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Abstract
Key message Genetic gain in Nordic spring barley varieties was estimated to 1.07% per year.Additionally, genomic 
predictive ability for yield was 0.61 in a population of breeding lines.
Abstract Barley is one of the most important crops in Europe and meeting the growing demand for food and feed requires 
continuous increase in yield. Genomic prediction (GP) has the potential to be a cost-efficient tool in breeding for complex 
traits; however, the rate of yield improvement in current barley varieties is unknown. This study therefore investigated his-
torical and current genetic gains in spring barley and how accounting for row-type population stratification in a breeding 
population influences GP results. The genetic gain in yield was estimated using historical data from field trials from 2014 to 
2022, with 22–60 market varieties grown yearly. The genetic gain was estimated to 1.07% per year for all varieties, serving 
as a reference point for future breeding progress. To analyse the potential of using GP in spring barley a population of 375 
breeding lines of two-row and six-row barley were tested in multi-environment trials in 2019–2022. The genetic diversity 
of the row-types was examined and used as a factor in the predictions, and the potential to predict untested locations using 
yield data from other locations was explored. This resulted in an overall predictive ability of 0.61 for yield (kg/ha), with 
0.57 and 0.19 for the separate two-row and the six-row breeding lines, respectively. Together this displays the potential of 
implementing GP in breeding programs and the genetic gain in spring barley market varieties developed through GP will 
help in quantifying the benefit of GP over conventional breeding in the future.

Introduction

Barley (Hordeum vulgare) is the third most important crop 
in Europe with 91 million tons produced in 2022 (FAO-
STAT 2024). While mainly used for feed and malting, the 
nutritious cereal is gaining popularity for human consump-
tion (Baik and Ullrich 2008; Meints et al. 2016). Breeding 
for higher sustainable yields in a changing climate and intro-
ducing new varieties into new locations is vital to meet the 
growing demand for food stability. The success of breeding 
programs has been measured by the level of adoption of 
the newly released varieties by the growers (Brennan and 
Byerlee 1991). Another measurement is the rate of genetic 

gain in varieties on the market (Rutkoski 2019). Genetic 
gain, or genetic response, is a measure of the improvement 
in average genetic or phenotypic value in a population due 
to repeated artificial selection (Hazel and Lush 1942). The 
genetic gain per unit time is estimated through the breeder’s 
equation R =

i�Ar

t
 and is dependent on the selection inten-

sity (i), the square root of the additive genetic variance ( �a ), 
the selection accuracy (r) which is the narrow sense herit-
ability (h2) in phenotypic selection, and the cycle time (t). 
Several studies have investigated the genetic gain of barley 
in breeding programs around the world from the late 1800s 
and onwards, summarized in Table 1 and reviewed in Cos-
sani et al. (2022). These have generally found advancement 
in genetic gain of 14.9–74 kg/ha per year or 0.4–1.1% per 
year; however, the studies often involve very few samples, 
sometimes with single varieties representing each decade of 
breeding (Table 1). There also seems to be a difference in the 
achieved genetic gain between the row-types in barley where 
the two-rowed lines have improved more in yield compared 
to the six-rowed varieties tested (Martiniello et al. 1987; 
Munoz et al. 1998). In addition, the genetic improvement 
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has not been steady over time, instead the increase in genetic 
gain for yield was higher in the second half of the 1900s 
(Riggs et al. 1981; Rodrigues et al. 2020).

In the Nordic region, the genetic gain has been analyzed 
in small populations from 1927 to 1980, where no gain was 
found (Peltonen-Sainio and Karjalainen 1991), and in 119 
varieties from 1930 to 1991 with a gain of 22 kg/ha or 0.28% 
(Ortiz et al. 2002), but to our knowledge there have been no 
recent studies evaluating current progress in plant breeding. 
By periodically tracking the genetic gain in the current mar-
ket varieties, it is possible to provide a reference point that 
can be used to evaluate new breeding strategies.

The continued improvement of spring barley is needed, 
which can be aided by incorporating genomic prediction 
(GP) in breeding programs. GP aims to predict breeding 
and genetic values based on marker effects (Bernardo 1994; 
Meuwissen et al. 2001). In GP, the genotypic and phenotypic 
data of a training population are used to find the genomic 
estimated breeding values (GEBVs) of individuals in a 

testing population where there is genetic but not phenotypic 
data available (Meuwissen et al. 2001). The GEBV is the 
sum of all marker effects estimated in the model from the 
accessions with both genotype and phenotype records and 
can be used to make predictions of the breeding value of 
non-phenotyped individuals based on their genotypic scores. 
The accuracy of GEBVs is defined as the Pearson correla-
tion between GEBV and the true breeding value. Breeding 
programs with incorporated GP methods have the poten-
tial to achieve a higher genetic gain in a variety of species 
compared to breeding based on only phenotypic selection, 
through the optimization of the parameters in the breeder’s 
equation, i.e., increased selection accuracy, selection inten-
sity, and cycling time (Crossa et al. 2017). GP as a breeding 
strategy also led to a higher stability in the genetic gain over 
time when genotype by year interaction is present (Gaynor 
et al. 2017).

