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A B S T R A C T

Deep learning comes with a portfolio of highly flexible models, known as neural networks (NNs), capable of 
solving various problems and setting new high standards for prediction accuracy. Nevertheless, whether NNs 
could be of value in aquaculture selective breeding settings is unclear as the whole topic is underexplored. 
Furthermore, fine-tuning a plethora of hyperparameters before fitting a neural network is a daunting task. Using 
simulated and a publicly available dataset on genetic resistance in carp against koi herpes virus (KHV), various 
neural network architectures were benchmarked against commonly used animal breeding models. More spe-
cifically, the simulated datasets comprised 36000 phenotyped animals genotyped for 54000 single nucleotide 
polymorphisms (SNPs). In contrast, the carp dataset included 1255 carp juveniles with survival recordings for 
KHV that were genotyped for 15615 SNPs. The assessed NN architectures included multilayer perceptrons 
(MLPs), convolution neural networks (CNNs) and local convolution neural networks (LCNNs). In addition, the 
effect of various hyperparameters of neural networks, such as the number of hidden layers, neurons per layer, 
activation function, learning rate, batch size, and regularisation techniques like dropout, were examined. In the 
simulated datasets, fully connected models with 5 hidden layers and 100 neurons per layer performed slightly 
better (1 – 4 %) than ridge-regression best linear unbiased prediction (rrBLUP), while the CNNs gave the lowest 
prediction accuracies (~ 14 % lower than MLPs) and the ones from LCNN in between the above (~ 8 lower than 
MLPs). Nevertheless, the estimated breeding values from NNs appeared more biased than rrBLUP (mean 
regression slope of 1.2 for the NN with the highest prediction accuracy vs 1.08). A reverse picture was observed 
in the case of the carp dataset, where following the application of receiver operating characteristic (ROC) curves, 
the animal breeding models outperformed neural networks by more than 2 % (based on the area under the curve 
index). In this case the LCNN had the highest area under the curve index from all NNs. Overall, NNs could be 
valuable tools in aquaculture breeding programs, though large training datasets of tens of thousands or more of 
phenotyped and genotyped animals seem to be required.

Introduction

The central aim of a breeding program is to determine which animals 
have the highest potential to be used as breeders. At its essence, selective 
breeding attempts to predict the productivity of a future generation by 
deciding on its genetic makeup through appropriate mating crosses. This 
decision is based on available information from current and past gen-
erations. Understandably, the above task is accompanied by uncertainty, 
constituting prediction accuracy a key success-determining factor. 
Therefore, fine-tuned statistical models capable of producing accurate 
predictions are necessary.

The best linear unbiased prediction (BLUP) methodology 
(Henderson, 1975) and its modern extensions, which use genomic in-
formation (Meuwissen et al., 2001; Legarra et al., 2014; Misztal et al., 
2020), have allowed for substantial improvements in practically all food 

production systems (Hickey et al., 2017). In aquaculture, compelling 
evidence from early on pointed towards a considerable increase in 
productivity through selective breeding (Gjedrem and Rye, 2018), 
which recent studies have emphatically verified (Kause et al., 2022; 
Vandeputte et al., 2022; Faggion et al., 2023).

As selective breeding results in cumulative and, most often, perma-
nent improvements, even a small increase in prediction accuracy can 
result in substantial economic benefits for the industry in the long term. 
Despite the success of the original BLUP methodology, notable efforts 
have been made over the years to enrich the statistical machinery 
responsible for ranking the breeding candidates (de los Campos et al., 
2013; Lourenco et al., 2020) with models that could further boost pre-
diction accuracy (GBLUP family, Bayesian-based models).

Machine learning constitutes a diverse family of models where ac-
curate predictions are often the ultimate goal. Providing solutions in a 
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diverse range of tasks (Wilmott, 2019), including applications in aqua-
culture (Karras et al., 2023), machine learning models have attracted 
attention regarding their potential in breeding evaluations. Compared to 
other models, where assumptions and domain expertise are hard coded, 
machine learning models are designed to detect patterns in data auto-
matically (Eraslan et al., 2019). Even though previous studies in aqua-
culture species suggested that, in some cases, more accurate predictions 
could be obtained compared to ones derived from the golden standard 
breeding models, this trend is certainly not universal (Bargelloni et al., 
2021; Palaiokostas, 2021; Wang et al., 2022; Song et al., 2023b).

