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Varroa destructor is one of the greatest threats to Apis mellifera worldwide and if left untreated will kill 
a colony in less than three years. A Varroa-resistant population from Gotland, Sweden, has managed to 
survive for 25 years with little to no Varroa treatment by reducing the mite’s reproductive success. The 
underlying mechanisms of this trait is currently not known, though previous research indicates that it 
is the honey bee brood, and not adult bee influence, that contributes to this phenotype. As the mite’s 
own reproduction is synchronized with the brood’s development though the interception of brood 
pheromones, it is possible that a change in pheromone profile would disrupt the mite’s reproductive 
timing. To investigate this, we characterized the brood ester pheromone (BEP) profile of our resistant 
Gotland population compared to a non-resistant control. This was done by extracting and analyzing 
key cuticular compounds of the BEP using gas chromatography. A significant difference was found 
immediately after brood capping, indicating a divergence in their pheromonal production at this time 
point. This is an important step to understanding the mechanisms of the Gotland population’s Varroa-
resistance and contributes to our global understanding of Varroa destructor infestation and survival.
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The invasive ectoparasitic mite Varroa destructor (hereafter referred to as Varroa) is unarguably one of the largest 
threats to the European honey bee (Apis mellifera) causing colony death worldwide1. Varroa relies entirely on 
the honey bee for food and reproduction, which occurs mainly in the cells of developing brood2. When Varroa 
feeds on the honey bee fat bodies and hemolymph, a number of viruses are transmitted to the developing bee 
pupae, most notably Deformed Wing Virus (DWV)3,4. DWV causes reduced body weight, a shorter lifespan, 
and malformed wings resulting in flightless adult bees that cannot contribute to colony functions5–7. With 
exponentially increasing mite infestation vectoring viruses in the brood, a virus epidemic eventually occurs 
leading to a dwindling adult bee population and ultimately colony mortality within 1–2 years if the mite 
infestation is not controlled by beekeepers8–10. The best defence beekeepers have against high Varroa infestation, 
and to avoid a virus epidemic, is to use chemical treatments such as synthetic pyrethroids or organic acids such as 
oxalic or formic acid applied to the hive. These treatments unfortunately can also reduce bee health, and Varroa 
can develop resistance towards some of these treatments11,12. An alternative method towards mitigating the 
harmful consequences of Varroa infestation is through Varroa resistance selective breeding programs. Several 
programs, usually focusing on adult bee behaviours that target the mite, such grooming behaviour, hygienic 
behaviour, and more specifically Varroa Sensitive Hygiene (VSH), where adult bees selectively remove Varroa 
parasitized brood13,14, have had some success in increasing the frequencies of these behaviours but producing 
long-term stable Varroa resistance has been challenging15. A deeper understanding of the complex host-parasite 
relationship and interactions between Varroa and honey bees is necessary in order to improve the efficacy of 
Varroa resistance selective breeding programs and increase honey bee resistant stock on a large scale16–18.

In the Baltic sea, on the island of Gotland, Sweden, there is a population of honey bees that have survived 
with Varroa infestation with little to no chemical treatment since 199919. This population exhibits naturally 
adapted Varroa-resistant phenotypes, specifically the ability to reduce mite reproductive success rates. Only 
around 50% of the mother mites in the Gotland Varroa-resistant population are able to produce viable offspring 
at a given occasion20,21 compared to non-resistant regularly managed honey bee colonies, where mother mites 
have reproductive success rates over 80%20,21. While it is still unclear how the bees reduce the mite reproduction, 
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it is clearly a genetic feature of the bee population, rather than a reduction of virulence on the side of the mite22,23 
and has been a stable trait in the population observed over multiple occasions since it was first reported in 
201120,24,25. Recent research shows that the reduced mite reproduction, in this and other naturally adapted mite 
resistant honey bee populations, appears to be due to characteristics of the honey bee brood, as opposed to 
Varroa resistance behaviours of adult worker bees24, which are often the focus in Varroa resistance breeding 
programs. This population therefore, provides a unique opportunity to study the natural relationship and 
interactions between Varroa mites and European honey bees.

