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A B S T R A C T   

Quantifying above ground biomass (AGB) and its spatial distribution can significantly contribute to monitor 
carbon stocks as well as the carbon storage dynamics in forests. For effective forest monitoring and management 
in the case of complex tropical Indian forests, there is a need to obtain reliable estimates of the amount of carbon 
sequestration at regional as well as national levels, but the estimation of biomass is quite challenging. The main 
objective of the study is to validate the usefulness of the gridded above ground biomass density (AGBD) estimates 
(ton/ha) of the spaceborne LiDAR Global Ecosystem Dynamics Investigation data (GEDI L4B, Version 2) across 
two tropical heterogeneous forests in India, Betul and Mudumalai forests. Methodology includes, for each forest 
area, a linear regression model which predicts AGB from Sentinel-2 MSI data was developed using ground 
reference data and comparing it with the GEDI AGBD values. The AGB model for the Betul forests in Central India 
had a RMSE of 13.9 ton/ha, relative RMSE = 8.7% and a R2 of 0.88, with a bias of − 0.28 ton/ha, and a com-
parison between modelled AGB and GEDI gridded AGBD at 1 km resolution show a relatively strong correlation 
(0.66) and no or little bias. It also found that GEDI AGBD footprint value is underestimated compared to the AGB 
according to the Sentinel-2 model. For the Mudumalai forest in southern India, the AGB model had an RMSE of 
29.1 ton/ha, relative RMSE = 10.8%, and an R2 of 0.79 and a bias of − 0.022. The correlation between modelled 
AGB and gridded GEDI AGBD was 0.84, and GEDI AGBD is underestimated compared to AGB from the Sentinel-2 
model. The field values of AGB of Betul lies between 42.2 ton/ha and 238.8 ton/ha and for the Mudumalai 
forests, the AGB lies between 75.9 ton/ha and 353.6 ton/ha. The results indicates that the GEDI gridded AGBD 
underestimates AGB, and that the model used to produce the gridded AGBD product needs to be adjusted to 
provide reliable information on the carbon balance and its changes over time for the type of Indian forests that 
exists in the two test areas.   

1. Introduction 

Accurate predictions of above ground biomass (AGB) is useful for 
comparing structural and functional attributes of forest ecosystem 
(Barbosa et al., 2014; Hall et al., 2006; Li et al., 2020; Mitchard, 2018; 
Palma et al., 2021). The impact of carbon loss due to deforestation and 
forest degradation and the effect of ecosystem functional characteristics 
can be obtained by understanding the regional as well as global changes 
in AGB (Feng et al., 2022; Houghton, 2005; Jung et al., 2021; Li et al., 
2020). Information on the spatial distribution of AGB can potentially 
contribute in forest management, carbon source and sink investigations, 
and is critical to understand implications of climate change on forest 
structure (Baccini et al., 2017; Piao et al., 2022; Slik et al., 2013; Wulder 
et al., 2020). Various approaches are there for the estimation of AGB, in 

which field measurements are most accurate but it is quite challenging 
due to the unavailability of suitable data sets, varying localities and 
difficulties in accessibility (Basuki et al., 2009; Lu et al., 2016; Mutanga 
et al., 2012; Torre-Tojal et al., 2022). 

In India, estimates of carbon stocks for whole states and the entire 
country has regularly been made by the Forest Survey of India (FSI) an 
organisation under the ministry of environments and forests, govern-
ment of India (Ravindranath et al., 2008; Wani et al., 2012). FSI 
launched the Indian National Forest Inventory (NFI) in 2003 with the 
aim to provide reliable estimates of growing stock in forest and for trees 
outside forest (Tewari et al. (2016); Thakur, 2018). The primary 
objective of the NFI is to assess growing stock of trees, number of trees, 
bamboo, soil carbon, carbon stock in India’s forests, invasive species and 
other parameters depicting forest health and growth using a grid-based 
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sampling scheme (FSI, 1996;Thakur, 2018). FSI estimates carbon stock 
in different pools at the national and state level using the NFI data 
following the methodology of Good Practices Guidance (GPG) devel-
oped by Intergovernmental Panel on Climate Change (IPCC), 2001 
(Forest Survey of India, 2021). The forest carbon stock in Indian forests 
for 2021 has been estimated to 7204.0 Million tonnes and very dense 
and dense forest constitute 57% of the total forest cover (India State of 
Forest Report (ISFR), 2021). 