Deep learning (DL) is a subfield of machine learning associated 
recently with fascinating advancements in artificial intelligence. A key 
characteristic of deep learning is that it allows learning to progress 
through successive layers of increasingly meaningful representations 
(Chollet, 2021). The machinery responsible for predictions in DL is 
known as a neural network. Following a simplistic mental model of how 
a neural network functions, one can imagine information funnelled from 
the input layer (equivalent term for input data) through successive 
layers (known as hidden layers) to finally emerge in a distilled format 
suitable to address the problem in question.

The building block of each layer is the neuron, which, in the case of 
the input layer, represents an explanatory variable known in machine 
learning terminology as a feature. At its core, a neuron performs an 
affine transformation to its input, which is subsequently passed to an 
activation function. More specifically, the affine transformation involves 
the dot product between a feature vector and a matrix of trainable 
weights, followed by adding an offset term. During training, the matrix 
of trainable weights is adjusted to minimise a loss function used as a 
proxy to evaluate the model’s predictions. Commonly used loss func-
tions include the mean square error (MSE) for regression and the cross- 
entropy for classification problems. An essential factor in the above 
process is the backpropagation algorithm (Rumelhart et al., 1986) that 
efficiently computes the loss function and its gradient for all trainable 
parameters (Lindholm et al., 2022).

Overall, the number of hidden layers, the neurons on each layer, and 
the way those are connected can vary, allowing for practically any 
model architecture. The above are known as model hyperparameters 

that users must specify in advance. Neural networks come with many 
hyperparameters like the learning rate, the choice of an optimiser, the 
batch size and the activation function. As a detailed explanation of those 
hyperparameters is beyond the scope of this article, the interested reader 
is pointed to Geron (2019). In relation to the common observation that 
neural networks appear to shine in capturing nonlinear associations, 
(Montesinos-López et al., 2021b) it would worth mentioning that this 
capacity is due to the usage of activation functions. A wide range of 
activation functions have been tested over the years, and some of the 
most popular choices nowadays include the rectified linear unit (ReLU) 
and its variants, such as the exponential linear unit (ELU) and the scaled 
ELU (SELU) (Xu et al., 2015; Klambauer et al., 2017).

A typical neural network architecture contains connections between 
all neurons from two successive layers, characterising a class of models 
as fully connected ones (Fig. 1). Those models, also known as multilayer 
perceptrons (MLPs), have been tested recently in plant breeding, where 
competitive predictions compared to GBLUP-based models were ob-
tained (Montesinos-López et al., 2019b). However, a drawback of MLPs 
lies in the magnitude of estimable parameters, which can range to 
several millions, even for models of moderate complexity.

Convolutional neural networks (CNNs) form another popular cate-
gory of deep learning models (Fig. 2). CNNs have been instrumental in 
the success of deep learning, allowing remarkable breakthroughs, 
especially in computer vision (Geron, 2019). Particularly suitable for 
handling problems where the input data have a grid-like structure, CNNs 
can also be applied to single or multi-dimensional data. By leveraging 
sparse interactions and parameter sharing, CNNs tend to have far fewer 
parameters than MLPs (Lindholm et al., 2022). Finally, an intermediate 
category of NNs in terms of number of parameters is the local CNNs 
(LCNNs) where opposed to CNNs the trainable weights of each pre-
defined channel and filter size are not shared.

In general, and regardless of model architecture, neural networks 
tend to have orders of magnitude more estimable parameters than cus-
tomed animal breeding models or other machine learning algorithms. As 
such, the risk of overfitting is substantially higher. Overfitting refers to a 
generic term in statistics where a model, instead of detecting patterns in 
the dataset that generalise, also adapts to noise. More specifically, in 