Chemical signaling is a major method of communication between developing brood and attending nurse 
bees within a honey bee colony26,27. In particular, a cocktail of different volatile compounds have been identified 
in the brood ester pheromone (BEP) profile of the brood that are used to communicate information to adult 
bees such as the brood’s caste or age27–29. Originally ten BEP compounds have been identified in brood 
communication: fatty acid methyl (FAME) & ethyl esters (FAEE) of palmitate, linoleate, stearate, oleate, and 
linolenate acids, with E-β-Ocimene, a terpene, discovered later28,30. These BEP compounds are known to cause 
changes in the behavior and biology of the receiving nurse bees depending on the timing and amount of BEP’s 
produced26,31. The effects of the specific BEP compounds can vary and range from methyl palmitate & methyl 
linolenate initiating capping to ethyl palmitate & methyl linolenate preventing ovary development in worker 
bees, among other effects27,29,32,33.

These BEP compounds can be classified as kairomones, instead of pheromones, when they are intercepted 
by unintended target organisms such as ectoparasites like Varroa. The same BEP compounds that the brood 
produce to communicate with worker bees, such as methyl linoleate and ethyl palmitate, are intercepted by 
Varroa as signals on the timing for brood cell invasion34–38. Variation in BEP profiles exists between the different 
castes within a honey bee colony, and this affects the ability of Varroa to exploit them. For example, Varroa is 
often more attracted to drone brood as they produce a larger quantity of BEP compounds over a longer period 
of time compared to worker brood39,40. The BEP profile is also a major factor in the large reduction in Varroa 
infestation of queen cells as queen brood produce larger amounts of methyl oleate, which is a Varroa repellent37.

Mite reproduction is tightly synchronized to brood development, with mite oogenesis linked to certain BEP 
volatiles produced by the brood at specific times41,42.The first 12 h post capping of the brood cell are critical for 
mite reproductive success. A disruption in the BEP communication between the developing pupae and the mite 
during this time can cause the invading mite (foundress) to reabsorb any eggs that she has started to produce41,43. 
Therefore, even slight alterations in the brood’s BEP profile could break the kairomone-timing network and lead 
to reduction in successful mite reproduction.

The aim of this study was to characterize the BEP profile of developing brood in the Varroa resistant population 
from Gotland, Sweden over time and identify any possible alterations of the BEP profile that could explain the 
reduced mite reproductive success observed in this population. This was approached by comparing the timing 
and quantity of cuticle volatiles produced by brood collected from the Varroa resistant honey bee population 
on Gotland, Sweden (hereafter referred to as resistant honey bees) with a control population of non-resistant 
honey bees. Cuticular volatiles were chemically extracted at biologically relevant time points during the early 
stages of the post-capping period when mite reproduction is initiated and were identified and quantified using 
gas chromatography (GC). We hypothesized that if a change in the BEP profile is responsible for the reduced 
mite reproduction phenotype in this resistant honey bee population, we would see a significant difference in the 
timing or quantity of the BEP profile produced between the two populations.

Methods
Twelve experimental honey bee colonies were established during June of 2021 from splitting six non-resistant 
honey bee colonies equally. Non-resistant colonies were purchased from a private beekeeper on Åland, Finland. 
Half of the colonies kept their original non-resistant queens and became the control group for this experiment, 
while the other six colonies were given mated queens obtained from the mite-resistant population located on 
Gotland, Sweden20. The colonies were given a minimum of four weeks to allow a replacement of the brood so 
that any larvae in the colony at the time of sampling were known to be produced by the resistant or non-resistant, 
control group queen. All experimental colonies were located in a single apiary at the Swedish University of 
Agricultural Sciences (GPS Coordinates: 59° 48′ 55.60596″, 17° 39′ 54.39866″) and managed with normal 
beekeeping practices with the exception that no Varroa control treatment was performed.

Eight-day old larvae were checked hourly to capture the time point when the brood cell was being capped. 
Using a transparent acetate sheet overlay on the frame of brood, cells that were newly capped were marked out 
as the 0 h for our experiment. Individual pupae were extracted from their brood cells over a time-series at 00, 
06, 12, 18, 24, and 36 h post capping using the transparent acetate sheet overlay to identify the post-capping age 
of individual brood cells.