In barley, GP has been carried out with different com-
binations of models, marker densities, and population 

Table 1  Genetic gain estimates of spring and winter barley in breeding programs in different regions 1880–2013

Country/Region Type and number of lines Years Genetic gain in yield per year References

Argentina Spring:
9 two-row

1944–1998 41 kg/ha or 0.36% Abeledo et al. (2003)

Australia Spring:
13 two-row

1942–2013 16 kg/ha or 0.43% Cossani et al. (2022)

Brazil Spring:
5 two-row
1 per decade

1968–2008 No gain until 1980, then 59.9 kg/ha Rodrigues et al. (2020)

Canada Spring:
20 six-row

1910–1988 26 kg/ha Bulman et al. (1993)

Canada Spring:
20 genotypes

1910–1987 41.1 kg/ha or 0.17% of harvest index Jedel and Helm (1994)

England and Wales Spring:
37 genotypes

1880–1980 15 kg/ha (0.39% per year) in 1880–1953, 
and 41 kg/ha (0.84% per year) in 
1953–1980

Riggs et al. (1981)

Finland Spring:
7 six-row
1 per decade

1927–1980 No gain Peltonen-Sainio and Karjalainen (1991)

Italy Winter:
5 two-row,
12 six-row

1960–1980 74 kg/ha or 1.1% (two-row)
52 kg/ha or 0.75% (six-row)

Martiniello et al. (1987)

Nordic Region Spring:
90 two-row,
29 six-row

1930–1991 22 kg/ha or 0.28% Ortiz et al. (2002)

Spain Winter and spring:
10 two-row,
10 six-row

1930–1990 40.7 kg/ha for two-row
32.9 kg/ha for six-row

Munoz et al. (1998)

USA Spring:
6 genotypes
1 per decade

1920–1982 45.7 kg/ha or 0.9% Wych and Rasmusson (1983)

USA Spring:
10 genotypes

1920–1984 15.7 kg/ha per year Boukerrou and Rasmusson (1990)

USA Spring:
98 genotypes

1958–1998 14.9 kg/ha or 0.4% Condón et al. (2009)
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compositions with varying predictive abilities (PAs). Rembe 
et al. (2022) achieved a PA of 0.73 for grain yield; however, 
with a leave-one-out strategy of different locations and years 
the PA of the model decreased to a range of 0.14–0.46. In 
another study with a low-density SNP dataset of 337 mark-
ers and only six-rowed breeding lines, the PA of yield was 
0.54 (Tiede and Smith 2018). Thorwarth et al. (2017) found 
only minor differences between GP models when comparing 
eleven different GP models for German six-rowed winter 
barley and suggested instead that the population structure 
significantly affected the results.

A complicating factor in barley breeding programs is the 
genetic difference between the two-row and the six-rowed 
barley lines (Wonneberger et al. 2023); however, studies on 
GP using combined populations of two-rowed and six-rowed 
barley are not common. One study on naked barley germ-
plasm used a diversity panel of two-row and six-row barley 
for the prediction of threshability where the subpopulations 
were found to differ significantly (Massman et al. 2023). 
This resulted in an overall PA of 0.86; however, within five 
out of six separate subpopulation the PA was lower than 
within the combined population (Massman et al. 2023). 
Where significant subpopulation structures with differing 
between-group PA, e.g., where both barley row-types exist 
within a breeding programe, it is important to consider pop-
ulation effects when designing a training population to avoid 
an inflated estimate of the PA for the entire population.

In this study, the genetic gain in spring barley varieties 
was investigated. A set of lines available on the market and 
prospective new lines were compared against cultivars with 
current or previously large market shares in Sweden. Histori-
cal data from official trials were used to estimate the pro-
gress of commercial lines released and registered to the mar-
ket between 2001 and 2023. Field trial data from a breeding 
programe of two-row and six-row spring barley were also 
used to develop GP models. Yield data collected from multi-
environment trials were used to develop and test models for 
predicting yield in specific targeted environments. The influ-
ence of the row-type and the breeding set on the predictive 
ability was investigated.

