7. Boxplots of (a) field-wise mean absolute error (MAE) and (b) coefficient of determination (r2) from leave-one-field-out cross- 
validation for models for the three resolutions tested (20, 40 m, field mean). Best index (NDWI) and date combination (4 June together 
with 29 June) only. A cross indicates mean, midline indicates median and box indicates the interquartile range (IQR), where whiskers 
indicate the highest and lowest observation within 1.5 × IQR from the midline. Jittered points are individual values. For whole fields, 
there is only one observed and one predicted value, so the MAE is just the absolute error.

Figure 8. Observed and predicted yields for the 40 m grid of two example fields. Circles show combined data and colours show yield 
predictions from the leave-one-field-out cross-validation. The model was based on the best index (NDWI) and date combination (4 
June together with 29 June).
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Discussion

Model accuracy

This study showed that univariate linear regression 
models can achieve reasonable accuracy in predicting 

winter wheat yield when using one of the following 
VIs in this study: NDVI, NDRE75, NDWI, and NDDI. The 
best performance was achieved with NDWI for the 
date combination 4 June and 29 June (DC 49-54 and 
DC71-75, respectively) (Figure 4). A plausible expla-
nation for the superior performance of NDWI is that it 
is calculated using a combination of two bands, the 
near infrared (NIR) region, that mainly reflects the 
leaves’ structure, and the shortwave infrared (SWIR) 
band, which reflects changes in both the vegetation 
structure and water content (see also Gao 1996). To 
what extent this is common in this type of modelling 
remains to be tested further. The visual index GRVI 
showed slightly weaker performance than indices 
including reflectance bands of longer wavelengths 
(Figure 4). This is similar to what is indicated in e.g. Bar-
meier et al. (2017). In Sentinel-2 based modelling, this is 
not a limitation, but if one would choose to develop 
models for drone-based yield mapping, the recommen-
dation based on our results would be to invest in a (more 
expensive) camera not only registering visible wave-
length bands but also bands in the red edge and NIR 
or NIR and SWIR regions.

No obvious improvement was obtained by using mul-
tiple linear regression with a combination of VIs, or by 
using complex VIs such as NDDI (Figure 5), supporting 
previous findings by e.g. Ulfa et al. (2022). In a modelling 
framework, like the one tested here, it is important that 
models are robust and work well in other fields than 
those used for model calibration. A less complex 
model type limits the risk for overfitting, compared to 
a more flexible model type. The present results show 
that simple univariate linear regression is good enough 
for the present purpose.

The models developed in our study, showed the best 
performance in the prediction of field means, while at 
the within-field scale, 40 m resolution was better than 
20 m resolution (Figure 7). The improvement in the pre-
diction model from within-field scale to mean field scale 
was much greater than the improvement between resol-
utions at within-field scales (20, 40 m) (Figure 7a). One 
possible reason why aggregation improved the results 
is that errors due to data uncertainty at the finer scale 
were cancelled out by aggregation. This could be due 
to positional uncertainty in both combined harvester 
data and satellite data and/or errors in the recorded 
values. Similar results have been found in earlier 
studies at the within-field scale in multi-aggregation of 
cell size for NDVI maps (e.g. Martínez-Beltrán et al. 2009).

The approach developed in the present study was 
capable of predicting winter wheat yield with reason-
able performance even at advanced development 
stages (e.g. DC 83-85), but the best performance was 

Figure 9. Relationship between predicted and observed yield. 
Zones were generated by splitting observed yield into four 
zones with equal numbers of observations. Points represent 
zone means. Lines connect the four zones in the same field. Pre-
dictions based on the best index (NDWI), best date combination 
(4 June and 29 June) and best resolution (40 m).

Figure 10. Relationship between predicted and observed yield 
for 69 farms surveyed by Statistics Sweden (SCB) within a 1055 
km2 area in southern Sweden. Predictions based on the best 
index (NDWI) and date combination (4 June and 29 June), 
models developed based on field mean values.
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achieved for a combination of two development stages 
(DC 49-54 and DC 71-75) (Figure 6). Also, previous 
studies have shown that combining multiple images 
during a season improves the accuracy of yield predic-
tion (e.g. Hunt et al. 2019). Note that the accuracy of 
the yield maps obtained will depend on the absolute 
calibration of the combined harvester yield monitoring 
equipment since if there is a bias in these values it will 
propagate to the satellite-based maps.