Fig. 1. Architecture of a multilayer perceptron (MLPs). The depicted neural network has three input neurons (x1, x2, x3) and two hidden layers, each containing 
three neurons. A bias neuron is included in every layer, always outputting 1. Σ denotes an affine transformation of the dot product between the feature vector and a 
matrix of trainable weights, followed by adding an offset term from the layers’ bias neuron. φ denotes an activation function that allows the model to capture non- 
linear associations. The output layer consists of a single neuron referring to a regression problem. Figure was created with BioRender.com.
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every dataset, one expects to find both regular and irregular features, 
with the formers being the target of learning as they tend to generalise 
and, therefore, contribute towards answering a question of interest 
(McElreath, 2020). Due to overfitting a model could initially give the 
impression that highly accurate predictions can be obtained. However, 
when the model is applied to previously unseen data (which is the 
reason for using a ML algorithm or more broadly speaking any sort of 
model) the prediction accuracy tends to be considerably worse than 
anticipated.

Even though with highly complex datasets such as genomic ones, a 
certain level of overfitting is practically unavoidable, strategies exist to 
alleviate it. Those strategies usually come under the umbrella term of 
regularisation, where model complexity and the magnitude of estimable 
parameters are penalised. Aside from generic regularisation techniques, 
ones specific to neural networks exist. In the latter case, some of the most 
popular ones include batch normalisation, where each input neuron on 
every hidden layer is zero-centered and normalised (Ioffe and Szegedy, 
2015) and dropout, where at every training step, a prespecified and 
random subset of neurons is ignored (Hinton et al., 2012).

In the current study, MLPs, CNNs and LCNNs were assessed in terms 
of their efficiency in predicting the most suitable breeding candidates. 
Both simulated data and a publicly available aquaculture dataset were 
used. In the case of simulated datasets, the prediction efficiency of the 
tested neural networks was benchmarked against the corresponding 
predictions from ridge-regression BLUP (rrBLUP) and random forests 
(RFs). The former, being mathematically equivalent to GBLUP, has been 
repeatedly shown to produce robust predictions (Meuwissen et al., 2001; 
Daetwyler et al., 2013). Equally, RFs are considered one of the most 
robust ML models being successfully tested in diverse problems, 
including ones related to genomic prediction (Montesinos López et al., 
2022). In addition, the aforementioned neural networks were applied in 
a publicly available dataset on genetic resistance to koi herpes virus in 
common carp (Palaiokostas et al., 2019). Finally, the effect of different 
neural network hyperparameters on prediction efficiency was assessed. 
Those hyperparameters included the number of hidden layers, neurons 
per layer, the choice of activation function, optimiser and the applica-
tion of regularisation with dropout.

Materials and methods

Simulated datasets

Phenotypes and their corresponding genotypes were simulated using 
the QMSim software (Sargolzaei and Schenkel, 2009). The initial 

historic population involved 2000 generations, each with a constant size 
of 10000 animals. An equal sex ratio, random mating and discrete 
generations were assumed. After that, 12 discrete non-overlapping 
recent generations were created using a breeding design often encoun-
tered in salmonids. In particular, 150 sires were considered to be mated 
with 300 dams, where a single sire is mated with two dams, and 30 
animals from each family were phenotyped for a single trait. For the last 
four generations, SNP data were created. As such, individuals from 
generation 9–12 (36000 animals) were genotyped for 54000 SNPs 
(typical size of a SNP array used in aquaculture breeding) randomly 
distributed across a genome of 30 chromosomes, each of 100 centi-
morgans (cM) in length. The heritability of the simulated trait was equal 
to 0.3, out of which 0.2 was attributed to quantitative trait loci (QTL). 
Overall, 100 biallelic QTLs randomly located per chromosome were 
simulated. Those QTLs were sampled from a gamma distribution with a 
shape of 0.4 Finally, ten replicates of simulated data were created. For 
each simulated dataset, the last generation was considered the test set, 
while the previous three generations with genotypic data comprised the 
training set from which all trainable weights of each model were esti-
mated. The tested models were assessed based on the Pearson correla-
tion coefficient between the predicted values and the test set’s true 
breeding values.

Baseline predictive efficiency using rrBLUP and random forest (RF)
The rrBLUP model was used as a baseline for prediction accuracies. 