The use of remote sensing has the potential to provide cost-effective 
estimates of biomass compared to the labour intensive, costly and time- 
consuming traditional techniques (Couteron et al., 2012; Timothy et al., 
2016). Remote sensing also has the advantage to cover inaccessible 
areas and it might be a cost-efficient way to get estimates of biomass 
across countries such as India. Various studies have estimated forest 
AGB in India using optical satellite data (Devagiri et al., 2013; Ghosh 
et al., 2021; Ghosh and Behera, 2018; Jha et al., 2015; Nandy et al., 
2019; Pargal et al., 2017; Singh et al., 2024) and Synthetic Aperture 
Radar (SAR) data (Ali and Khati, 2024; Kumar et al., 2019; Thumaty 
et al., 2016). Some studies have used the combination of Optical and 
SAR data for the estimation of AGB (Prakash et al., 2024; Sinha et al., 
2019). Several studies on carbon pools, AGB and carbon density 
(Chhabra et al., 2002; Dadhwal et al., 2009;Haripriya, 2000; Jha et al., 
2015;Pargal et al., 2017; Raha et al., 2020; Ravindranath et al., 1997; 
Ravindranath et al., 2008; Vashum and Jayakumar, 2012) were utilized 
for both national and international reporting of India’s total carbon 
stock (Sodhi (2021). Several of these studies are limited to a particular 
methodology and are region specific (Bijalwan et al., 2010; Kale et al., 
2009; Ramachandran et al., 2007; Ravindranath and Ostwald, 2008; 
Salunkhe et al., 2018). Airborne (Light Detection and Ranging) LiDAR is 
a remote sensing technique that can be used to produce map with esti-
mated forest variables such as AGB across large areas (Gao et al., 2022; 
Georgopoulos et al., 2023; Nilsson et al., 2017, Packalén and Maltamo, 
2007). LiDAR has already been used in India to retrieve certain forest 
structural parameters such as AGB (Mangla et al., 2016; Véga et al., 
2015), diameter at breast height (dbh) (Reddy et al., 2018), tree volume 
(Mayamanikandan et al., 2019) as well as tree height (Bhattacharjee 
et al., 2019). Several studies demonstrates the potential of using data 
from the second generation of the Ice, Cloud,and land Elevation Satellite 
(ICESat-2) and the Global Ecosystem Dynamics Investigation (GEDI) to 
estimate forest stand height and AGB in India (e.g., Musthafa and Singh, 
2022; Nandy et al., 2021). GEDI provides an unprecedented sampling 
density of forest structural properties (Dubayah et al., 2020; Guo et al., 
2023; Liang et al., 2023; Potapov et al., 2021). It has, for example been 
shown that GEDI L2A data can be used to estimate AGB on a stand level 
with an root mean square error (RMSE) of 27.26% in northern India, but 
the GEDI AGB estimates was generally lower than the field observed 
(Musthafa and Singh, 2022). 

The biomass estimation by application of high resolution charac-
terisation of vertical canopy structure using LiDAR data as well as time 
series remote sensing data through novel modelling approaches are a 
prerequisite for effective forest monitoring and management in the case 
of complex and partly inaccessible tropical forests in India. The Sentinel- 
2 Multi-Spectral Instrument (MSI) have potential applications in esti-
mating or classifying forest biophysical variables such as tree cover (e.g., 
Godinho et al., 2018), AGB (e.g., Majasalmi and Rautiainen, 2016; 
Pandit et al., 2018; Persson et al., 2021), AGB change (Puliti et al., 
2021), growing stock volume (e.g., Chrysafis et al., 2017; Mura et al., 
2018), tree species (e.g., Grabska et al., 2019), and riparian vegetation 
(Daryaei et al., 2020). Spectral band values and spectral-derived vege-
tation indices from Sentinel-2 can also be used for accurate and timely 
estimation of AGB in sub-tropic (Nuthammachot et al., 2018, 2020; 
Pandit et al., 2018) and tropical forests (Malhi et al., 2022). The 
spaceborne LiDAR data are not spatially continuous and therefore we 
need the integration of LiDAR metrics with continuous spectral time 
series remote sensing data for obtaining comprehensive and continuous 
AGB spatial distribution (Jiang et al., 2021; Jiang et al., 2022; Li et al., 

2020). Sentinel 2 spectral data provides the possibility to continuously 
map and monitor AGB across Indian forests and GEDI enables access to 
LiDAR data for assessing forest structural properties at larger spatial 
scales and shorter temporal resolution previously attainable only from 
optical satellite-based data. Certain studies have utilized combination of 
spectral variables from Sentinel-2 and ICESat-2 data (Nandy et al., 2021) 
to provide improved estimate of forest height and AGB in sub-tropical 
forests, but studies utilising optical and spaceborne LiDAR for forest 
AGB estimation in highly biodiverse tropical forest regions is very 
limited (Musthafa and Singh, 2022). It is also evident that applicability 
of GEDI to capture vegetation structure across large spatial extents is 
limited as GEDI consists of footprints of discrete laser beams repre-
senting a point sample, which specifies the need to be combined with 
other sources of information (Xi et al., 2022). There are also other 
studies which emphasised the significance of multisource data integra-
tion for improved biomass estimation (Shendryk (2022); Yang et al., 
2023). 

There is a need to evaluate the potential of GEDI in combination with 
spectral data sets to improve AGB estimation and for effective forest 
monitoring and management in the case of complex inaccessible tropical 
forests in India. However, we can therefore utilise reliable AGB esti-
mates from GEDI products, especially the gridded (preferably in com-
bination with field data and time series spectral data in a statistical 
approach) to improve the quality of the carbon data used for, for 
example international reporting. The main objective of this study was 
thus to investigate the possible use of the GEDI above ground biomass 
density (AGBD) data to assess the total amount of AGB in Indian tropical 
forests, where AGB is the mass (e.g., ton) and AGBD is the mass per unit 
area (e.g. ton/ha). Our approach was to first create a model estimating 
AGB using Sentinel 2 spectral data as independent variables and then, in 
a second step, compare the GEDI footprint AGBD and the gridded (1 km 
× 1 km) AGBD product with AGBD values from the model developed. 