A proposed dynamic modelling framework for 
yield mapping

The approach for calibrating VI maps from Sentinel-2 
with combined harvest data for yield mapping in neigh-
bouring fields showed promising results (Figures 4, 9, 
10). The results suggest that a satellite image-based 
system where farmers can benefit from collected com-
bined harvest yield data not only in the fields where 
these data are collected but also in neighbouring fields 
or in parts of fields with data gaps, could be viable. In 
order to develop a similar yield mapping strategy in 
other areas and for other crops, a dynamic modelling 
framework for yield mapping is proposed in Figure 11. 
This framework could also allow other farmers in the 
neighbourhood to issue yield maps for their fields with 
the same crop in the same satellite image. This frame-
work has similarities to the work presented by Filippi 
et al. (2019), although that focused on yield prediction 
during the season, rather than yield mapping after 

harvest and for previous years. In addition to providing 
farmers with useful data, remote-sensing-based yield 
mapping frameworks at regional or national scale, can 
support the production of national statistics. This was 
proposed Brandt et al. (2024), who also tested a scalable 
machine-learning-based method for this purpose. Their 
modelling was coarser than the present study (1 km) 
but also our method could potentially be useful in this 
way. However, before using our approach at regional 
and national scales, for any purpose, it needs to be 
further validated. One benefit of parameterising 
models on-the-fly and picking the best model for the 
current year and local neighbourhood based on cross- 
validation, instead of relying on rigid-coded models, is 
that the system overcomes the problems caused by sat-
ellite imagery not being available for the same dates or 
developmental stages in different areas and years. 
Another benefit of the presently proposed framework 
is that potential differences in VI values between 
images are not translated into yield differences when 
each image is converted individually into yield maps.

Potential use of maps for delineation of 
management zones and yield stability maps

It was demonstrated in the present one-year study that 
satellite-based yield maps derived from the current 
method can be used to delineate management zones 
with different yield levels. General biases were observed 
in some fields, possibly because of differences in cultivar 

Figure 11. Proposed dynamic modelling framework for yield mapping.
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and sowing date between the 18 fields (Figure 9). If the 
true mean yield of the fields is known, one could poten-
tially compensate for field-specific biases and obtain a 
more accurate yield map. A method for this has been 
proposed by Söderström et al. (2021).

Satellite-based yield mapping offers possibilities to 
develop yield stability maps based on several years, 
which enable better management of natural resources 
through e.g. precision nutrient management (Basso 
and Antle 2020). By applying the approach developed 
in this study, historical yield data from combined har-
vesters and statistical reports can be used to generate 
time series of yield maps (space–time data cubes of 
yield), not only in fields for which combined harvester 
data or field means are available, but also in neighbour-
ing fields lacking such data. This can be of great value for 
farmers, advisors and local planners. Such time series of 
yield maps can be combined into yield stability maps, 
relative yield level maps or management zones, which 
e.g. can be used to refine supplementary nitrogen (N) 
fertilisation in split application cropping systems 
(Figure 12). In-season adaptation of N is generally con-
sidered efficient in terms of N use efficiency, and reach-
ing a target yield quality and quantity (e.g. Raun and 

Johnson 1999; European Parliament 2016; Piikki et al. 
2022). This depends on difficulties in foreseeing the 
weather and the amount of soil N mineralisation early 
in the season. In most cases, the expected yield is a 
crucial variable in determining the amount of N to 
apply, and this is something that normally is determined 
from field to field based on experience (historical data).

Three alternative approaches to take advantage of 
the relative yield level maps in this context are shown 
in Figure 12. As ‘Alternative 1’ the N rate is determined 
from satellite imagery during the growing season. 
There are a number of agricultural decision support 
systems available that provide this service (e.g. Söder-
ström et al. 2017), but often the expected yield is a 
guessed field average. The relative yield level map gen-
erated here can distribute this guessed field average into 
a more reasonable value based on historical yield out-
comes. Similarly, if advanced tractor-mounted crop 
sensors (Raun et al. 2001; Reusch 2003) are used 
(‘Alternative 3’), the relative yield map could function 
as a background map that adjusts the prescribed N 
rate on-the-go. Commonly, an average expected yield 
is also used in that case. Management zones of 
different yield levels can also be used directly without 

Figure 12. Three alternative approaches are to use a generated relative yield level map as described in this study for supplementary 
nitrogen (N) fertilisation. Alternative 1: in a satellite image-based decision support system; Alternative 2: manual use; and Alternative 
3: as background information in a tractor-sensor system.