The fitted model had the following form: 

yi = μ+
∑p

k=1

xik βκ + εi 

where yi is the phenotype of the ith individual, μ is the grand mean, xik is 
the genotype at the kth marker of the ith individual, with p representing 
the total number of markers. βk is the estimated random additive marker 
effect of the kth marker ~N(0, σ2

β), and εi is the residual error term ~N 
(0, σ2

e ). σ2
β was assigned a scaled inverse χ2 prior distribution with 5 

degrees of freedom (df) and a scale value reflecting that 50 % of the 
observed variance was attributable to the SNP markers. The residual 
variance (σ2

e ) was assigned a prior following a scaled inverse χ2 distri-
bution and parameterised as above. The model was implemented using 
the R/BGLR software (Pérez and de los Campos, 2014).

In the case of the RF, the model was fitted using the Python library 
scikit-learn v1.2 (Pedregosa et al., 2011). The RF model was considered 
to have a maximum of 2000 decision tree regressors. Furthermore, when 
considering for the best split the maximum features hyperparameter was 

Fig. 2. Architecture of a convolution neural network (CNN). The depicted model uses a filter (or kernel size) of 3. A surrounding rectangle points to the used filter. 
All the same genotypic sequences share the trainable weights of the used filter regardless of genomic location. The convolutional layer consists of 3 different 
channels. The first channel is visualised in blue, the second in purple, and the third in green. Each channel has unique trainable weights, all of which simultaneously 
contribute to the output of each neuron from the dense layer. To avoid cluttering the figure, the bias neurons and their associated links are not depicted. The output 
layer consists of a single neuron referring to a regression problem. Figure was created with BioRender.com
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equal to 30. Those hyperparameters were inferred after 3-fold 
cross-validation on the training set using the RandomizedSearchCV 
function of scikit-learn.

Neural network architectures

The first model architecture that was assessed involved MLPs. As 
mentioned, in this sort of architecture, all neurons between two suc-
cessive layers are connected through trainable weights (Fig. 1). In 
general, the outputs of a fully connected layer are defined as follows: 

hW,b(X) = ϕ(XW+ b)

where X denotes the matrix of input features. In the current case, X 
represented the genotypic matrix where the number of rows equals the 
number of genotyped samples, and the number of columns equals the 
number of SNPs. Each genotype was initially coded as 0, 1, 2. Before 
model fitting, the genotypes were normalised using the StandardScaler 
function of scikit-learn. The weight matrix W denotes all the connection 
weights (except those from the bias neuron) and has one row and col-
umn per input and output neuron, respectively. The vector b denotes all 
the connection weights between the bias neuron and each other neuron 
in the same layer. Finally, ϕ denotes the activation function. During 
training, the aim was to minimise a pre-specified loss function. In the 
case of the simulated datasets, the MSE was the targeted loss function, 
while in the case of the publicly available carp dataset, the aim was to 
minimise cross-entropy.

The current study evaluated the effect of various hyperparameters on 
prediction accuracy. Initially, the effect of the optimisation, the learning 
rate, and the number of hidden layers were tested. After retaining the 
values of those hyperparameters, which gave the highest prediction 
accuracy, models with varying neurons per layer, activation function, 
and dropout were fitted. More specifically, models with either 1, 10, 
100, 300, 500 or 1000 nodes per layer were tested. Furthermore, the 
effect of using different activation functions was tested, which included 
the usage of either ReLU, ELU or SELU. In addition, all the above sce-
narios were also tested using dropout, where a random 20 % of the 
neurons of each hidden layer were ignored. Overall, by varying the 
number of neurons per layer, activation function and the inclusion of 
dropout, 24 different models were fitted (Table 1).

In the case of the CNN architecture, the tested hyperparameters 
included the number of convolutional layers (CLs), number of channels, 
kernel size and the inclusion of a max pooling layer with a pool size of 2 
(Table 1). CNN architectures with either 1 or 3 CLs were assessed. 
Furthermore, the number of channels had values of 8, 16 or 32, while in 
the case of the kernel size, the tested values were 3 and 6. In contrast to 
the convolutional layers, the max pooling layer by construction does not 

include any additional trainable parameters. Instead, it condenses in-
formation by using only the maximum value of a predefined region, 
which in this case was equal to 2. Finally, a fully connected layer of 300 
neurons was included before the output layer. Similar to the MLPs, 24 
different models were fitted.