2. Materials and methods 

2.1. Study area 

India possesses extremely diverse and heterogeneous forest ecosys-
tems whose forests accounts for one fifth of the geographical area and 
the vegetation types varies from Himalayas in the north to Western 
Ghats in south (Reddy et al., 2015). Betul forests, located in the central 
part of India, and the Mudumalai forest in southern India was selected as 
study areas (Fig. 1). Betul forest lies between 21◦22′ and 22◦24′ N 
longitude and 77◦04′ and 78◦33′ E latitude in the state of Madhya Pra-
desh, with strong seasonality during monsoon and winter and the leaf- 
off season from April–May. The elevation varies from 442 m to 1133 
m above mean sea level and the forest soils include black cotton soil, stiff 
clayey soil and the average rainfall varying from1959 mm to 1301 mm. 
Betul forest comprises of mixed deciduous forests (dominated by teak), 
tropical dry deciduous forests, moist deciduous teak forests (with or 
without bamboo), dry deciduous teak forests (with or without bamboo), 
bamboo forests, Southern tropical moist deciduous teak forests, south-
ern tropical dry deciduous forests, dry teak forests, Boswellia forests, 
and tropical thorn forests (Kumar and Khanna, 1998; Lale et al., 2020; 
Singh and Moharir, 2003). The tree species mainly seen are Terminalia 
crenulata, Ougeinia oojeinensis, Adina cordifolia, Anogeissus latifolia, 
Gardenia latifolia and Tectona grandis (Jha et al., 2013; Mayamani-
kandan et al., 2019) with an average stand height about 22 m (Jha et al., 
2013; Rodda et al., 2023). The Mudumalai forest is a part of the Western 
Ghats that covers an area of 321 km2, located (11◦30′55.95”N, 
76◦13′34.63″E and 11◦ 4′11.38”N, 76◦22′40.95″E) in the state of Tam-
ilnadu with leaf less stages during December–February and leaf expan-
sion stages from May–July (Suresh and Nanda, 2021). The elevation of 
Mudumalai forest is ranging from 300 m to 1200 m at sea level with 
undulating topography with red and black soils having different pro-
portions of clay and sand. It comprises of mainly tropical dry deciduous 
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forests, tropical deciduous forests, tropical moist deciduous forests, dry 
thorn forests, tropical semi-evergreen forests, moist bamboo brakes, and 
riparian forests, with an average stand height of 20 —25 m (Champion 
and Seth, 1968). The average annual rainfall is approximately 900 to 
1600 mm, received mainly between May and November (Kishore et al., 
2024; Murali and Sukumar, 1994; Nath et al., 2006; Sukumar et al., 
1992). 

2.2. Data sets used 

As mentioned above, GEDI L4B gridded AGBD data and L4A foot-
print AGBD data were compared with AGBD estimated using Sentinel-2 
spectral data as independent variables (Table 1). We also examined and 
compared the relationship between forest height and AGBD for GEDI 
and our field measurements. 

2.2.1. Field data 
The field data which was collected during March–October 2019 is 

provided by the Indian Institute of Space Science and Technology (IIST). 
Available field data consists of biomass values of 112 square sized plots 
(100 m × 100 m) for Betul forests and 52 plots for Mudumalai forests. All 
plots were geo-located using DGPS. Each plot was sub-divided into 25 
quadrants of 0.04 ha (20 × 20 m) and measurements were taken in 10 
randomly selected quadrants in each plot. A total station was used to 
delineate and mark the boundaries of the selected quadrants (Maya-
manikandan et al., 2022; Rajashekar et al., 2018). In each quadrant, 
diameter, and height, were measured, species or family name were 
registered and volume was estimated using species specific allometric 
functions using diameter as independent variable (FSI, 1996). AGB was 
estimated for all trees by multiplying tree volume by wood density (FSI, 
1996) using a diameter threshold of dbh ≥ 10 cm for stems and 5 cm for 
branches. Quadrant level AGBD was estimated as the sum of AGB for all 
individual trees within each quadrant divided by the quadrant size 
(0.04 ha). 

The forest AGBD in the study area Betul lies between 42.2 ton/ha and 
238.8 ton/ha according to the field survey, with an average value of 
139.4 ton/ha (Table 2). For Mudumalai forests, the AGBD lies between 
75.9 ton/ha and 353.6 ton/ha, and the average value of 268.6 ton/ha. 
The distribution of AGBD for two regions are shown in the histogram 
(Fig. 2). 

2.2.2. GEDI data 
GEDI was launched by National Aeronautics and Space Administra-

tion (NASA) on December 5, 2019 and it is the first spaceborne full 
waveform LiDAR with a high resolution ranging instrument which 
produces the 3D structure of the Earth between 51.6◦ N and 51.6◦ S 
(Dubayah et al., 2022; Duncanson et al., 2020). GEDI height data is in 
25 m resolution and GEDI also provides data related to quantitative, 
global, and transparent assessments of the spatial distribution of carbon 
stocks in the world’s forests at both foot print level and for 1 km grid 

Fig. 1. Study areas, the field plots locations and the GEDI L4A and L2A footprints distribution across Betul forest and Mudumalai Forest, including the used Sentinel 
2 images. 

Table 1 
Data sets used in the study.  