12 O. ALSHIHABI ET AL.



the requirement of advanced equipment – a paper map 
and manual adjustment can be sufficient provided that 
the driver knows the vehicle position reasonably well 
(‘Alternative 2’). This alternative could also be developed 
further, with on-farm trials such as zero or max N plots in 
each yield level zone to guide the in-season N rate deter-
mination (Johnson and Raun 2003).

Conclusions

A simple but useful approach for mapping winter wheat 
yield in fields lacking measured yield data, based on 
combined harvester data from other fields in the neigh-
bourhood combined with VI maps from Sentinel-2, was 
evaluated. The results showed that simple linear 
models based on NDVI, NDRE75, GRVI and NDWI can 
give relatively good prediction accuracy. Using VI combi-
nations or a more complex index (NDDI) did not improve 
the modelling performance. However, performance was 
improved by lowering the resolution and by using a 
combination of satellite images from relatively early 
and late wheat development stages. The best model 
obtained was based on NDWI at two crop development 
stages, booting and milk maturity. The MAE for this 
model was 0.40 tonnes ha−1 in leave-one-field-out 
cross-validation at 40 m map resolution. For the field 
mean predictions MAE was much lower (0.23 tonnes 
ha−1), while application of the field mean model to 
predict the farm mean yield in a larger area had MAE 
of 0.75 tonnes ha−1, indicating promise for precision 
agriculture and also other applications. The approach 
of individually parameterising models for the current 
year and local neighbourhood can provide farmers, advi-
sors and authorities with spatial yield data (which are not 
always available today), and offers new opportunities for 
improving precision agriculture practices and natural 
resource management.

Acknowledgements

Thanks to the farmers surveyed for making their combined 
yield data available, and to Henrik Stadig who organised the 
data sharing.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This work was supported by the Formas – a Swedish Research 
Council for Sustainable Development through the national 
research programme for food under Grant 2019-02280; and 
Västra Götalandsregionen together with the Swedish 

University of Agricultural Sciences under Grant RUN2021- 
00020.Svenska Forskningsrådet Formas

Data availability statement

Data used in this study are not openly available, for inquiry 
please contact the authors.

Author contribution

The authors confirm their contribution to the paper as 
follows: All authors contributed to the study conception 
and design, data preparation, analysis and interpretation 
of results, as well as manuscript preparation. All authors 
reviewed the results and approved the final version of 
the manuscript.

Ethical approval

No ethical approval was required for the present study, 
as it did not involve human/animal subjects and did 
not include case reports.

Notes on contributors

Omran Alshihabi, researcher/lecturer at the Swedish University 
of Agricultural Sciences (SLU), focuses on water management 
in agriculture and developing digital applications in precision 
agriculture. Holds a PhD in civil engineering from Polytech- 
Lille (France).

Kristin Persson, holds a position as a Senior Lecturer with (SLU), 
where she conducts research in precision agriculture and 
pedometrics. She holds a PhD in Environmental Sciences 
with specialisation in plant physiology (University of 
Gothenburg).

Mats Söderström, Associate Professor in Soil Science at SLU, 
focuses on applied research in digital soil mapping and pre-
cision agriculture often involving proximal and remote 
sensing of soil and crops.

References

Adamsen FJ, Pinter PJ, Barnes EM, LaMorte RL, Wall GW, Leavitt 
SW, Kimball BA. 1999. Measuring wheat senescence with a 
digital camera. Crop Sci. 39:719–724. doi:10.2135/ 
cropsci1999.0011183X003900030019x.

Alshihabi O, Persson K, Söderström M. 2023. Post-processing 
yield maps of winter wheat using data from satellites and 
combines. In: Stafford J.V., editor. Precision agriculture ‘23. 
Wageningen, The Netherlands: Wageningen Academic 
Publishers; p. 523–530. doi:10.3920/978-90-8686-947-3_66.

Ashcroft PM, Catt JA, Curran PJ, Munden J, Webster R. 1990. 
The relation between reflected radiation and yield on the 
broadbalk winter wheat experiment. Remote Sens. 11 
(10):1821–1836.

Barmeier G, Hofer K, Schmidhalter U. 2017. Mid-season predic-
tion of grain yield and protein content of spring barley 

ACTA AGRICULTURAE SCANDINAVICA, SECTION B — SOIL & PLANT SCIENCE 13

https://doi.org/10.2135/cropsci1999.0011183X003900030019x
https://doi.org/10.2135/cropsci1999.0011183X003900030019x
https://doi.org/10.3920/978-90-8686-947-3_66


cultivars using high-throughput spectral sensing. Eur J 
Agron. 90:108–116. doi:10.1016/j.eja.2017.07.005.