Materials and methods

Genetic gain analysis

Field data were collected from national multi-environment 
trials of market varieties of two-row spring barley typically 
grown in Sweden through Sverigeförsöken, conducted by 
Hushållningssällskapet and the Swedish University of Agri-
cultural Sciences. For 2014–2022, data were collected from 
four locations in southern Sweden each year, with twelve dif-
ferent trial sites used. In each location the lines were tested 

in an alpha lattice field design in two–three replicates. Each 
replicate consisted of five to eight sub-blocks containing 
four to eight lines depending on the trial site and the num-
ber of lines tested. Statistical analysis of the field trials was 
carried out per trial basis by Sverigeförsöken (https:// sveri 
gefor soken. se/). Trials with three replicates were analyzed 
by using an incomplete block design with one treatment fac-
tor and the replicates as a random effect. Trials with two 
replicates were analyzed using a split-plot incomplete block 
analysis with replications with either random or fixed effects. 
The fields were treated according to local best practices for 
each location, adding fertilizer, fungicide, and herbicide. 
The number of lines tested each year varied from 22 to 60, 
with a total of 174 unique lines that represented common 
market varieties grown in Sweden, registered from 2001 
to 2023, Supplemental Table 1 (Online resource 1). Yield 
was given as tons/hectare harvested grain at 15% moisture 
content.

Each year three checks were included: KWS Irina, RGT 
Planet, and Dragoon. The adjusted yield from the field 
design analysis of these three checks was averaged within 
each trial site to form a synthetic tester. To obtain a relative 
yield of each line, the yield of the tested line was divided 
by the yield of the synthetic tester within each environment. 
Genetic gain (GG) over time was estimated in two ways: as 
a population of varieties and as individual varieties available 
on the market. For the population of market varieties, the 
GG was estimated by plotting the relative yield of each line 
in the year it was tested, and performing regression analysis 
where the slope of the line over the years was used as the GG 
estimate. For the estimation of the improvement of released 
individual market varieties, the relative yield of an accession 
was averaged in all its tested years to obtain a measurement 
of its performance across environments. This relative yield 
was then plotted against the year of registration which was 
obtained from VarietyFinder (CPVO, www. cpvo. europa. 
eu) to determine the genetic gain over time using individual 
lines.

Plant material and field data for genomic prediction

Spring barley breeding lines from the Lantmännen plant 
breeding company were tested in three locations in Sweden 
for three years, 2019–2021. The population comprised 375 
spring barley breeding lines with 222 two-row and 153 six-
row lines. The lines were developed in two breeding sets 
with 178 lines in SWA18 (74 two-row and 104 six-row) and 
195 (147 two-row and 48 six-row) in SWA19 and included 
two checks, Anneli (two-row) and SWJudit (six-row). The 
lines were tested at locations of different latitudes of 63.2 
(Location 1), 59.6 (Location 2) and 58.3 (Location 3) to 
study the performance at different daylight and temperature 
conditions. All 375 lines were tested in all locations and 

https://sverigeforsoken.se/
https://sverigeforsoken.se/
http://www.cpvo.europa.eu
http://www.cpvo.europa.eu
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years and were planted in 15  m2 plots in a non-replicated 
trial consisting of 42 blocks. Each block contained 39 entries 
in each block of which nine were checks; either Anneli or 
SWJudit was used in each block. The fields were treated 
according to local best practices with fertilizer and herbi-
cide in all locations and fungicide in location 2 and 3. Yield 
was given per plot as kg/hectare at a target water moisture 
content of 15%.

Phenotype analysis

To control for differences in field conditions, each yield plot 
was normalized to a nearby check to estimate the adjusted 
mean yield of each genotype. This was carried out by using 
the linear methods of moving means analysis (Townley-
Smith and Turd, 1973) in Genovix (Agronomix Software 
2022) to obtain yield values adjusted to local checks within 
each environment. The adjusted means of each line were 
used to calculate the best linear unbiased predictor (BLUP) 
values using the lme4 package version 1.1–35.1 imple-
mented in R 4.2.2 (Bates et al. 2015) with genotype, loca-
tion, and year set as random effects. The following formula 
module was used to estimate BLUPs for each line in the 
population:

where yield is the adjusted mean yield in kg/ha, gen is the 
genotype, loc is the trial location (Location 1–3), year is the 
trial year (2019–2021), gen:loc is the genotype and loca-
tion interaction, gen:year is the genotype and year interation, 
loc:year is the interaction between the location and the year, 
and loc:year:block is the interaction between the location, 
year and the block effect of the non-replicated trial design. 
For downstream prediction evaluations within subgroups 
the BLUP values were calculated with lines unique to the 
subgroup. The lines belonging to different row-types and 
breeding sets were subset prior to the separate BLUP value 
estimation. For single environment predictions all locations 
and years for all lines were used for the BLUP estimation 
except for the environment to be predicted, i.e., two years 
with three locations and one year with two locations. BLUP 
values for individual locations and years were calculated 
using the entire population but with the following adjust-
ments of the Eq. 1 for year and location. Individual years 
were calculated as:

Broad sense heritability was calculated according to:

(1)

BLUP = yield ∼ (1|gen) + (1|loc) + (1|year) + (1|gen ∶ loc)

+ (1|gen ∶ year) + (1|loc ∶ year) + (1|loc ∶ year ∶ block)

(2)
BLUP = yield ∼ (1|gen) + (1|loc) + (1|gen ∶ loc) + (1|loc ∶ block)

(3)

BLUP = yield ∼ (1|gen) + (1|year)

+ (1|gen ∶ year) + (1|year ∶ block)

where �2

g
 , �2

gy
 , �2

gl
 , and �2

r
 are the variance components of 

genotype, genotype × year, genotype × location, and residual 
variance, respectively, and the ny , and nl are the number of 
years, and locations per environment (Schmidt et al. 2019). 
The yield in each environment was plotted against the BLUP 
values estimated from all environments using ggplot2 ver-
sion 3.4.4 (Wickham 2016) to visualize the relationship 
between yield in single environments and the adjusted 
values.

Genetic analysis of the population

The population was genotyped with the Illumina Infinium 
XT 15k SNP array by TraitGenetics (SGS Institut Fre-
senius, Germany), with 13,847 SNP markers. The mark-
ers were filtered by removing markers with more than 
10% missing values in the entire population and markers 
without an annotated position in the barley genome, leav-
ing 12,559 markers. A total of 9589 markers remained 
when filtering the entire population for a minor allele fre-
quency (MAF) of > 0.05, whereas 7351 and 5624 markers 
remained when filtering two-row (221 lines) and six-row 
(152 lines) separately. When filtering for MAF above 0.05 
in the entire population 4.6% of the polymorphic markers 
within each row-type were removed, 1.5% and 3.1% from 
the two-rowed and six-rowed, due to a too low MAF in 
the combined population. Missing data were imputed by 
the mean of each marker using the RR-BLUP package in 
R 4.2.2 (Endelman 2011). The imputation was carried out 
with the combined population for predictions within the 
combined population, and within each row-type and breed-
ing set separately, for predictions with separate popula-
tions. The VanRaden kinship matrix was conducted and 
visualized using the GAPIT 3.0 package in R 4.2.2 (Wang 
and Zhang 2021) and principal component analysis (PCA) 
was conducted using the GAPIT 3.0 package in R 4.2.2 
(Wang and Zhang 2021) and visualized using the plotly 
package in R 4.2.2 (Sievert 2020).

Genomic prediction

Genomic prediction was carried out using the ridge regres-
sion best linear unbiased prediction (RR-BLUP) model 
(Endelman 2011) in R 4.2.2. The RR-BLUP model used 
was:

(4)H2 =
�
2

g

�
2

g
+

�
2

gy

ny
+

�
2

gl

nl
+

�
2

r

nynl
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where W is the design matrix relating lines to observations, 
G is the genotype matrix, u is a vector of marker effects and 
ε is the residuals. The predictive ability was estimated with 
fivefold cross-validation using 80% of the training popula-
tion to predict the remaining 20% set as the validation popu-
lation. The model was iterated with a randomized training 
population 500 times. The average accuracy of the predic-
tions was determined by correlating the predicted values 
against the observed values of the validation population and 
average this correlation over the iterations. For predictions 
for single environments the BLUPs were used to predict the 
adjusted mean yield values which were used as the valida-
tion, i.e., a single year and location prediction.

(5)y = WGu + �
Results

Realized genetic gain in market varieties

The genetic gain in spring barley market varieties (Table 2) 
was investigated as i) improvement of the population of mar-
ket varieties available to growers, and ii) as improvement of 
registered market varieties. In the first scenario, the aver-
age increase in yield of the population of market varieties 
tested in individual years was 1.07% per year (Fig. 1a) sug-
gesting that the population of varieties available to grow-
ers each year had improved yield compared to the synthetic 
tester. The increase in yield per year for the top five highest 
yielding varieties was 0.94%, whereas the lowest yielding 
varieties improved by 1.57% per year for the population of 
market varieties. In the second scenario, the average increase 
in yield of individual varieties compared to the synthetic 
tester was 0.63% per year for varieties registered 2001–2023 
(Fig. 1b), suggesting that released varieties showed a genetic 
gain over this time. 