Data sets used Details 

GEDI L2A Relative Height (RH, m) of 2019 Spatial Resolution: Footprints 
~25 m in diameter 
Temporal Resolution: Varies 

GEDI, L4AGEDI, 
L4B 

Above Ground Biomass Density, Ton/ha) data (GEDI L4A 
Published on 2019-04-18) at the scale of individual footprints 
Spatial Resolution: Footprints ~25 m in diameter 
Temporal Resolution: One-time estimate 
AGBD (Ton/ha) 1 km gridded- mean AGBD (GEDI L4B Published 
on 2022-03-29) Spatial Resolution: 1 km Temporal Resolution: 
One-time estimates 

Sentinel-2 Spectral data of 2019 (Level 2A November 28, 2019 for Betul 
Forest, Level-1C tile from February 23, 2019 for Mudumalai 
Forest) Spatial Resolution: 10 to 60-m pixel size Temporal 
Resolution: 5 days 

Field data Plot level (100 m × 100 m) AGBD(Ton/ha), collected March – 
October 2019  
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cells along with associated uncertainties (Dubayah et al., 2022). 
The GEDI instrument comprises of 3 lasers that emits pulses along 8 

parallel tracks and each pulse or footprint is separated by 60 m along 
track and 600 m across track with a footprint diameter of 25 m. The 
main data used includes AGBD at the scale of individual footprints (GEDI 
L4A) and the 1 km × 1 km (1 km, hereafter) gridded GEDI L4B AGBD, 
both from ORNL DAAC, and Relative Height (RH_99 of L2 A GEDI) from 
the Land Processes Distributed Active Archive Center (LP DAAC). In 
GEDI, a sophisticated post-processing algorithm is available to the 
received waveforms from the GEDI instrument to detect weaker wave-
form signals. The “algorithm setting group” is defined as the specific set 
of parameters used in an algorithm run which includes six (i.e., 1, 2, 3, 4, 
5, 6, and 10) defined groups (A value of 10 indicates algorithm setting 
group 5 has been used, but that the lowest detected mode is likely a noise 
detection and when this occurs, a higher mode has been used to calcu-
late RH metrics) (Hofton et al., 2020). The geolocation group and the 
agbd_prediction group of GEDI L4A have footprint data for each “algo-
rithm setting group” and the variables are *_aN, where N is 1, 2, 3, 4, 5, 
6, or 10. GEDI L4A models are stratified into five plant functional types 
(PFTs) PFTs including ENT: evergreen needle leaf trees, EBT: evergreen 
broadleaf trees), DBT: deciduous needleleaf trees, DNT: deciduous 
broadleaf trees, GSW: grasses, shrubs and woodlands). The selected 
study areas belongs to PFTs DBT and EBT. For the different geographic 
strata, there will be considerable variability in model performance 
(Duncanson et al., 2022). 

In total, 16 granules of GEDI L2 A data containing ground elevation, 
canopy top height, relative height (RH) metrics, quality flags, and 
sensitivity values (Dubayah et al., 2021; GEDI, 2021) and AGBD data 
from 18 GEDI L4A granules were downloaded for the Betul test area 

(Fig. 1). RH is the height at which a certain quantile returned energy is 
reached relative to the ground, and canopy top height is computed by 
subtracting the elevation of the highest detected return from the ground 
(Dubayah et al., 2020; Hofton et al., 2002). The GEDI finder tool was 
utilized to find the specific granules from 2019 intersecting the Betul test 
site, and the GEDI_subsetter.py tool was used to download the L2A 
granules from the LP DAAC data user resources repository and to convert 
them to GeoJSON format. The GEDI L4A data were downloaded in the 
Hierarchical Data Format (HDF5) for the year 2019 and converted to 
shapefiles using a Python script. 

A model calibration method using simulated GEDI waveforms and a 
cross validation framework has been developed to ensure geographic 
transferability of AGBD (Hancock et al., 2019; Kellner et al., 2017). The 
L4A products are footprint level predictions of aboveground biomass 
density for individual footprints obtained by parametric models that 
linearize the relationship between L2A relative height metrics with field 
plot estimates of AGBD (Dubayah et al., 2020). Other than AGBD, the 
GEDI L4A datasets also includes variables such as the associated un-
certainty metrics, quality flags, and model inputs including the scaled 
and transformed GEDI L2A RH metrics and footprint geolocation vari-
ables (GEDI L4A Footprint Level AGBD, Version 1 (ornl.gov)). 

GEDI L4B product is also used in the study which contains estimates 
of mean AGBD (1 km) based on observations from GEDI mission 
(Dubayah et al., 2022). The data is available in GeoTIFF format in which 
each file provides estimates of mean AGBD. The GEDI L4B gridded 
AGBD used hybrid estimation to create an exhaustive coverage of non- 
overlapping 1 km × 1 km mean AGBD estimates (Dubayah et al., 
2022), together with the corresponding estimated standard error. The 
estimated standard errors accounts for both model uncertainty and 

Table 2 
Descriptive statistics of GEDI data and field data of Betul and Mudumalai Forests.  

Forest Data sets Variable No of shots or 
plots 

Minimum Maximum Mean Standard 
deviation  

GEDI L4A AGBD (Ton/ha) 141* 0.8 356.8 88.1 70.9  
GEDI L2A Relative height (m) 141* 3.4 37.9 17.0 7.0 

Betul Forest GEDI L4B Gridded aboveground biomass density (AGBD) 
(Ton/ha) (1 km) 

– 6.5 194.17 71.3 17.2  

Betul Forest field 
measurements 

AGBD (Ton/ha) 112 42.2 238.8 139.4 44.2  

GEDI L4A AGBD (Ton/ha) 241* 8.0 889.8 148.0 216.9 
Mudumalai 

Forest 
GEDIL2A Relative height (m) 241* 3.25 36.8 12.7 11.3  

GEDIL4B Gridded aboveground biomass density (AGBD) 
(Ton/ha) (1 km) 

– 12.2 429.7 160.4 94.2  

Mudumalai Forest field 
measurements 

AGBD (Ton/ha) 52 94.4 353.6 290.1 71.9  

* Number of available shots with acceptable uncertainty (GEDI L4A beam sensitivity threshold = 0.98 and, GEDI L2A beam sensitivity threshold = 0.95). 