Basso B, Antle J. 2020. Digital agriculture to design sustainable 
agricultural systems. Nat Sustain. 3:254–256. doi:10.1038/ 
s41893-020-0510-0.

Birrell SJ, Sudduth KA, Borgelt SC. 1996. Comparison of sensors 
and techniques for crop yield mapping. Comput 
Electron Agric. 14(2-3):215–233. doi:10.1016/0168-1699 
(95)00049-6.

Blackmore S. 2000. The interpretation of trends from multiple 
yield maps. Comput Electron Agric. 26:37–51. doi:10.1016/ 
S0168-1699(99)00075-7.

Blackmore S, Moore M. 1999. Remedial correction of yield map 
data. Precision Agriculture. 1:53–66. doi:10.1023/ 
A:1009969601387.

Blasch G, Li Z, Taylor JA. 2020. Multi-temporal yield pattern 
analysis method for deriving yield zones in crop production 
systems. Precis Agric. 21(6):1263–1290. doi:10.1007/s11119- 
020-09719-1.

Bouras EH, Olsson PO, Thapa S, Díaz JM, Albertsson J, Eklundh 
L. 2023. Wheat yield estimation at high spatial resolution 
through the assimilation of sentinel-2 data into a crop 
growth model. Remote Sens. 15(18):4425. doi:10.3390/ 
rs15184425.

Brandt P, Beyer F, Borrmann P, Möller M, Gerighausen H. 2024. 
Ensemble learning-based crop yield estimation: a scalable 
approach for supporting agricultural statistics. GIsci 
Remote Sens. 61(1):2367808. doi:10.1080/15481603.2024. 
2367808.

Curran P. 1980. Multispectral remote sensing of vegetation 
amount. Prog Phys Geography: Earth and Environ. 4 
(3):315–341. doi:10.1177/030913338000400301.

Delin S. 2005. Site-specific nitrogen fertilization demand in 
relation to plant available soil nitrogen and water [Acta 
Universitatis Agriculturae Sueciae, doctoral thesis. 2005:6. 
https://publications.slu.se/?file=publ/show&id=12509

ESA. 2024. Multispectral Instrument (MSI) Overview. https:// 
sentinels.copernicus.eu/en/web/sentinel/technical-guides/ 
sentinel-2-msi/msi-instrument (verified 2024-09-05).

European Parliament. 2016. Precision agriculture and the 
future of farming in Europe: scientific foresight study. 
European Parliament. https://data.europa.eu/doi/10. 
2861020809 (verified 2024-09-18).

Filippi P, Jones EJ, Wimalathunge NS, Somarathna PDSN, Pozza 
LE, Ugbaje SU, Jephcott TG, Paterson SE, Whelan BM, Bishop 
TF. 2019. An approach to forecast grain crop yield using 
multi-layered, multi-farm data sets and machine learning. 
Precision Agriculture. 20:1015–1029. doi:10.1007/s11119- 
018-09628-4.

Franz TE, Pokal S, Gibson JP, Zhou Y, Gholizadeh H, Tenorio FA, 
Wardlow B. 2020. The role of topography, soil, and remotely 
sensed vegetation condition towards predicting crop yield. 
Field Crops Res. 252:107788. doi:10.1016/j.fcr.2020.107788.

Gao BC. 1996. NDWI—a normalized difference water index for 
remote sensing of vegetation liquid water from space. 
Remote Sens Environ. 58(3):257–266. doi:10.1016/S0034- 
4257(96)00067-3.

Gaso DV, Berger AG, Ciganda VS. 2019. Predicting wheat grain 
yield and spatial variability at field scale using a simple 
regression or a crop model in conjunction with landsat 
images. Comput Electron Agric. 159:75–83. doi:10.1016/j. 
compag.2019.02.026.

Gu Y, Brown JF, Verdin JP, Wardlow B. 2007. A five-year analysis 
of MODIS NDVI and NDWI for grassland drought assessment 
over the central Great Plains of the United States. Geophys 
Res Lett. 34(6):L06407. doi:10.1029/2006GL029127.

