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PERSPECTIVE
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Abstract
Genetic diversity is essential for maintaining healthy populations and ecosystems. Several approaches have recently been 
developed to evaluate population genetic trends without necessarily collecting new genetic data. Such “genetic diversity 
indicators” enable rapid, large-scale evaluation across dozens to thousands of species. Empirical genetic studies, when avail-
able, provide detailed information that is important for management, such as estimates of gene flow, inbreeding, genetic 
erosion and adaptation. In this article, we argue that the development and advancement of genetic diversity indicators is a 
complementary approach to genetic studies in conservation biology, but not a substitute. Genetic diversity indicators and 
empirical genetic data can provide different information for conserving genetic diversity. Genetic diversity indicators enable 
affordable tracking, reporting, prioritization and communication, although, being proxies, do not provide comprehensive 
evaluation of the genetic status of a species. Conversely, genetic methods offer detailed analysis of the genetic status of a 
given species or population, although they remain challenging to implement for most species globally, given current capac-
ity and resourcing. We conclude that indicators and genetic studies are both important for genetic conservation actions and 
recommend they be used in combination for conserving and monitoring genetic diversity.
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Introduction

Several approaches have recently been developed and used 
to efficiently and rapidly evaluate the genetic status and 
trends of populations and species, in the absence of col-
lecting new genetic data (in this article we use “genetic 
data” and “genetic studies” to mean molecular techniques 
to examine the DNA or similar studies of inherited variation, 
e.g. DNA sequencing). Building on decades of prior work 
(Wright 1943; Frankham 1995; Manel et al. 2003; Hamann 
et al. 2005; Hanson et al. 2017), these approaches leverage 
population genetic theory and proxy-based geographic and 

demographic data to approximate genetic status and trends. 
For example, two indicators were developed and adopted as 
part of the United Nations Convention on Biological Diver-
sity (CBD) Global Biodiversity Framework (GBF): 1) the 
proportion of populations large enough to maintain genetic 
diversity (i.e., effective population size, Ne, > 500), and 
2) the proportion of populations maintained (Laikre et al. 
2020; Hoban et al. 2020, 2023a). These indicators are both 
valuable because they reflect different aspects of genetic 
diversity, and one or both may be derived from existing eco-
logical monitoring data, if available (Mastretta-Yanes et al. 
2024a). Other simple and policy-relevant genetic indicators 
have been developed, such as a multi-dimensional genetic 
health index (Kriesner et al. 2020), genetic scorecards for 
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high-profile species that document possible genetic threats 
and ongoing actions (Hollingsworth et al. 2020; O’Brien 
et al. 2022), and indicators of the sufficiency of protec-
tion (i.e., safeguarding) of genetic diversity across species’ 
ranges (Khoury et al. 2019, 2020). The latter two are also 
indicators under the GBF. All of these indicators can use 
existing non-genetic data to varying degrees, along with 
summaries of previous genetic datasets when available, to 
assess the genetic status, trends, and/or effectiveness of con-
servation actions for species and populations, without the 
collection of new genetic (e.g. DNA-based) information. The 
use of indicators therefore allows rapid evaluation and com-
parison among dozens to thousands of species using simple, 
repeatable and accessible metrics with available data.

Here, we aim to emphasize that the development and 
advancement of such indicators complement genetic stud-
ies, that generate and analyse genetic information (including 
“genomic” approaches e.g. high throughput DNA sequence 
data; Fig. 1), and do not reduce the pressing need for stud-
ies that collect genetic data. When genetic data are feasible 
to obtain, they can be informative for specific cases, while 
also contributing to the growing evidence-base that underlies 

pragmatic indicators. Genetic diversity indicators and 
genetic studies each provide different types of information 
for different uses, and both are vital for informing the con-
servation of genetic diversity. Indicators are especially use-
ful for rapid, large-scale assessments when genetic data are 
not comprehensively available, and support policymakers 
and other stakeholders in prioritizing management among 
many species and populations using a common metric. In 
turn, these data can help direct resources towards species or 
populations in greatest need of more in-depth investigation, 
and support communicating to the public about genetic con-
cepts and the urgency of genetic conservation (see Table 1).