To extract the BEP volatile compounds, frames were removed from their respective hives and transferred to a 
designated indoor workspace. Using forceps, the cell capping was opened, and the developing pupae was careful 
removed. The pupae were placed on filter paper (Munktell’s Swedish Filter Paper; No. 8, 9 cm) to ensure that 
their cuticle had not been punctured during removal and to locate any Varroa infestation. Pupae with a cuticle 
puncture or Varroa infestation were excluded from the experiment. Forceps were flamed between each colony 
and time point to minimize cross contamination of volatiles compounds.

Each chemical sample contained 4 pupae pooled together for each time point per colony. The pupae were 
submerged in 2 ml (1.25g) of n-pentane for 10 min, following the procedure detailed in Frey et al.41. Chemical 
extracts were stored in glass vials (Thermo Scientific 1.1 ml screw top tapered glass vials) and immediately put 
in a – 20 °C freezer before being transferred to a   − 80 °C freezer.
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For sample concentration, vials were removed from the freezer and left at room temperature for 5 min to 
thaw completely. They were then agitated for 15 s to homogenize the mixture before being concentrated to 100 μl 
under a gentle nitrogen flow.

For tentative identification of target compounds, samples were analyzed by gas chromatography-mass 
spectrometry (GC/MS) on an Agilent 7890N (Agilent Technologies) GC coupled to an Agilent 5975C mass 
selective detector (electron impact 70  eV). The GC was equipped with an HP-1 column (100% dimethyl 
polysiloxane, 50 m, 0.32 mm i.d. and 0.52 μm film thickness, J&W Scientific, USA), and fitted with a cold on column 
inlet. The GC temperature program was 30°C/4 min, 5°C/min to 150°C/0.1 min, 10°C/min to 250°C/15 min, 
using helium as carrier with a flow rate of 1.3 ml/min. BEPs present in the samples were identified by comparison 
against a commercially available library (NIST 08) and by comparison of mass spectra and retention indices 
with commercially available authentic standards (Sigma-Aldrich, Sweden). Based on the above analyses, the 
following compounds were selected for quantification: FAMEs methyl palmitate (Methyl hexadecanoate/MP), 
methyl linoleate (methyl (9Z,12Z)-octadeca-9,12-dienoate/ML) and methyl stearate (Methyl octadecanoate/
MS), FAEEs ethyl palmitate (Ethyl hexadecanoate/EP), ethyl linoleate ((9Z,12Z,15Z)-Ethyl octadeca-9,12,15-
trienoate/EL), ethyl stearate (Ethyl octadecanoate/ES), and the monoterpene, (E)-β-ocimene (EO).

For quantification, the concentrated samples (2 µl injections) were analyzed by gas chromatography (GC) on 
an Agilent 6890N with a flame ionization detector equipped with an HP-1 column (100% dimethylpolysiloxane, 
50 m, 0.32 mm i.d., 0.52 μm film thickness, J&W Scientific, Folsom, CA), with hydrogen as carrier gas and fitted 
with a cold on column inlet.

The GC temperature program was 40°C for 1 min, 10°C/min to 280°C and held at 280°C for 10 min.
The amount of each target compound was calculated relative to the FID response to commercially available 

authentic standards (Merck, Sweden; 1 µl injection of 5 ng/µl standard solution).

Statistical analysis
Statistical analyses were performed using R version 4.0.1 and R Studio Version 1.3.959 using the R packages 
“lme4” (version 1.1.35.1), “car” (v. 3.1.2), “moments” (v. 0.14.1), “glmmTMB” (v. 1.1.8), “DHARMa” (v. 0.4.6), 
“performance” (v. 0.11.0), “RVAideMemoire” (v. 0.9.83.7), “emmeans” (v. 1.10.0), “effects” (v. 4.2.2), and 
“bestNormalize” (v. 1.9.1)44,45 with all graphs made using the R package “tidyverse” (version 2.0.0).

A generalized mixed effect model was used to compare BEP differences between backgrounds. Individual 
models were used for each compound analyzed as well as the combined FAME and FAEE’s results. The BEP 
compound quantities were used as a response variable, with background and time points used as fixed variables, 
and hive origin as a random variable. Zero inflation adjustment was performed on all models. Combined FAME, 
Methyl & Ethyl Linoloate, and (E)-β-Ocimene were square root transformed while combined FAEE, Methyl 
& Ethyl Palmitate, and Methyl & Ethyl Stearate were arcsign transformed to improve model fit. An estimated 
marginal means (emmeans) post-hoc pairwise comparison of the generalized mixed effect model was done for 
comparing the effect of background on compound levels within each time point, as well as with one step forward 
in time (i.e. 00H vs 006H).