Fig. 2. Field AGBD distribution across Betul and Mudumalai forests.  
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uncertainty related to the GEDI sample within a single grid cell. AGBD 
from the GEDI data, RH and the field observed AGBD are shown in 
Table 2. 

Similarly, for Mudumalai forest 25 GEDI L4A granules and 25 GEDI 
L2A granules were downloaded in the Hierarchical Data Format (HDF5) 
for the year 2019, and converted to shapefiles using Python script. We 
also downloaded GEDI L4B AGBD gridded data for the given study area 
which is in the GeoTiFF format. 

The sample plot locations and the spatial distribution of the GEDI 
granules across the Betul and Mudumalai forests are presented in the 
Fig. 1. In the figure, only filtered GEDI AGBD values are shown, since 
GEDI shots which are no data values and the footprints located outside 
forest masks were excluded. The GEDI L4A and L2A footprints are rep-
resented differently as red dots for L4A and green for L2A foot prints. 

2.2.3. Filtering and selection of appropriate GEDI data 
A flow chart depicting the methods used is shown in the Fig. 3. In the 

GEDI L4A footprint data, AGBD is reported for each algorithm setting 
group AGBD 1, 2, 3, 4, 5, 6, or 10. The l4_quality_flag uses a beam 
sensitivity threshold of 0.95, which is an estimate of the maximum 
canopy cover that can be penetrated considering the signal-to-noise 
ratio of the waveform. For dense tropical forests, Dubayah et al. 
(2021) concludes that the beam sensitivity threshold should be higher to 
minimize measurement error in the RH metrics. Thus, we filtered the 
GEDI data of both forests based on the beam sensitivity threshold of 
0.98, meaning that shots with a beam sensitivity below the value were 
discarded. The shots having no data values (− 9999) of AGBD values 
were also discarded. We selected only the footprints located on forest-
land for the study utilising google satellite imagery with CRS EPSG: 
3857 - WGS 84 (Map data ©2015 Google) from QuickMapServices 
plugin in QGIS. 

2.2.4. Sentinel-2 data 
European Space Agency’s Sentinel-2 satellites (Sentinel-2 A 

launched in June 2015 and Sentinel-2B in March 2017) provide medium 
to high spatial resolution images, both carry the MSI. The mission have 
wide applications including monitoring of forests and vegetation, soils 
and water cover and have high revisit frequency (5 days). A Sentinel-2 
MSI Level-2 A tile (cloud free) from November 28, 2019 for Betul for-
ests was downloaded from Copernicus open access hub using QGIS Semi- 
Automatic Classification Plugin (SCP) (Congedo, 2021). Sentinel-2 MSI 
has 13 spectral bands ranging from 10 to 60-m pixel size. In the study, 
we used the blue (B2), green (B3), red (B4) and near infrared (B8) 
channels that have 10-m resolution and the red edge (B5), near-infrared 
NIR (B6, B7 and B8A) and short-wave infrared SWIR (B11 and B12) 
channels that have a ground sampling distance of 20 m. The pre- 
processing includes a simple atmospheric correction using the Dark 
Object Subtraction 1 (DOS1) method. Spectral (reflectance) values for 

all bands were extracted for all field plots and GEDI L4A footprints 
within the study area. We also downloaded a Sentinel-2 MSI Level-1C 
product from February 23, 2019 for Mudumalai forest directly from 
the Copernicus open access hub, and the pre-processing and extraction 
of spectral data for all field plots was made using the same process as 
used in the Betul area. We resampled all Sentinel-2 bands to100m to 
match the size of the field plots. Spectral values were calculated as mean 
values of the original 10 m or 20 m pixels. 

2.3. Extraction of spectral data from Sentinel-2 imagery for GEDI 
footprints 

Spectral values for all 100 m resolution Sentinel-2 bands were 
extracted to the GEDI footprints the using bilinear interpolation method 
in which we done taking the weighted average determined by the value 
of the four nearest 100 m pixels and their relative position or weighted 
distance adjusted to account for their distance from the centre of the 
GEDI footprint. By resampling Sentinel-2 images to the size of the field 
plots (100 m × 100 m) we lose valuable details which might have an 
negative influence on our AGBD model. 

A regression model estimating AGBD was constructed using Sentinel-2 
spectral data of 100 m (all spectral bands except bands 1, 9 and 10) 
and the available field data (Eq. (1)). 