Population structure and genetic variance 
in a barley breeding programe

A principal component analysis (PCA) of the population 
detected the presence of two distinct subpopulations in the 
breeding population (Fig. 2a). The first principal compo-
nent (PC) accounted for 25.8% of the genetic variation and 
separated the population depending on row-type, whereas 
the second PC accounted for only 8% variance. Within the 
two-row lines, there is some separation depending on the 
breeding set where the SWA19 appears more genetically 
diverse in the two-row lines. However, there is no such clear 
division within the six-row lines. This was also seen in the 
heat map of the kinship matrix where the lines were clearly 

Table 2  Number of lines and yield of spring barley varieties tested in 
official trials in 2014–2022

Relative yield is the average yield of all varieties tested compared to 
the synthetic tester within each year. The absolute yield is the average 
yield for all varieties tested in each year

Year tested Number of 
varieties

Relative yield Absolute yield
(tons/ha)

2014 60 0.96 6.03
2015 54 0.93 7.20
2016 55 0.98 6.49
2017 48 0.96 6.83
2018 50 1.01 4.49
2019 49 1.01 6.87
2020 22 1.00 5.98
2021 23 1.05 4.57
2022 37 1.02 7.65

Fig. 1  Relative and absolute yield of Swedish barley market varieties. 
a The genetic gain in a population of common market varieties tested 
in individual years increased by 1.07% from 2014 to 2022. The green 
line shows the absolute yield in tons/ha for the lines tested in each 

year as an average of the locations. b The genetic gain in varieties 
depending on year of release was 0.63% per year for market varieties 
registered 2001–2023
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separated depending on the row-type and some cluster-
ing was observed within the two-row genotypes (Fig. 2b). 
Although the difference between the breeding sets were only 
minor they were of interest for the possible effect on accu-
racy when conducting predictions between-breeding sets.

To analyze the difference in marker polymorphism in 
the breeding population the minor allele frequency (MAF) 
within the two-rowed and the six-rowed groups was calcu-
lated separately. The number of polymorphic markers, i.e., 
with a MAF above 0.05, differed depending on the row-type 
where 32.7% and 18.6% of the markers were uniquely poly-
morphic for either the two-row or the six-row lines, respec-
tively, suggesting a significant difference in allele diversity 
between the row-types (Fig. 2c). Of the markers in the 
whole population, 2% were polymorphic only in the com-
bined population, due to the fixation of different alleles in 
the separate row-type groups, i.e., non-informative markers 

for either row-type. Overall, only 46.7% of the markers were 
polymorphic in both row-type groups, suggesting that more 
than half of the markers were non-informative for the com-
bined population.

Grain yield is influenced by the interplay 
of row‑type and environment

The broad sense heritability for yield (kg/ha) in the whole 
population was high (0.73) with a genetic variance of 0.089 
(Table 3). The overall yield was higher in the two-rowed 
varieties than in the six-rowed, (p-value 9.4 ×  10–6) with a 
higher genetic variance in the two-row lines. The two-rowed 
lines also showed a wider distribution of yield compared to 
the six-rowed, suggesting more diversity in the population 
(Table 3). In the individual environments 2021 was the low-
est yielding year in all locations, whereas 2019 and 2020 

Fig. 2  PCA plot, kinship heat map and markers with a MAF above 
0.05 in the barley breeding lines. a Clustering of the genotypes 
depending on the row-type can be clearly identified from the PCA. 
The six-rowed genotypes clustered very tightly; however, within the 
two-rows, there was some diversity attributed to the breeding set in 
which the lines were developed. b Heat map of the VanRaden kin-
ship matrix showing the relatedness of the lines depending on the 

row-type of the lines. The two-rowed lines display more clustering 
within the subpopulation compared to the six-rowed genotypes. c The 
proportion of markers with a MAF > 0.05 differed between the entire 
population and the groups of row-types, where 32.7% and 18.6% of 
the markers were polymorphic only in the two-row or the six-row 
lines, respectively



Theoretical and Applied Genetics         (2024) 137:260  Page 7 of 13   260 

were more comparable (Fig. 3), similar to the results from 
the genetic gain analysis (Fig. 1a). Location 2 was the high-
est yielding location, whereas the southernmost Location 3 
was the lowest yielding location overall. The two-row varie-
ties were generally higher yielding than the six-rowed varie-
ties in the northernmost Location 1 and the reverse was true 
in the southernmost Location 3 (Fig. 3), suggesting that the 
row-type in this population might be of importance for the 
yield at different latitudes and climates.