Finally, a similar network architecture to that previously described 
for CNN, named local CNN (LCNN), was also assessed. In contrast to 
CNN, in LCNN, the trainable weights of each predefined channel and 
filter size are not shared. As such, the number of trainable parameters is 
larger than CNNs, though not as large as in MLPs. The tested hyper-
parameters for LCNNs included 1 or 3 CLs, channels of size 4, 8, 10 or 12 
and kernel sizes of 8, 10 or 12 (Table 1).

Fitting neural networks

All the above models were fitted using Keras (Chollet and others 
2015) with TensorFlow (Abadi et al., 2015) v2.10.1 as the backend. 
Example code for fitting neural network models can be found at http 
s://github.com/chpalaiokostas/DNN_in_aquaculture_breeding. As is 
customary in deep learning, model training did not take place by fitting 
the entire dataset simultaneously but iteratively through pre-specified 
batch sizes. This process was repeated until the targeted loss function 
reached a minimum.

Following custom terminology, each iteration involving all available 
training data is called an epoch. The current study used a batch size of 32 
and a maximum number of 100 epochs. Regarding the number of 
epochs, it is essential to mention that a tradeoff exists between under- 
and overfitting. If an insufficient number of epochs is used, then the 
model will not be able to capture efficiently all generalisable features, 
resulting in poor predictions. On the other hand, as the number of 
epochs increases, the model will adapt to noise, resulting in overfitting. 
To avoid the above, the early stopping functionality offered by Ten-
sorFlow was used. In this case, as soon as no further progress is observed 
regarding the reduction of the loss function in the validation set, the 
trainable weights were reversed back to the ones from the epoch, where 
the loss function was previously at its minimum. The above is a simple 
but efficient regularisation technique commonly applied in deep 
learning (Geron, 2019). Moreover, TensorBoard (Abadi et al., 2015) was 
used to visualise the learning progress during each epoch. Finally, all 
computations were performed in the high-performance computing 
(HPC) cluster Alvis dedicated to artificial intelligence and machine 
learning research and offered by the national academic infrastructure 
for supercomputing in Sweden.

Inflation of estimated breeding values

The true breeding values of the test set were regressed on the esti-
mated breeding values of each fitted model to get insights regarding 
potential bias. The slope regression coefficient indicates inflated values 
when found to be above one or deflated ones when below one. On the 
other hand, a value equal to 1 suggests that the results are unbiased.

Carp resistance to koi herpesvirus dataset

A publicly available dataset from Palaiokostas et al. (2019) was 
utilised to assess the efficiency of a MLP and a CNN model in predicting 
carp resistance to koi herpesvirus disease (KHVD). In the case of the 
MLP, the used topology consisted of 3 hidden layers of 300 neurons 
each, while the CNN had a convolution layer of 32 channels with a filter 
size of 3 and a fully connected layer of 300 neurons. A binary phenotype 
represented resistant and non-resistant animals. Predictions were 
assessed using receiver operating characteristic (ROC) curves, with the 
tested models ranked based on the area under the curve (AUC) metric. 
By construction, AUC ranges between zero and one, with the latter 
representing the perfect classifier. The dataset consisted of 1255 carp 
juveniles with survival recordings for KHVD that were genotyped for 

Table 1 
Hyperparameter search among different neural network topologies.

Hyperparameter Tested values
Multilayer perceptron (MLPs)

Activation function ReLU, ELU, SELU
Batch size 32, 64, 128
Dropout No, Yes
Number of hidden layers 1, 3, 5
Neurons per layer 1, 10, 100, 300, 500, 1000
Optimizer Adam, Nadam
Learning rate 0.1, 0.01, 0.001
Convolution neural networks (CNNs)
Convolutional layers 1,3
Channels 8, 16, 32
Kernel size 3, 6
Maxpooling No, Yes
Local Convolution neural networks (LCNNs)
Convolutional layers 1,3
Channels 4, 8, 10, 12
Kernel size 8, 10, 12
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15615 SNPs using restriction-site associated DNA sequencing (RAD--
seq). A five-fold cross-validation was used to rank the fitted models, with 
the whole procedure repeated five times to account for potential bias in 
the assignment of animals in training or validation sets. Allocation to 
training and validation sets was as in Palaiokostas (2021) to allow for 
direct comparisons.