AGB = β0 + β1B1 + β2B2 +…+ β10B10 + ε (1) 

Where Bi is band 2, 3, 4, 5, 6, 7, 8, 8 A, 11, and 12. The explanatory 
variables were selected using regsubsets in the R package leaps (Lumley 
and Lumley, 2013). The best model was selected, by setting the 
maximum number of explanatory variables (spectral bands) to incor-
porate in the model to 9 (nvmx = 9). Based on the adjusted R2, we 
selected the B2, B5 and B6 as predictors for Betul forest. Adding more 
independent variables did only have a marginal effect on the adjusted 
R2. An AGBD map with a cell size of 100 m was constructed by applying 
the AGBD model to all 100 m pixels in the resampled Sentinel-2 image. 
Mean values were calculated for each 1 km grid cell in the GEDI L4B 
dataset based on the cell values in the 100 m-resolution AGBD map. Only 
1 km-cells that were entirely located on forestland according to the 

Fig. 3. Flow chart depicting the methodology.  

Table 3 
Sentinel 2 bands used in the study.  

Forest name Sentinel 2 bands Best bands 
selected 

Betul Forest 20 m spatial resolution bands: B5 (705 nm), B6 
(740 nm), B7 (783 nm), B8A (865 nm), B11 
(1610 nm) and B12 (2190 nm) 

B2, B5 and 
B6 

Mudumalai 
forest 

10 m spatial resolution bands: B2 (490 nm), B3 
(560 nm), B4 (665 nm) and B8 (842 nm) 

B3, B4 and 
B8A  
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Google satellite map was used (Fig. 5). Similarly, we selected the B3, B4 
and B8A as the best predictors for Mudumalai forest (Table 3). We tested 
the study using random forest and robust regression also, but linear 
regression model found to be the best model for the given study. 

We evaluated the model performance utilising leave-one-out cross- 
validation, (LOOCV) approach. In the LOOCV approach, one observa-
tion at a time is extracted from the dataset and the model parameters are 
estimated using the remaining (n-1) observations. The model is then 
applied to the extracted observation. 

3. Results 

The GEDI data and the available field data did not coincide 
geographically or in size. Thus, we have compared the GEDI L4A AGBD 
footprint values with AGBD estimated from the Sentinel-2 models. We 
also compared the relationship between tree height and AGBD for field 
data and GEDI data, respectively to understand the relationship between 
GEDI AGBD and height with respect to the corresponding field based 
values at the two study area. 

3.1. The relationship between tree height and AGBD for GEDI and field 
data 

The relationship between tree height and AGBD was examined for 
both the field measurements and the GEDI data for the Betul forest. For 
selecting the best data, we are using the sensitivity metric and quality 
flag value of 1, which indicates the cover and vertical profile metrics 
represent the land surface and meet criteria based on waveform shot 
energy, sensitivity, amplitude, and real-time surface tracking quality, 
and the quality of extended Gaussian fitting to the lowest mode. We 
filtered the GEDI L2A data based on the quality_flag value (we removed 
all shots where the quality_flag was set to 0) and sensitivity threshold 
(0.95). We compared the relationship between GEDI relative height 
(RH) from L2A data and AGBD from L4A data as well as tree height and 
AGBD from the field survey data. As can be seen in Fig. 4, the rela-
tionship between tree height and AGBD is almost linear for the field 
measurements. For GEDI, the relationship seems to be non-linear, 
especially for biomasses below approximately 100 t/ha. For higher 
AGBD values, the relationship seems to be almost linear also for the 

Fig. 4. (4A) Tree heights (RH) versus AGBD-GEDI, (4B) tree height (field measured) versus AGBD-field for Betul forests and (4C) the tree heights (RH) versus AGBD- 
GEDI, (4D) tree height (field measured) versus AGBD-field of Mudumalai Forest. 
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GEDI data. GEDI tree heights are influenced by the topography of the 
study area, at least for steep slopes (slope > 20%). It is evident that GEDI 
AGBD and the field AGBD, varies for the values below 50 Ton/Ha. GEDI 
have biomass values below 50 (Ton/Ha) and the variation between the 
tree height and AGBD is different from the variation between the field 
AGBD and height. In the case of Mudumalai forest, the variation is 
comparatively high, which might be an effect of that GEDI tree heights 
are influenced by the undulating topography and that RH metrics may 
be biased in very dense canopy conditions due to the weak terrain- 
reflected signal received by GEDI sensors. RH metrics might also be 
biased in areas that they have not been calibrated for. There is relatively 
few usable GEDI footprints in the two sites as seen in Fig. 4. Minimum 
and maximum values are different form the values in Table 2 as we have 
excluded the GEDI values that are outside the forests for the comparison 
in Fig. 4. Note that the two scatterplots show two different datasets from 
the Betul test area and that Fig. 4 A and Fig. 4C only includes observa-
tions that are entirely located on forestland. 

3.2. Modelling AGBD using Sentinel-2 data 

We used linear regression to model AGBD (field measured) as a 
function of Sentinel-2 spectral data in both test areas. As mentioned 
above, the selected model in the Betul area included bands 2, 5 and 6 
(B2, B5 and B6), and had a root mean square error (RMSE) of 11.27 ton/ 
ha and an R2 of 0.90. Inspections of residual plots indicate that the 
model is good and the validation of the model using a leave-one-out 
cross-validation (LOOCV) approach show an RMSE of 13.93 ton/ha, 
an R2 of 0.88, a mean absolute error (MAE) of 10.77 and a bias of − 0.28. 
The selected bands B2, B5 and B6 have been successfully used in recent 
studies to estimate forest biomass (Chen et al., 2021; Xi et al., 2022). 