Genomic selection of targeted groups

The predictive ability (PA) for yield (kg/ha) in the entire 
population was 0.609 (Table 4, Scenario A). Due to the 
genetic difference between row-types, the breeding lines 
were divided depending on row-type to improve the PA. 
Interestingly, the PA decreased slightly to 0.572 within 
the two-row population and to 0.193 for the six-row lines 
(Table 4, Scenario B). Using markers which were only poly-
morphic within one row-type did not affect the PA, resulting 
in 0.579 and 0.189 for two-row and six-row lines, respec-
tively. Using one row-type to predict the other (Table 4, Sce-
nario C) resulted in low PA for both populations, suggesting 
that between row-type predictions are suboptimal.

The predictive ability within-breeding sets was slightly 
higher in the SWA19 set (0.527) than for the SWA18 set 
(0.437) (Table 4, Scenario D). The SWA19 generation had 
a higher proportion of two-rowed varieties which could 
explain why the PA was higher within this generation 
compared to the SWA18 which had a higher proportion 
of six-rowed lines. Using one breeding set to predict the 
GEBVs of another generation lead to a decrease in PA to 
0.37 for SWA18 to SWA19 and 0.326 for SWA19 to SWA18 
(Table 4, Scenario E), suggesting that between-breeding set 
predictions result in lower PA than within-breeding sets but 

is still a viable option. In addition, the division of the popu-
lation into breeding sets and row-types resulted in smaller 
population sizes used to evaluate the prediction models, 
which could also have contributed to the lowering of the PA.

Predictions between years and locations were also carried 
out to investigate if predicting performance in an untested 
environment could be successful. The highest PA between 
different years was achieved by using data from 2020 and 
2021, for lines in 2019, with a PA of 0.389 (Table 4, Sce-
nario F). Of the years tested, the yield was the most stable 
across locations in 2019 which might have contributed to 
the higher PA. Interestingly, when using data from two loca-
tions to predict the third location, the PA was the lowest for 
the location with the overall highest yields, i.e., Location 2 
(0.279), and highest for the location with the lowest overall 
yields, Location 3 (0.365) (Table 4, Scenario G).

Considering the different performance of the row-types 
depending on the location (Fig. 3), single location predic-
tions were carried out to determine if the accuracy could 
be increased within a location, resulting in a PA of 0.357, 
0.307, and 0.487 within locations 1, 2 and 3, respectively 
(Table 4, Scenario H). Again, the highest PA was achieved 
for the lowest yielding Location 3 and the lowest PA for the 
highest yielding location 2.

A more realistic scenario for a breeding programe that 
targets a specific region, for example Location 1, would be 
to test some material in the target region and investigate 
whether adding data from other regions would improve the 
PA of untested lines. In this approach, the PA varied signifi-
cantly depending on the year within Location 1 (Table 4, 
Scenario I). Using 2019 and 2021 to predict the yield in 
2020, which was the highest yielding year, resulted in the 
highest PA (0.441), whereas using data from 2019 and 2020 
for the prediction of 2021, the lowest yielding year, resulted 
in the lowest PA (0.069). There was more variability in the 
PA when predicting only one environment compared to pre-
dicting one location with three years of data. This follows 
naturally from the increase in variability in the line perfor-
mance in each environment.

Discussion

Genetic gain

The continued yield gain increasingly depends on pro-
gress from plant breeding (Lillemo et al. 2010; Mackay 
et al. 2011). Understanding the historical and current gains 
achieved through breeding is essential to set future targets 
and evaluate the performance of new breeding strategies. 
Here, field trial data were collected to compare varieties 
commonly grown in Sweden, i.e., KWS Irina, Dragoon 
and RGT Planet, to a population of current and candidate 

Table 3  Broad sense heritability, genetic variance components, and 
population averages for yield (kg/ha) using BLUP values in spring 
barley

All Two-row Six-row

Heritability  (H2) 0.727 0.791 0.597
Genetic variance 0.089 0.104 0.056
Gen:year variance 0.011 0.003 0.026
Gen:loc variance 0.010 0.013 0.008
Year 0.705 0.720 0.648
Location 1.311 1.031 1.621
Year:location 0.107 0.235 0.025
Residual variance 0.239 0.197 0.239
Average (kg/ha) 5.74 5.95 5.51
Min (kg/ha) 4.47 4.97 4.47
Max (kg/ha) 7.13 7.13 6.55
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market varieties. This approach made it possible to investi-
gate the genetic gain of material currently available to farm-
ers. Within this population of varieties marketed for this 
region, there was a trend of genetic gain increase for the 
yield of 1.07% per year, compared to the checks, suggesting 
that there is progress in the breeding for better-performing 
lines. The yield of the top performers in each year showed 
a smaller improvement of 0.95% per year, whereas the low-
est yielding lines improved by 1.57% per year. It is unclear 
whether this improvement of the worst-performing lines was 

due to improvement or to the removal of lines included in 
the field trials. However, new lines were continuously added 
to the population over the tested years, and they performed 
better than the lines removed from the trials with an average 
of 0.63% genetic gain in line performance per year.