Results
For all BEPs measured, we found lower amounts in the resistant population at almost all time points compared 
to the control population (Fig. 1, Table 1). While only the 00H time point was significantly different between 
our populations across all BEPs, we see a clear trend that lower amounts of BEP were produced by the resistant 
population compared to the control population in 38 out of 46 comparisons (83%). The main exception to this 
trend appears to be the production of methyl stearate at the 12H time point, which interestingly is also the 
compound with the most dramatic difference at the 00H time point (p < 0.001; Fig. 1).

Colony background was a significant factor for all chemicals, excluding EO (p < 0.005), indicating that 
the resistant Gotland bees have a unique overall BEP profile in the first 36 h post-capping when compared to 
the non-resistant population, characterized by the overall lower BEP production throughout. Time was also a 
significant factor for MP (p = 0.047), ML (p < 0.005), MS (p < 0.005), ES (p < 0.005), and EO (p < 0.005) with 
our non-resistant population having a much higher production of the stated chemicals at 0H before a significant 
decrease at the 6H mark, with the exception of EO which had a steady increase over time before decreasing at the 
36H mark (Fig. 1, Table 1, Supplemental Table S1). The interaction between background and time was significant 
only for MS (p < 0.005) and ES (p < 0.005), with EL falling just short of significant (p = 0.055) (Fig. 1, Table 1) 
(Fig. 1, Supplemental Table S1).

The most significant differences between the populations occurred at 00H, with lower amounts of all BEP 
analyzed in the resistant population (p = 0.0029 (MP); 0.0049 (EP); 0.0008 (ML); 0.0038 (EL); < 0.0001 (MS); 
0.0009 (ES)) (Fig.  1, Supplemental Table S1). This is continued by a non-significant trend throughout all 
time points of less compounds produced by the resistant colonies. For the non-resistant population there is a 
significant drop for ML (p = 0.0003), EL (p = 0.0006), MS (p = 0.0018), and ES (p = 0.0003) between 00 and 06H, 
returning to non-significant differences at further time points (Fig. 1, Supplemental Table S1). One exception is 
EO, where we instead see a steady increase until a significant drop in both populations at 36H.

Discussion
This study demonstrates biologically important differences in brood ester pheromones (BEP’s) in a unique 
Varroa resistant population, compared to non-resistant control population, produced at time points during 
pupal development that are fundamentally relevant to disrupting Varroa mite reproduction. Specifically, a 
significant difference was observed between the two populations at the 00H time point just after the larvae are 
capped in their cells for pupation. Overall lower amounts of BEP were produced in the resistant population, 
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Fig. 1. Amount of named compound present on the cuticle of Apis mellifera worker brood 00, 06, 12, 18, 
24, and 36 h after cell capping. Blue = Resistant, Orange = Non-Resistant. n = 18 (Resistant 00H, 06H, 12H, 
18H, 36H; Non-Resistant 00H); n = 17 (Resistant 24H; Non-Resistant 06H, 12H, 18H, 24H, 36H) p value of 
significant differences added. Errors bars representing standard error used.
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Figure 1. (continued)
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Figure 1. (continued)
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Chi Sq df p