The model was used to estimate AGBD for all pixels in the resampled 
(100 m) Sentinel-2 image and the estimates were compared with GEDI 
L4A footprint (25 m) AGBD (Fig. 5B1). It was found that the correlation 
between the estimates was strong with r = 0.98 (Fig. 5B1) and that GEDI 
L4A AGBD estimates generally were lower than the estimates from the 
Sentinel-2 model. The GEDI L4B gridded AGBD was plotted against 
AGBD from a 1 km-resolution map with aggregated estimates from the 
100 m Sentinel-2 map. As shown in Fig. 5A1, we obtained a relatively 

Fig. 5. Scatterplot of GEDI L4B AGBD (1 km) versus estimates of AGBD from Sentinel-2 bands, 2, 5 and 6 (A1, A2) and GEDI L4A AGBD (25 m) versus predictions of 
AGBD from Sentinel-2 bands, 3, 4 and 8 A (B1, B2) for Betul and Mudumalai forests respectively. 
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strong correlation (r = 0.66) between AGBD from the 1 km GEDI data 
and AGBD from the 1 km Sentinel-2 map. 

For Mudumalai forest, we included bands 3, 4 and 8 A (B3, B4 and 
B8 A), and obtained an RMSE of 12.24 ton/ha and an R2 of 0.811. These 
selected bands performs well for biomass estimation as the band 3 
(Green) relate to the presence of chlorophyll in the vegetation and the 
band 4 (Red) is useful for identifying vegetation types and is strongly 
affected by dead foliage and the band 8 A (red edge) perform well for 
vegetation classification. These optical spectral bands have been suc-
cessfully used to estimate forest biomass in recent studies (Chen et al., 
2021, Xi et al., 2022). The red-edge bands are highly related to 

vegetation properties, such as leaf area index, biomass, and structural 
carbohydrates (Martin-Gallego et al., 2020). The model is validated 
using a leave-one-out cross-validation (LOOCV) approach show an 
RMSE of 29.11 ton/ha, an R2 of 0.80, a MAE of 18.73 and a bias of 
(− 0.022). 

We obtained a relatively strong correlation (r = 0.72) between AGBD 
from the L4A GEDI data and AGBD from the 100 m Sentinel-2 map 
(Fig. 5B2) and the correlation obtained between GEDI 1 km gridded and 
Sentinel-2 map is r = 0.84 as shown in Fig. 5A2. The raster maps of both 
forests are developed for the AGBD estimates from Sentinel-2 (100 m 
and 1 km) and GEDI AGBD for both forests and are shown in Fig. 6. 

Fig. 6. Raster maps with estimated AGBD from Sentinel-2 (cell size = 100 m), aggregated estimates of AGBD from Sentinel-2 (cell size = 1 km), and GEDI L4B 
gridded AGBD (cell size = 1 km) for Betul (A1) and Mudumalai (A2) forest. 
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Our results show that the correlations between AGBD from GEDI 
(L4A and L4B) and the Sentinel-2 model was relatively high. However, 
the AGBD values from the Sentinel-2 model are found to be higher than 
the GEDI L4A values for both test areas. It is also found that Sentinel-2 
model gave higher AGBD values than GEDI L4B in the Mudumalai for-
est, and that there were no significant difference between the AGBD 
values from GEDI L4B and the Sentinel-2 model in the Betul forest. 

Sentinel-2 alone cannot provide vertical forest stand structure in-
formation and the data saturation is an important factor resulting in a 
relatively low AGBD estimation performance (Lu, 2006; Zhao et al., 
2016) and insensitivity to large AGBD variations (Lu et al., 2012). The 
Sentinel-2 model might also be affected by uncertainties of the field 
observations such as small differences in the geolocation between field 
measurements and Sentinel-2 pixels. Data saturations often cause low 
accuracy for estimating the AGBD in high biomass or high canopy 
density areas which can be solved by the combined use of spectral data 
and structural data (Basuki et al., 2013; Luo et al., 2017; Vafaei et al., 
2018). 

4. Discussion 

The main goal of the work is to evaluate the performance of GEDI 
above ground biomass estimation across the two forests sites of India. 
The study helps to better understand forest AGBD distribution and 
spatial changes in terrestrial carbon fluxes and to assess the main ca-
pabilities of the GEDI sensor for estimating AGBD in Indian tropical 
forests. The study thus shows the potential to improve the estimation of 
terrestrial carbon storage and better understand forest ecosystem pro-
cesses across larger areas. 

Our results indicate that AGBD estimates from gridded GEDI L4B 
data and footprint based GEDI L4A data potentially could be used to map 
and monitor AGBD in Indian tropical forests. However, this would 
require that the estimates are calibrated, for example using field data 
from an independent sample. It has been recommended to use airborne 
LiDAR data in combination with field observations when calibrating and 
validating GEDI data (Dubayah et al., 2020; Dubayah et al., 2021; 
Dubayah et al., 2022; Duncanson et al., 2020). 