Hunt ML, Blackburn GA, Carrasco L, Redhead JW, Rowland CS. 
2019. High resolution wheat yield mapping using Sentinel-2. 
Remote Sens Environ. 233:111410. doi:10.1016/j.rse.2019. 
111410.

Johnson GV, Raun WR. 2003. Nitrogen response index as a 
guide to fertilizer management. J Plant Nutr. 26(2):249– 
262. doi:10.1081/PLN-120017134.

Lachia N, Pichon L, Marcq P, Taylor J, Tisseyre B. 2021. Why are 
yield sensors seldom used by farmers–a French case study. 
In: Stafford J.V., editor. Precision agriculture ‘21. 
Wageningen, The Netherlands: Wageningen Academic 
Publishers; p. 745–751. doi:10.3920/978-90-8686-916-9_89.

Liao C, Wang J, Shan B, Song Y, He Y, Dong T. 2023. Near real- 
time yield forecasting of winter wheat using sentinel-2 
imagery at the early stages. Precision Agriculture. 24 
(3):807–829. doi:10.1007/s11119-022-09975-3.

Luo L, Sun S, Xue J, Gao Z, Zhao J, Yin Y, Luan X. 2023. Crop 
yield estimation based on assimilation of crop models and 
remote sensing data: A systematic evaluation. Agric Sys. 
210:103711. doi:10.1016/j.agsy.2023.103711.

Lyle G, Clarke K, Kilpatrick A, Summers DM, Ostendorf B. 2023. 
A spatial and temporal evaluation of broad-scale yield pre-
dictions created from yield mapping technology and 
landsat satellite imagery in the Australian Mediterranean 
dryland cropping region. ISPRS Int J Geoinf. 12(2):50. 
doi:10.3390/ijgi12020050.

Maestrini B, Basso B. 2018. Predicting spatial patterns of within- 
field crop yield variability. Field Crops Res. 219:106–112. 
doi:10.1016/j.fcr.2018.01.028.

Maestrini B, Basso B. 2021. Subfield crop yields and temporal 
stability in thousands of US Midwest fields. 
Precision Agriculture. 22:1749–1767. doi:10.1007/s11119- 
021-09810-1.

Martínez-Beltrán C, Osann Jochum MA, Calera A, Meliá J. 2009. 
Multisensor comparison of NDVI for a semi-arid environ-
ment in Spain. Int J Remote Sens. 30(5):1355–1384. doi:10. 
1080/01431160802509025.

Nissen K, Söderström M. 1999. Mapping in precision farming- 
from the farmer’s perspective. In: Stafford J.V., editor. 
Precision agriculture ‘99. Sheffield, UK: Sheffield Academic 
Press; p. 655–664.

Panek E, Gozdowski D, Stępień M, Samborski S, Ruciński D, 
Buszke B. 2020. Within-Field relationships between satel-
lite-derived vegetation indices, grain yield and spike 
number of winter wheat and triticale. Agronomy. 10 
(11):1842. doi:10.3390/agronomy10111842.

Perich G, Turkoglu MO, Graf LV, Wegner JD, Aasen H, Walter 
A, Liebisch F. 2023. Pixel-based yield mapping and predic-
tion from Sentinel-2 using spectral indices and neural net-
works. Field Crops Res. 292:108824. doi:10.1016/j.fcr.2023. 
108824.

Piikki K, Söderström M, Stadig H. 2022. Remote sensing and on- 
farm experiments for determining in-season nitrogen rates 
in winter wheat – options for implementation, model accu-
racy and remaining challenges. Field Crops Res. 289:108742. 
doi:10.1016/j.fcr.2022.108742.

Ping JL, Dobermann A. 2005. Processing of yield map data. 
Precis Agric. 6:193–212. doi:10.1007/s11119-005-1035-2.