A. Combined FAMEs

 Intercept 123.499 1  < 0.005

 Background 19.476 1  < 0.005

 Time 21.884 5  < 0.005

 Back*Time 12.420 5 0.029

B. Combined FAEE

 Intercept 72.768 1  < 0.005

 Background 14.519 1  < 0.005

 Time 19.291 5  < 0.005

 Back*Time 10.578 5 0.060

C. Methyl Palmitate

 Intercept 59.015 1  < 0.005

 Background 14.562 1  < 0.005

 Time 11.203 5 0.047

 Back*Time 6.219 5 0.285

D. Ethyl Palmitate

 Intercept 38.849 1  < 0.005

 Background 13.512 1  < 0.005

 Time 10.535 5 0.061

 Back*Time 7.165 5 0.208

E. Methyl Linoloate

 Intercept 59.205 1  < 0.005

 Background 15.806 1  < 0.005

 Time 22.693 5  < 0.005

 Back*Time 10.024 5 0.075

F. Ethyl Linoloate

 Intercept 72.124 1  < 0.005

 Background 12.658 1  < 0.005

 Time 24.873 5 0.061

 Back*Time 10.839 5 0.055

G. Methyl Stearate

 Intercept 84.552 1  < 0.005

 Background 25.176 1  < 0.005

 Time 28.960 5  < 0.005

 Back*Time 21.992 5  < 0.005

H. Ethyl Stearate

 Intercept 43.436 1  < 0.005

 Background 15.532 1  < 0.005

 Time 25.677 5  < 0.005

 Back*Time 16.508 5  < 0.005

I. (E)-β-Ocimene

 Intercept 84.552 1  < 0.005

 Background 25.176 1 0.267

 Time 28.960 5  < 0.005

 Back*Time 21.992 5 0.581

Table 1. Results of generalized mixed effect model. Chemical in table title used as response variable. 
Background and time used as fixed variable. Hive was used as a random variable. Zero inflation adjustment 
was performed on all models. FAME, Methyl & Ethyl Linoloate, E-Ocimene were square root transformed 
to improve model fit. FAEE, Methyl & Ethyl Palmitate, Methyl & Ethyl Stearate were arcsign transformed to 
improve model fit. Significant values in bold. FAME & FAEE values calculated by adding all Methyl (FAME) or 
Ethyl (FAEE) values.
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which suggests a type of chemical camouflage, more specifically what we have termed chemical whispering to 
disrupt or interfere with the initiation of mite reproduction. Many of these compounds have been found to be 
Varroa attractants as well as to initiate mite reproduction34–38. By reducing the overall BEP produced, the signal 
may be more difficult for the mite to intercept, while still being recognizable by adults with increased sensitivity 
to chemical recognition46.

Frey et al.41 found that if pupal BEP volatiles were artificially added to brood cells 24 h after capping (well 
after the 12 h critical period), there was a significant increase in mite reproduction. While the exact chemicals 
used by the mite to initiate oogenesis are still unknown, there is clear evidence that Varroa use BEP compounds 
as instigators for reproduction37,38,41. Frey further found a decline in BEP production around the critical 12 h 
post capping time point, suggesting these BEPs as possible candidates as Varroa reproductive kairomones. While 
the authors were not able to say that the two occurrences are linked, FAEE’s may be involved in the initial 
activation of Varroa reproduction41. This could be a possible explanation to the observed lower amounts of BEP 
in our resistant populations.

Previous research with high resolution QTL analysis on the resistant honey bee population on Gotland found 
three genes relating to the Varroa resistance phenotype of reduced mite reproduction; Phantom, Cyp18a1, and 
Mblk-147. While these genes are not directly linked to BEP production they are significant for brood health and 
development by initiating metamorphosis and molting through the ecdysone biosynthesis pathway47–53. This 
means they are all active during the critical mite reproduction time-period. However, the authors note that much 
of the resistant phenotype variation still remains unexplained by these genes47. Gene expression analysis of the 
BEP biosynthesis pathways, as performed by Qin et al. may be beneficial to understand not only the possible 
genetic components of the observed differences, but also the mechanisms that create differences in the final BEP 
products we observed in this study.

In order for a pheromone change to persist in a population there must not only be a different pheromonal 
profile created by the signaller (in this case, the brood), but also for it to be received and interpreted correctly 
by the receiver (in this case, the nurse bees). Theoretical modelling of the coevolution between signallers and 
receivers has two major predictions, that (1) the selective pressure of receivers should be greater than those on 
the signaller54 and (2) when chemical communication is under strong selective pressure, natural selection should 
favour receivers that are able to detect a wide range of novel compounds as well as novel ratios of compounds55. 
Based on these predictions, if a signaler alters their BEP profile, a receiver theoretically should be able to adapt 
and correctly interpret the new signal, particularly in a system with strong selective pressure. Varroa represents 
a strong selective pressure towards its host with an exponential population growth rate and by vectoring viruses 
that lead to colony death. It is therefore not unlikely that adaptations on chemical communication in this 
population could have resulted in a short timeframe. While these arguments of “receiver advantage” can also be 
applied to Varroa’s receiving of kairomones, this may be compounded with its lower genetic diversity and high 
occurrence of inbreeding compared to the honey bee56–61.