In Indian forests, the availability and accessibility of airborne LiDAR 
data are unfortunately limited. Better AGB estimates can be obtained 
using generic equations based on trees harvested for several sites (Chave 
et al., 2005; Chave et al., 2014; Cifuentes Jara et al., 2015) or using 
locally developed models which provides less uncertainty (Chave et al., 
2014). The estimation of AGB in the varying and diverse forests of India 
is quite challenging due to the lack of AGB estimation equations (Giri 
et al., 2019; Nath et al., 2019; Salunkhe et al., 2018) and due to the 
unavailability of systematic data sets, varying localities and inaccessi-
bility of diverse forests. Also, the development of allometric biomass 
models is important process in biomass estimation and the relationships 
vary among specific species (Lin et al., 2016). The lack of adequate 
equations for predicting biomass for every species can cause substantial 
bias in the biomass estimation. Tree species grouping method to develop 
biomass models could help to reduce the uncertainty in forest biomass 
estimation (Kebede and Soromessa, 2018; Xing et al., 2019). For the 
accurate estimation of forest biomass and reducing uncertainty, it is 
important to have species- and site-specific allometric equations for 
biomass estimation rather than utilising generalized models which 
produces biased estimates (Xiang et al., 2016). In India, equations 
combining variables such as tree height, diameter at breast height, and 
wood density to total tree biomass (Chave et al., 2005) and multispecies 
pan tropical equations (Chave et al., 2005, 2014; Nath et al., 2019; 
Vashum and Jayakumar, 2012) can be used to estimate biomass 
(Brahma et al., 2021), but quantifying biomass depends on factors such 
as the data set used, size of the field inventory, and result validation. 
This indicates the need for the development of suitable and robust 
equations (Brahma et al., 2021; Weiskittel et al., 2015). 

Another finding is that Sentinel-2 provide data that can be used to 

estimate AGB in the type of forests that exists in both the Betul and the 
Mudumalai test area. Several studies have successfully investigated the 
application of Sentinel-2 data (Kumar et al., 2021) and other optical 
sensors (Dhanda et al., 2017; Sinha et al., 2019) for AGB estimation 
across India. Nandy et al. (2021) utilized Sentinel-2 and ICESat data 
across Indian forests showed that integrating forest canopy height in the 
forest AGBD model improved the accuracy of the AGBD estimates. Many 
studies emphasise the integrated use of different remote sensing data for 
better estimation of AGB in Indian tropical forests (Khan et al., 2020; 
Sinha et al., 2019). For example Malhi et al. (2022) integrate Sentinel-2 
with Sentinel-1 SAR data for the estimation of AGBD with machine 
learning techniques. Certain studies use optical and SAR data for the 
estimation of AGBD across Indian forests (Prakash et al., 2024, Behera 
et al., 2016, Ali and Khati (2024). 

Underestimation of GEDI AGBD is evident in this study which might 
be due to the geolocation uncertainty in GEDI measurements in highly 
multi-layered forests (Dorado-Roda et al., 2021; Duncanson et al., 
2022). Forests with high horizontal heterogeneity and high vertical 
complexity of mature dense forests leads to an increase in AGBD error 
(Jia et al., 2023; Wang et al., 2022)which might explain why the ac-
curacy of GEDI data varied between the two test areas. Topographic 
slope which results in substantial variation among tree heights and its 
influence on GEDI waveform cannot be neglected (Campbell et al., 2021; 
Jia et al., 2023; Shendryk, 2022) and the uncertainties can also be 
caused by the forest-type-specific and geography-specific factors 
(Dubayah et al., 2022; Duncanson et al., 2022; Mohite et al., 2024) 
which highlights the value of regional field data and models. Several 
studies showed that quality assessment of GEDI data for a specific region 
needs to be done before using the data for AGBD estimation (Mohite 
et al., 2024) and uncertainties exist associated with the quality issues. 
Jia et al., 2023 showed the GEDI L4A severely underestimated the AGBD 
of coniferous forests which specifies that relatively low accuracy of GEDI 
L4A due to canopy heterogeneity in dense forests with high biomass. The 
comparison between AGBD from the Sentinel-2 model and GEDI L4A 
footprint data indicates that the GEDI AGBDs are underestimated. Our 
study indicate that there is relatively few usable GEDI footprints in the 
Betul test area and similar is the case for Mudumalai forest. Altogether, 
this shows the importance of not relying entirely on GEDI data, un-
certainties exist, possibly influencing the accuracy of AGBD predictions. 
Thus, it is interesting to consider methods where GEDI data are com-
bined with other types of data in an efficient, for example in a model- 
assisted framework (e.g., Ståhl et al., 2016) or hierarchical modelling 
(e.g., Saarela et al., 2016, 2018). 

5. Conclusion 

GEDI provide AGBD estimate that, if properly calibrated, can 
potentially be used to quantifying the amount of carbon stored in the 
Indian forests and thereby help to calculate the carbon sequestration 
potential of forests under future climate and land-use scenarios. In this 
study, we have compared both GEDI L4A foot print and gridded GEDI 
L4B AGBD with AGBD estimated from Sentinel-2 data. The estimates of 
GEDI AGBD across the tropical forests in India have a relatively strong 
correlation (r = 0.66 for Betul and r = 0.84 for Mudumalai forests) with 
AGBD estimates from Sentinel-2. It was also found that the GEDI AGBDs 
are under-estimated compared to the Sentinel-2 AGBD estimates. This 
indicates that GEDI AGBD preferably should be combined with other 
types of data to ensure that estimate for a certain geographic area is 
unbiased. GEDI AGBD when utilized with model assisted statistical or 
modelling frameworks and combined with other types of data, thus, has 
the potential to support intergovernmental policy initiatives such as 
REDD, UNFCC and Kyoto Protocol in which India is involved in Clean 
Development mechanism (CDM) by giving information for climate 
adaptation and mitigation, sustainable land use and conservation of 
biodiversity. 
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