Genetic diversity indicators

The genetic indicators included in the CBD GBF were origi-
nally designed to enable tracking of genetic status across 
many species and monitoring change over time, especially 
for the many species without genetic data, within the con-
text of policy and management. One of the weaknesses of 
the previous CBD Aichi Biodiversity Targets was a lack of 

Fig. 1  Genetic studies (typically 
using DNA data) and genetic 
indicator assessments (based 
on new and existing diverse 
datasets, such as ecological 
surveys) provide complemen-
tary and distinct information for 
guiding the genetic management 
of biodiversity
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quantitative, reliable indicators (Butchart et al. 2016; Xu 
et al. 2021), and so these were required in the more-recent 
CBD GBF. Although genetic diversity has been overlooked 
in conservation policy in the past (Laikre et  al. 2010), 
genetic diversity indicators enabled this important com-
ponent of biodiversity to be included in the GBF (Hoban 
et al. 2023a; Carroll et al. 2023). Genetic indicators have 
some notable limitations, such as focusing primarily on only 
two aspects of genetic health (amount of genetic drift and 
numbers of putatively locally adapted populations), utiliz-
ing thresholds (such as Ne > 500) rather than continuous 
metrics, and relying on assumptions such as population-
level adaptation and a universal estimate of the Ne/Nc ratio. 
However, these indicators enable biodiversity managers to 
quantify likely genetic change for the thousands of species 
for which detailed genetic studies are not currently avail-
able or likely to be so in the near future, and manage many 
populations that may need intervention (Hoban et al. 2023b, 
2024; Mastretta-Yanes et al. 2024a). Indicators can thus ena-
ble the following key outcomes: tracking change over hun-
dreds of species and across the world; reporting such change 
under policy frameworks including the CBD and regional 
and national frameworks where hundreds or thousands of 
species (and often their distinct populations) are protected 
and assessed (e.g., U.S. Endangered Species Act, Canadian 
Species at Risk Act, European Habitats Directive, European 
Nature Restoration Law, Mexican SEMARNAT NOM-
059, South African National Environmental Management: 

Biodiversity Act); prioritizing—based on a common met-
ric—species that have the most urgent conservation needs to 
remedy genetic diversity loss; and facilitating communica-
tion on genetic issues to non-geneticists, the public and poli-
cymakers. Further research on genetic diversity indicators, 
including complementary studies with genetic data, will help 
improve indicators into the future.

Genetic data, notably from DNA‑based 
studies

Genetic data have been used for decades to study the genetic 
“health” of species in detail, and the processes impacting 
the conservation of genetic diversity (Frankham 2010). 
Genetic data can reveal diverse and detailed information, 
such as understanding hybridization, population distinc-
tions or barriers to gene flow, ancient population size and 
size changes (and thus providing context for current size), 
assessing inbreeding at the genomic level, and quantifying 
genetic load, etc. (Allendorf et al. 2010, 2022; DeWoody 
et al. 2021). Genetic data can also detect gene flow between 
domesticated species, their wild relatives, and/or genetically 
modified organisms or improved varieties (Rojas-Barrera 
et al. 2019). The use of recently defined Genetic Essential 
Biodiversity Variables—standardized genetic summary 
metrics that focus on core attributes of genetic composi-
tion—can facilitate comparison among genetic monitoring 

Table 1  Multiple assessments of genetic diversity indicators across 
moderate to large numbers of species have been conducted and have 
generated policy or management guidance, quickly, by using existing 

data. Genetic data and proxies of genetic diversity were integrated to 
varying degrees in each of these analyses

Number of species assessed Conclusions and use for policy and management Citation

909 Many species retain a majority of their populations, but most populations are below 
the threshold of Ne > 500 and may be in danger of genetic diversity loss. The indica-
tor highlights populations and species in need of active intervention

Mastretta-Yanes, da Silva, 
et al. (2024a)

7,336 and 4,470 In a first-pass evaluation of genetic indicators in Sweden, 60% of 7,336 species poten-
tially have populations with census size Nc > 5,000, while 91% of 4,470 species 
have lost some subpopulations or distribution during the last 100 years

Thurfjell et al. (2022)

594 Crop wild relative genetic diversity has not been well conserved ex situ or in situ, and 
most species require urgent action. The indicator provides a quantitative measure of 
progress on this action (geographic or ecological range conserved)

Khoury et al. (2020)

26 Assessment of several criteria show that 14 species are likely at negligible genetic 
risk, eight species at moderate risk (with effective mitigation in place for five of 
these), and four species are likely at risk of severe genetic problems

Hollingsworth et al. (2020)

1,148 Approximately 15–20% of assessed species are “likely to benefit from… genetic 
rescue or targeted gene flow/genetic augmentation. Over half… would benefit from 
re-establishing new populations”

Kriesner et al. (2020)

1,321 Documents that genetic diversity (GD) is reduced in threatened species and proposes 
a straightforward framework to rank species based on publicly available GD data 
and time to expected loss of GD due to small populations

Willoughby et al. (2015)

83 Mean individual zygosity (i.e., heterozygosity and autozygosity) estimated from pub-
licly available resequencing data can be used as a key criterion in a novel analytical 
framework to help rank species by conservation category