14 O. ALSHIHABI ET AL.

https://doi.org/10.1016/j.eja.2017.07.005
https://doi.org/10.1038/s41893-020-0510-0
https://doi.org/10.1038/s41893-020-0510-0
https://doi.org/10.1016/0168-1699(95)00049-6
https://doi.org/10.1016/0168-1699(95)00049-6
https://doi.org/10.1016/S0168-1699(99)00075-7
https://doi.org/10.1016/S0168-1699(99)00075-7
https://doi.org/10.1023/A:1009969601387
https://doi.org/10.1023/A:1009969601387
https://doi.org/10.1007/s11119-020-09719-1
https://doi.org/10.1007/s11119-020-09719-1
https://doi.org/10.3390/rs15184425
https://doi.org/10.3390/rs15184425
https://doi.org/10.1080/15481603.2024.2367808
https://doi.org/10.1080/15481603.2024.2367808
https://doi.org/10.1177/030913338000400301
https://publications.slu.se/?file=publ/show%26id=12509
https://sentinels.copernicus.eu/en/web/sentinel/technical-guides/sentinel-2-msi/msi-instrument
https://sentinels.copernicus.eu/en/web/sentinel/technical-guides/sentinel-2-msi/msi-instrument
https://sentinels.copernicus.eu/en/web/sentinel/technical-guides/sentinel-2-msi/msi-instrument
https://data.europa.eu/doi/10.2861/020809
https://data.europa.eu/doi/10.2861/020809
https://doi.org/10.1007/s11119-018-09628-4
https://doi.org/10.1007/s11119-018-09628-4
https://doi.org/10.1016/j.fcr.2020.107788
https://doi.org/10.1016/S0034-4257(96)00067-3
https://doi.org/10.1016/S0034-4257(96)00067-3
https://doi.org/10.1016/j.compag.2019.02.026
https://doi.org/10.1016/j.compag.2019.02.026
https://doi.org/10.1029/2006GL029127
https://doi.org/10.1016/j.rse.2019.111410
https://doi.org/10.1016/j.rse.2019.111410
https://doi.org/10.1081/PLN-120017134
https://doi.org/10.3920/978-90-8686-916-9_89
https://doi.org/10.1007/s11119-022-09975-3
https://doi.org/10.1016/j.agsy.2023.103711
https://doi.org/10.3390/ijgi12020050
https://doi.org/10.1016/j.fcr.2018.01.028
https://doi.org/10.1007/s11119-021-09810-1
https://doi.org/10.1007/s11119-021-09810-1
https://doi.org/10.1080/01431160802509025
https://doi.org/10.1080/01431160802509025
https://doi.org/10.3390/agronomy10111842
https://doi.org/10.1016/j.fcr.2023.108824
https://doi.org/10.1016/j.fcr.2023.108824
https://doi.org/10.1016/j.fcr.2022.108742
https://doi.org/10.1007/s11119-005-1035-2


Raun WR, Johnson GV. 1999. Improving nitrogen use efficiency 
for cereal production. Agron J. 91(3):357–363. doi:10.2134/ 
agronj1999.00021962009100030001x.

Raun WR, Solie JB, Johnson GV, Stone ML, Lukina EV, Thomason 
WE, Schepers JS. 2001. In-season prediction of potential 
grain yield in winter wheat using canopy reflectance. 
Agron J. 93(1):131–138. doi:10.2134/agronj2001.931131x.

R Core Team. 2023. R: A language and environment for statisti-
cal computing. Vienna, Austria: R Foundation for Statistical 
Computing. URL https://www.R-project.org/.

Reusch S. 2003. Optimisation of oblique-view remote measure-
ment of crop N-uptake under changing irradiance con-
ditions. Precision agriculture: Papers from the 4th 
European Conference on Precision Agriculture: 
Wageningen Academic Publishers. 573–578.

Reyns P, Missotten B, Ramon H, De Baerdemaeker J. 2002. A 
review of combine sensors for precision farming. Precis 
Agric. 3:169–182. doi:10.1023/A:1013823603735.

Rouse JW, Haas RH, Schell JA, Deering DW. 1974. Monitoring 
vegetation systems in the Great Plains with Erts. NASA 
Special Publication. 351:309.

Sadeh Y, Zhu X, Dunkerley D, Walker JP, Chen Y, Chenu K. 2024. 
Versatile crop yield estimator. Agron Sustain Develop. 44 
(4):1–22. doi:10.1007/s13593-024-00974-4.

SCB, Statistics Sweden. 2019. Kvalitetsdeklaration Skörd av 
spannmål, trindsäd och oljeväxter. https://www.scb.se/ 
contentassets/462f77b26e0d4febbbaab8b204d960f5/jo0601_ 
kd_2019_gl_20191213.pdf (verified 2024-07-17; in Swedish).

Schnug E, Murphy D, Evans E, Haneklaus S, Lamp J. 1993. Yield 
mapping and application of yield maps to computer-aided 
local resource management. In: Robert P. C., Rust R. H., 
Larson W.E., editors. Proceedings of soil specific crop man-
agement: A workshop on research and development 
issues. WI, USA: American Society of Agronomy, Crop 
Science Society of America, Soil Science Society of 
America; p. 87–93. doi:10.2134/1993.soilspecificcrop.c7.