Results

All fitted NNs converged in less than 100 epochs. The EarlyStopping 
hyperparameter ensured that models that required more epochs for 
convergence than others did not overfit the training dataset.

Hyperparameter fine-tuning of MLPs in the simulated datasets

A two-stage exploration of the effect of various hyperparameters on 
the prediction accuracy of MLPs was performed. This kept the number of 
screened models to a manageable level. The assessed MLPs contained 1, 
3, or 5 hidden layers, while the number of neurons per layer was 1, 10, 
100, and 300. The simplest model had 1 hidden layer and 1 neuron, 
while the most complex had 5 hidden layers with 100 neurons each. 
Each model was trained on a dataset of 27000 animals from the first 
three generations with genotypic data and assessed based on the Pearson 
correlation coefficient between the estimated and true breeding value of 
each animal from the test dataset (n = 9000). The model with the 
highest mean prediction accuracy had 5 hidden layers with 100 neurons 
each (r = 0.79). On the other hand, the model with the lowest prediction 
accuracy (r = 0.59) was the simplest one with 1 hidden layer and 1 
neuron. In general, only slight differences were found regarding the 
standard deviation of the prediction accuracy of each model amongst the 
10 datasets (Fig. 3). Additionally, the aforementioned models were 
fitted using different learning rate values (0.01 and 0.001), batch sizes 
(32, 64, 128) and optimisers (Adam or Nadam). As no improvements 
compared to the default values were found, all presented results were 
obtained from models with a learning rate of 0.001, a batch size of 32 
and Adam as optimiser.

Based on the above, further exploration of the effect of various 
hyperparameters was attempted by keeping the number of hidden layers 
fixed at 5 and testing different values of neurons per layer (100, 300, 500 
and 1000) and three different activation functions (ReLU, ELU and 
SELU). Moreover, all the above combinations were tried with and 

without dropout. Overall, 24 different models were fitted to each of the 
10 simulated datasets (Fig. 4).

The model with the highest prediction accuracy (r = 0.81) had 100 
neurons on each of the 5 hidden layers with ReLU as activation function 
and without dropout. In general, for models with the same number of 
neurons per hidden layer, only slight differences were observed between 
the 3 activation functions (~ 1 %), with ReLU consistently having the 
highest accuracy. The only exception to the above was observed in 
models containing 100 neurons per layer without dropout.

The use of dropout decreased prediction accuracies by ~ 3 – 12 % 
compared to the equivalent models without it. Finally, only slightly 
higher standard deviations regarding prediction accuracy were observed 
in the models with 500 or 1000 neurons compared to ones with 100 or 
300 (~ 0.04 vs 0.05 std).

Hyperparameter fine-tuning of CNNs and LCNNs in the simulated datasets

CNNs with different numbers of CLs (1 or 3), kernel size (3 or 6) and 
number of channels (8, 16, 32) were assessed. At the same time, all the 
above combinations of models were fitted with and without max pooling 
(Fig. 5). The above resulted in 24 different CNNs fitted to the same 10 
simulated datasets as with MLPs. Compared to MLPs, the obtained 
prediction accuracies with CNN were lower (r ~ 0.64 – 0.71). The best- 
performing CNN had a 14 % lower mean prediction accuracy than the 
best-performing MLP. At the same time, the accompanying standard 
deviations in the fitted CNNs were generally slightly higher, ~ 0.06, 
than the MLPs. In general, CNNs with 1 CL performed better than the 
corresponding model with 3 CLs. In addition, CNNs with 8 channels 
performed better except where max pooling and a filter size of 3 were 
used.