Jeon et al. (2024)
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studies (Hoban et al. 2022). Genetic data can sometimes also 
provide information on the type and extent of local adapta-
tion and maladaptation (Hoban et al. 2016; Capblancq et al. 
2020). Combining genetic data with simulations can pre-
dict likely trajectories of populations and their fitness and 
diversity in response to management (Hoban 2014; Rob-
inson et al. 2022) including time until a certain threshold 
of genetic erosion occurs (Hoban et al. 2014; Willoughby 
et al. 2015). This kind of information is often vital to on-the-
ground management decisions as well as informing policy. 
As a few of the many examples, genetic data contributed 
to decisions about successful genetic rescue for helmeted 
honeyeaters in Australia (Harrisson et al. 2016; Pavlova et al. 
2023), thresholds for hybrid management in bontebok and 
blesbok in South Africa (van Wyk et al. 2017), and red wolf 
management in the USA (Gese et al. 2015) (see also Bertola 
et al. 2024). Nonetheless, recent surveys show that a very 
small portion of species have any genetic data available (per-
haps 1 to 5%) and an even smaller portion (less than 0.5%, 
even in wealthy nations) have temporal genetic monitoring 
(Torres-Florez et al. 2018; Posledovich et al. 2021; Thurfjell 
et al. 2022; Pearman et al. 2024; Paz-Vinas et al. 2023).

Synthesis

As discussed above, genetic indicators and genetic data col-
lection methods both provide data necessary to monitor and 
protect genetic diversity, albeit in different ways. They are 
complementary strategies that should be deployed together 
for conserving and managing biodiversity. While genetic 
data can be used to generate detailed analyses of a given 
entity’s genetic status, genetic data alone have not been suffi-
cient to meet all conservation genetic needs, including prior-
itizing among many species, and supporting affordable and 
rapid decision-making. Conversely, while genetic indicators 
enable broad-scale evaluation of many species and facilitate 
affordable and accessible tracking, reporting, prioritization 
and communication, they are proxies and do not provide a 
full assessment of genetic composition and genetic change 
in a population or species, nor answer applied questions 
such as whether gene flow is occurring between locations. 
Genetic indicators (e.g., the proportion of large populations 
or the proportion of extant populations relative to extirpated 
populations; Hoban et al. 2023a, b) can be compiled for 
one species in just a few hours if field-based ecological or 
demographic data have already been generated, including 
via citizen scientists or local communities (Mastretta-Yanes 
et al. 2024a, b). In contrast, conducting an empirical genetic 
or genomic study commonly takes months, and substantial 
infrastructure, expertise, samples, and funding (Kriesner 
et al. 2020; Mastretta-Yanes et al. 2024a).

The complementary use of indicators and detailed 
genetic studies may be analogous to species threat assess-
ments (e.g. IUCN Red List) and detailed population via-
bility models (PVMs). Like genetic studies, PVMs offer a 
high level of precision and insight, although they typically 
require detailed information that is slow and expensive to 
gather, making their application feasible for relatively few 
species. In contrast, species threat assessments, like indica-
tors, use pragmatic thresholds of a few simple criteria to 
characterize a species’ status, enabling them to be done for 
many species, and indicating where more detailed studies 
are required. Like broad-scale threat assessments, genetic 
diversity indicators can point to potential issues, raising 
alarm in situations where concern is warranted, which can 
promote collection of more data, generate specific actions, 
and encourage monitoring.

Genetic indicators can be integrated with genetic data 
to provide a comprehensive genetic management approach 
(Fig. 1). For example, indicators may reveal which species or 
populations are most likely in need of genetic management, 
and genetic data can then be generated for those species to 
provide management-relevant information such as migration 
rates, temporal changes in Ne, and inbreeding. Meanwhile, 
DNA-based genetic studies of wild populations can provide 
better understanding of the biological processes underpin-
ning genetic change, such as Ne dynamics, determinants of 
the Ne/Nc ratio, undesired effects of gene flow or artificial 
selection, and the needs of populations for long-term persis-
tence. Such genetic knowledge can then be directly used to 
improve indicator calculation, such as by clarifying popula-
tion genetic structure of a species or applying a tailored Ne/
Nc ratio, leading to increasingly robust, empirically sup-
ported indicator estimates.

Conclusion

In summary, the development of simple indicator approaches 
enables tracking and reporting of genetic information at large 
scales in all countries. While genetic studies provide irre-
placeable information often useful for on-the-ground man-
agement, especially for issues like hybridization, inbreeding, 
fitness, and adaptation, they are challenging to scale up and 
therefore should be complemented by less expensive and 
more scalable approaches (e.g., indicators). Both are impor-
tant and useful for genetic conservation action and should be 
used to complement each other. We conclude that a holistic 
approach at a country-level through the development of both 
genetic indicators and genetic studies can rapidly improve 
the monitoring and conservation of genetic diversity.
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