In classic host-parasite co-evolution theory, the parasite is usually viewed as having the “advantage” in an 
arms race due to their shorter generation times and larger population size leading to more rapid adaptations than 
their host62–64. A rare advantage that the honey bee brood may have over Varroa however is that the unintended 
receiver of an olfactory signal, like the intended received, must be able to detect the specific compounds of 
the signal as well as be able to interpret them correctly65,66. While we know that Varroa possess the receptors 
necessary to intercept the broods signals67, it has also been suggested that with minor changes in the emitter’s 
genetics, new pheromone compounds and blends can be produced55,68–72. If this genetic variation pre-existed in 
the population, then the evolutionary response to parasitism may occur quite rapidly, in some cases only taking 
a handful of generations73–75. The possibility of rapid changes in pheromonal signals, as mentioned above, could 
result in the mite having increased difficulty in adapting to the shifting signals.

In predator–prey systems, where kairomones are intercepted by predator species, there are examples of prey 
changing their pheromonal composition to camouflage themselves over a relatively short ecological time frame2. 
Over just three years bark beetles (Ips pini) altered the blend of their pheromonal compounds between the 
preferences of two predators, as well as incorporating a synergistic compound that increased the receptiveness 
of conspecifics with no additional reaction from predators2. Similarly, the honey bee population on Gotland has 
been naturally exposed to uncontrolled Varroa infestation and displayed unique resistance phenotypes after 
only a short time. In parasite and parasitoid systems we can also see a reliance on cuticular kairomones by the 
parasite/parasitoids for information related to reproductive conditions that if disrupted may increase difficulties 
in finding hosts or spatial/temporal optimums76–81. This would reduce reproductive success and may be similar 
to what we are seeing in our own host/parasite system.

Further research is needed to determine how the differences in BEP between our resistant and non-resistant 
populations observed in this study have an effect on Varroa reproduction, and if there are trade-offs on the overall 
health and survival of these resistant colonies with these differences in BEP for the communication between 
brood and adult. Across other studies there is large variation in quantities, timings, and ratios of BEP profiles, 
making comparisons between different experiments difficult and raising questions on what a typical BEP profile 
is, or if one even exists31,35,38,41,82. While our study was designed to reduce temporal, spatial and methodological 
variation, we cannot be sure that the BEP profiles in the non-resistant honeybee can be considered standard. A 
large-scale study looking at brood BEP profiles across time, space, and genetics with standardized methodology 
would help to better understand what should be considered typical or atypical and would help when comparing 
populations in vastly different environments as well as to create a better understanding of brood development 
and capping signals. Further, in this experiment, only non-infested brood were collected in order determine a 
baseline BEP profile of our populations without interference of Varroa presence. An important consideration for 
future work would be to examine the plasticity of the production of BEP in response to Varroa mite infestation 
to determine if, and how, BEP profiles differ when larvae are infested. A behavioural assay on Varroa mite 
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choice for host selection, using similar methods to either Pernal et al.83 or Li et al.84, would also help provide 
an understanding of the mite’s reproductive preferences. Coating live or dummy larvae with increased levels of 
the BEPs found to be reduced in the resistance larvae of this study, would help to characterize their role in both 
Varroa mite host selection and Varroa reproductive success. Finally, gene expression and proteomic analysis 
would contribute to a more complete understanding of what is happening with the brood during these critical 
time points of mite reproduction.

In conclusion, this study has demonstrated clear differences of BEP production at biologically relevant 
time points in the brood of a Varroa resistant honeybee population compared with a non-resistant population 
and provides a strategic foundation for future research looking at honey bee adaptations towards Varroa mite 
infestation and the evolution of this unique host-parasite system.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author (nicholas.
scaramella@slu.se) on reasonable request. The dataset will also be stored in the Swedish National Data Service 
repository, [https://doi.org/https://doi.org/10.5878/h2hc-h513].
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