Schueller JK, Bae YH. 1987. Spatially attributed automatic 
combine data acquisition. Comput Electron Agric. 2 
(2):119–127. doi:10.1016/0168-1699(87)90022-6.

Shuai G, Basso B. 2022. Subfield maize yield prediction 
improves when in-season crop water deficit is included in 
remote sensing imagery-based models. Remote Sens 
Environ. 272:112938. doi:10.1016/j.rse.2022.112938.

Simbahan GC, Dobermann A, Ping JL. 2004. Screening yield 
monitor data improves grain yield maps. Agron J. 96 
(4):1091–1102. doi:10.2134/agronj2004.1091.

Sims DA, Gamon JA. 2002. Relationships between leaf pigment 
content and spectral reflectance across a wide range of 
species, leaf structures and developmental stages. Remote 
Sens Environ. 81(2):337–354. doi:10.1016/S0034-4257 
(02)00010-X.

Söderström M, Piikki K, Stadig H. 2021. Yield maps for everyone 
- scaling drone models for satellite-based decision support. 
In: Stafford J.V., editor. Precision agriculture ‘21. 
Wageningen, The Netherlands: Wageningen Academic 
Publishers; p. 911–918. doi:10.3920/978-90-8686-916-9_109.

Söderström M, Piikki K, Stenberg M, Stadig H, Martinsson J. 
2017. Producing nitrogen (N) uptake maps in winter wheat 
by combining proximal crop measurements with sentinel- 
2 and DMC satellite images in a decision support system 
for farmers. Acta Agriculturae Scandinavica, Section B — 
Soil & Plant Science. 67(7):637–650. doi:10.1080/09064710. 
2017.1324044.

Stafford JV, Ambler B, Lark RM, Catt J. 1996. Mapping and inter-
preting the yield variation in cereal crops. Comput Electron 
Agric. 14(2-3):101–119. doi:10.1016/0168-1699(95)00042-9.

Stettmer M, Mittermayer M, Maidl F-X, Schwarzensteiner J, 
Hülsbergen K-J, Bernhardt H. 2022. Three methods of site- 
specific yield mapping as a data source for the delineation 
of management zones in winter wheat. Agriculture. 
12:1128. doi:10.3390/agriculture12081128.

Sudduth K, Drummond ST. 2007. Yield editor : software for 
removing errors from crop yield maps. Agron J. 99 
(6):1471–1482. doi:10.2134/agronj2006.0326.

Swedish Board of Agriculture. 2019. Standard yields for yield 
survey districts, counties and the whole country in 20.019. 
https://jordbruksverket.se/download/18. 
514d3694172cce07237d52f6/1624262130865/JO15SM1901. 
pdf (verified 2024-07-17; in Swedish).

Swedish Environmental Protection Agency. 2023. Nationella 
Marktäckdata (land cover of Sweden). Available online: 
https://www.naturvardsverket.se/verktyg-och-tjanster/kartor- 
och-karttjanster/nationella-marktackedata/ladda-ner-nation 
ella-marktackedata/.

Thylén L, Algerbo PA, Giebel A. 2000. An expert filter removing 
erroneous yield data. In: Robert P. C., Rust R. H., Larson W.E., 
editor. Proceedings of the 5th international conference on 
precision agriculture. Madison, WI, USA: American Society 
of Agronomy; p. 1–9.

Ulfa F, Orton TG, Dang YP, Menzies NW. 2022. Developing and 
testing remote-sensing indices to represent within-field 
variation of wheat yields: assessment of the variation 
explained by simple models. Agronomy. 12:384. doi:10. 
3390/agronomy12020384.

United Nations. 2015. Transforming our World: The 2030 
Agenda for Sustainable Development. A/RES/70/1. https:// 
sdgs.un.org/sites/default/files/publications/21252030%20 
Agenda%20for%20Sustainable%20Development%20web. 
pdf (verified 2024-09-05).

Vallentin C, Harfenmeister K, Itzerott S, Kleinschmit B, Conrad C, 
Spengler D. 2022. Suitability of satellite remote sensing 
data for yield estimation in northeast Germany. 
Precision Agriculture. 23:52–82. doi:10.1007/s11119-021- 
09827-6.

Zadoks JC, Chang TT, Konzak CF. 1974. A decimal code for the 
growth stages of cereals. Weed Res. 14(6):415–421. doi:10. 
1111/j.1365-3180.1974.tb01084.x.