Ortiz et al. (2002) studied genetic gain in Nordic spring 
barley and found a genetic gain of 13% over 60 years of 
breeding. Finnish spring barley varieties showed no genetic 
gain in varieties released from 1927 to 1980 (Peltonen-
Sainio and Karjalainen 1991). The lines used in the current 

Fig. 3  Correlation of the yield (kg/ha) in individual environments 
compared to BLUP values. All individual environments showed a 
medium to high correlation to the BLUP values as displayed with the 

Pearsons correlation coefficient (R) for each environment. The two-
row lines (blue) were generally higher yielding compared to the six-
row lines (orange) (colour figure online)
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study were all registered on the Swedish market from 2001 
to 2023 and constitute an estimate of the genetic gain in 
the varieties available to farmers. The overall gain of the 
varieties in this study of 1.07% per year is one of the highest 
reported for spring barley, suggesting a steady increase in 
yield potential over time; however, there is a need to improve 
the genetic gain to meet future demands.

Increasing genetic gain in future market varieties remains 
a challenge but also provides opportunities for new technol-
ogy. Through simulated trials with varying population sizes 
and trait heritability, the genomic selection strategy con-
stantly outperformed phenotypic or marker-assisted selec-
tion (MAS) in predicted genetic gain over time (Bernardo 
and Yu 2007; Iwata and Jannink 2011; Jannink 2010). In 
barley breeding, GP using RR-BLUP resulted in a higher 
genetic gain increase in comparison with traditional phe-
notypic selection which was especially true for traits with 
low heritability and for populations with large sample sizes 
(Iwata and Jannink 2011). By using GP, the expected genetic 
gain per year can be two to three times higher for wheat and 
maize in comparison with the use of MAS or phenotypic 
selection (Heffner et al. 2010; Tessema et al. 2020). Integrat-
ing GP in breeding programs can potentially increase genetic 
gain while reducing cost per unit time (Heffner et al. 2010; 
Lorenz 2013).

Genomic selection for targeted regions

For growers, the selection of varieties for cultivation could 
be assisted by variety testing in locations resembling their 
own conditions (Cooper et al. 1996; Smith et al. 2015). How-
ever, for breeding, the prediction of the performance of lines 
in larger target regions still lacks in the predictive ability of 
new environments (Smith et al. 2015). In this study, using 
observed environments to predict untested environments (the 
combination of a year and a location) led to moderate predic-
tive ability (Table 4). The variation between trial sites within 
a region can be as large as the variation between regions 
suggesting that non-static genotype by environment inter-
actions due to seasonal factors can be higher than regional 
differences (Cullis et al. 2006).

A higher PA depends on designing the right training set 
from a carefully designed breeding scheme (Bassi et al. 
2016). Training population size is one of the most important 
considerations for the PA in GS (Asoro et al. 2011; Isidro 
et al. 2015; Lorenzana and Bernardo 2009), more so than 
the marker density and number, as it affects the diversity 
and the genetic variance that can be identified in a crop. The 
accuracy of predictions is usually decreased if there is little 
relatedness between the training and the breeding population 
(Gianola et al. 2009; Habier et al. 2007, 2010; Zhong et al. 

Table 4  Predictive ability 
of genomic prediction of 
different training and validation 
populations for yield (kg/ha) in 
spring barley

Yield data for 375 spring barley breeding lines tested in three locations and three years was used to test 
PA in different scenarios of training (TP) and validation (VP) population composition using fivefold cross-
validation in RR-BLUP. PA,  predictive ability

Scenario TP VP Pop size TP size VP size PA yield

A. Whole population All (80%) All (20%) 375 300 75 0.609
B. Within row-type Two-row Two-row 222 178 44 0.572

Six-row Six-row 153 122 31 0.193
C. Between row-type Two-row Six-row 222 178 44 0.102

Six-row Two-row 153 122 31 0.210
D. Within-breeding set SWA18 SWA18 178 142 36 0.437

SWA19 SWA19 195 156 39 0.526
E. Between-breeding set SWA18 SWA19 178 178 195 0.370

SWA19 SWA18 195 195 178 0.326
F. Between years 2020 + 2021 2019 375 300 75 0.389

2019 + 2021 2020 375 300 75 0.334
2019 + 2020 2021 375 300 75 0.260

G. Between locations Loc 1 + Loc 2 Loc 3 375 300 75 0.365
Loc 1 + Loc 3 Loc 2 375 300 75 0.279
Loc 2 + Loc 3 Loc 1 375 300 75 0.309