Zhang T, Su J, Liu C, Chen W, Liu H, Liu G. 2017. Band selection 
in sentinel-2 satellite for agriculture applications. 
Proceedings of 2017 23rd International Conference on 
Automation and Computing (ICAC), September 2017. 1–6. 
doi:10.23919/IConAC.2017.8081990.

ACTA AGRICULTURAE SCANDINAVICA, SECTION B — SOIL & PLANT SCIENCE 15

https://doi.org/10.2134/agronj1999.00021962009100030001x
https://doi.org/10.2134/agronj1999.00021962009100030001x
https://doi.org/10.2134/agronj2001.931131x
https://www.R-project.org/
https://doi.org/10.1023/A:1013823603735
https://doi.org/10.1007/s13593-024-00974-4
https://www.scb.se/contentassets/462f77b26e0d4febbbaab8b204d960f5/jo0601_kd_2019_gl_20191213.pdf
https://www.scb.se/contentassets/462f77b26e0d4febbbaab8b204d960f5/jo0601_kd_2019_gl_20191213.pdf
https://www.scb.se/contentassets/462f77b26e0d4febbbaab8b204d960f5/jo0601_kd_2019_gl_20191213.pdf
https://doi.org/10.2134/1993.soilspecificcrop.c7
https://doi.org/10.1016/0168-1699(87)90022-6
https://doi.org/10.1016/j.rse.2022.112938
https://doi.org/10.2134/agronj2004.1091
https://doi.org/10.1016/S0034-4257(02)00010-X
https://doi.org/10.1016/S0034-4257(02)00010-X
https://doi.org/10.3920/978-90-8686-916-9_109
https://doi.org/10.1080/09064710.2017.1324044
https://doi.org/10.1080/09064710.2017.1324044
https://doi.org/10.1016/0168-1699(95)00042-9
https://doi.org/10.3390/agriculture12081128
https://doi.org/10.2134/agronj2006.0326
https://jordbruksverket.se/download/18.514d3694172cce07237d52f6/1624262130865/JO15SM1901.pdf
https://jordbruksverket.se/download/18.514d3694172cce07237d52f6/1624262130865/JO15SM1901.pdf
https://jordbruksverket.se/download/18.514d3694172cce07237d52f6/1624262130865/JO15SM1901.pdf
https://www.naturvardsverket.se/verktyg-och-tjanster/kartor-och-karttjanster/nationella-marktackedata/ladda-ner-nationella-marktackedata/
https://www.naturvardsverket.se/verktyg-och-tjanster/kartor-och-karttjanster/nationella-marktackedata/ladda-ner-nationella-marktackedata/
https://www.naturvardsverket.se/verktyg-och-tjanster/kartor-och-karttjanster/nationella-marktackedata/ladda-ner-nationella-marktackedata/
https://doi.org/10.3390/agronomy12020384
https://doi.org/10.3390/agronomy12020384
https://sdgs.un.org/sites/default/files/publications/21252030%20Agenda%20for%20Sustainable%20Development%20web.pdf
https://sdgs.un.org/sites/default/files/publications/21252030%20Agenda%20for%20Sustainable%20Development%20web.pdf
https://sdgs.un.org/sites/default/files/publications/21252030%20Agenda%20for%20Sustainable%20Development%20web.pdf
https://sdgs.un.org/sites/default/files/publications/21252030%20Agenda%20for%20Sustainable%20Development%20web.pdf
https://doi.org/10.1007/s11119-021-09827-6
https://doi.org/10.1007/s11119-021-09827-6
https://doi.org/10.1111/j.1365-3180.1974.tb01084.x
https://doi.org/10.1111/j.1365-3180.1974.tb01084.x
https://doi.org/10.23919/IConAC.2017.8081990

	Abstract
	Introduction
	Materials and methods
	Study area
	Yield data
	Satellite data
	Data preparation
	Data analyses

	Results
	Descriptive statistics
	Overview of model performance
	Performance of different VI combinations
	Performance at different resolutions
	Spatial patterns of observed and predicted yields
	Evaluating the best model for the development of management zones
	Test on independent farms

	Discussion
	Model accuracy
	A proposed dynamic modelling framework for yield mapping
	Potential use of maps for delineation of management zones and yield stability maps

	Conclusions
	Acknowledgements
	Disclosure statement
	Data availability statement
	Author contribution
	Ethical approval
	Notes on contributors
	References