H. Within locations Loc 1 Loc 1 375 300 75 0.357
Loc 2 Loc 2 375 300 75 0.307
Loc 3 Loc 3 375 300 75 0.487

I. Single location All-Loc 1, 2019 Loc 1 in 2019 375 300 75 0.326
All-Loc 1, 2020 Loc 1 in 2020 375 300 75 0.441
All-Loc 1, 2021 Loc 1 in 2021 375 300 75 0.069
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2009). In wheat, the PA for a validation population of little 
relatedness to the training population could be improved by 
increasing the diversity of the training set (Norman et al. 
2018). In contrast, using populations with low relatedness 
decreased the PA from an overall of 0.8–0.4 (Norman et al. 
2018).

The population structure caused by the row-types in 
spring barley is of importance for the implementation of 
GP methods in breeding programs. Although the genetics 
resulting in the fertility of the lateral spikes, and thereby 
the two- or six-rowed phenotype, is relatively simplistic and 
well-known, the extent of the difference in genetics resulting 
from the separation of the populations is less known. In a 
study with four wild barley (three Hordeum ssp. spontaneum 
and one Hordeum spp. agriocrithon) and a diversity panel of 
cultivated inbred barley lines, the most genetic variation was 
attributed to the row-type, rather than the cultivation status, 
and accounted for 15.1% of the genetic variation (Casale 
et al. 2022). Another study found differences in allele fre-
quency between two- and six-rowed barley, potentially due 
to the incorporation and fixation of important loci related to 
yield, disease resistance, abiotic stress resistance, and flow-
ering time (Wonneberger et al. 2023). Breeding of barley in 
modern times has focused on adapting barley for a variety of 
different purposes and environments. Higher protein content 
for varieties aimed for animal feed, and low protein and large 
grain size for malting barley varieties could have contributed 
to the differences in the germplasms. In addition, alleles for 
powdery mildew resistance (Friedt et al. 2011; Jørgensen 
1992), selection for late flowering, and increased yield in 
European two-rowed spring barley (Tondelli et al. 2013) led 
to further separation between row-types.

The spring barley population used in the current study 
consisted of lines of different row-types and from different 
breeding sets. Here, there was significant genetic difference 
depending on row-type, accounting for 25.8% of the genetic 
variation, with less diversity assigned to breeding set. When 
all lines were used as one population the PA was high, 0.609, 
whereas predictions within the individual row-type groups 
achieved accuracies of 0.572 and 0.193 for two-row and 
six-row accessions, respectively. The genetic separation of 
the row-types in barley also resulted in very low PA when 
using one row-type to predict the other whereas the inter-
breeding set prediction was still moderate (Table 4, Sce-
nario C and E). This could indicate that the high PA for the 
whole population was inflated, due to the clustering of the 
genetic subpopulations depending on row-types. Predictions 
using whole populations can lead to higher PAs compared to 
within-subpopulation predictions (Guo et al. 2014; Werner 
et al. 2020) suggesting that the accounting for population 
structure is important for accurate prediction estimates.

Another factor influencing GP accuracy is the size of the 
training population. When separating the population based 

on row-types or breeding sets there was a significant reduc-
tion in effective population size for each training popula-
tion which could have contributed to the lowering of the PA 
compared to the use of the entire population. In a study on 
barley, Nielsen et al. (2016) found that reducing the training 
set to less than 200 lines decreased the PA. In addition, with 
a lower training population the importance of the popula-
tion structure and the relatedness of the lines is increased 
(Nielsen et al. 2016). To account for population structure 
such as the row-type in barley through the division of the 
training population, the overall size of the training popula-
tion decreases, resulting in a reduced PA. Including more 
observations could be necessary to improve the predictions 
to accurately account for the differences between the of the 
spring barley row-types.

Conclusion

Genetic gain per year in current market varieties was esti-
mated as 1.07% for the varieties tested. This estimate can 
serve as a checkpoint for the evaluation of new varieties 
currently developed. Introducing genomic prediction in plant 
breeding programs has the potential to streamline selection 
in breeding programs. In barley separating the popula-
tion based on row-type to increase the predictive ability in 
genomic selection could be beneficial if the number of lines 
in the breeding population is large enough. Large popula-
tions might be needed to account for population differences 
depending on row-type to improve the predictive ability of 
a divided population, whereas programs with a low number 
of one or both row-types might benefit from keeping the 
population intact. Targeted breeding for untested regions 
could significantly reduce phenotyping costs; however, the 
effects of the variations in the environments, i.e., years and 
locations, somewhat reduced the predictive ability.
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