Similar to CNNs, 24 LCNNs were fitted with varying CLs (1 or 3), 
kernel size (8,10,12) and number of channels (4,8,10,12). A higher 
mean accuracy by ~ 4 % was observed when models with 1 CL were 
compared to those with 3 CLs, following a similar pattern as previously 
observed with CNN. The obtained prediction accuracies ranged between 
0.69 – 0.74. The model with the higher prediction accuracy had 1 CL, 4 
channels and a kernel size of either 12 or 8 (Fig. 6). The accompanying 
standard deviations were ~ 0.04, similar to ones from MLPs

Benchmarking the best performing NNs against rrBLUP and RF

Following hyperparameter fine-tuning, the best-performing MLP, 
LCNN and CNN were benchmarked against rrBLUP and RF. More spe-
cifically, a MLP with 5 hidden layers containing 100 neurons per layer, 
the ReLU activation function and without dropout was used as a 
representative of the former category. In the case of LCNN its hyper-
parameters were fixed to 1 convolution layer, a kernel size of 8 and 4 
channels and a fully connected layer with 300 neurons before the output 
layer. For the CNNs, the used topology had 1 convolution and 1 fully 
connected layer. The former had 8 channels, a filter size of 3 without 
max pooling, while the latter had 300 neurons similar to the previously 
described LCNN. The MLP had the highest mean prediction accuracy, 
while the lowest was recorded in the case of the RF (Fig. 7). More spe-
cifically, the MLP outperformed rrBLUP, LCNN, CNN and RF by ~ 4 %, 
~9 %, 14 % and 31 %, respectively. At the same time, the MLP had the 
lowest standard deviation amongst the 10 simulated datasets (~ 0.03 vs 
0.03 – 0.06).

Inflation of estimated breeding values

The mean regression slope in most cases was above 1, indicating that 
the estimated breeding values were deflated. Out of 74 fitted models, the 
mean regression slope was below one in MLPs when the SELU activation 
function and dropout were used and in CNNs with 1 CL, 32 channels and 
no max pooling. However, the corresponding standard deviations were 
the highest recorded for the latter, with values exceeding 0.2. Overall, 

Fig. 3. Prediction accuracies of multilayer perceptrons (MLPs) of 1, 3 and 5 
hidden layers (hl) with 1, 10, 100 and 300 neurons (n). The prediction accu-
racies were based on the Pearson correlation coefficient between the estimated 
and the true breeding value of each animal. The depicted values were estimated 
from 10 simulated datasets. In each case, the training and test datasets consisted 
of 27000 and 9000 animals, respectively.
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less bias was observed with rrBLUP (mean 1.08; SD 0.04) than with NNs 
where the mean regression slope ranged between 0.93 – 1.6 with 
accompanying standard deviations of 0.05 – 0.25. The best performing 
NN in terms of prediction accuracy (MLP; RELU activation function; 5 
hidden layers; 100 neurons on each layer) had a mean regression slope 
of ~ 1.2 with a SD of 0.06.

Predicting for KHV resistant carp using NNs

Both a MLP, a CNN and a LCNN were benchmarked against GBLUP in 
terms of predicting KHV resistant carp. As a binary phenotype was used 
to distinguish between resistant and non-resistant animals, the area 
under the curve (AUC) score was used to identify the best-performing 
model with a value of 1, denoting the perfect classifier. The AUC score 
from the LCNN was the highest from all fitted NNs and was in close 
proximity to the one from GBLUP (~ 2 % lower). The MLP and the CNN 
had a lower mean AUC score than GBLUP (Fig. 8). GBLUP outperformed 
the MLP by ~ 4 % and the CNN by 10 % on average.

Discussion

Genomics is nowadays an indispensable part of several aquaculture 
breeding programs (Houston et al., 2020). Over the last few years, 
aiming to unlock the full potential of selective breeding and boost ge-
netic gain, researchers have compared predictions derived from deep 
learning algorithms to those from animal breeding models (Pérez-Enciso 
and Zingaretti, 2019; Montesinos-López et al., 2021b). As is usually the 
case when comparing predictions from different models, it is probably 
utopic to expect that a single model will be top-ranked across all traits 
that a modern breeding program targets (Palaiokostas, 2021). Never-
theless, competitive or even higher accuracies have been reported with 
DL models compared to popular animal breeding models (Waldmann, 
2018; Montesinos-López et al., 2019a; Sandhu et al., 2021) in some 
instances.

Benchmarking the prediction efficiency of neural networks

Overall, the potential of ML models and especially DL ones, to deliver 
genomic predictions for breeding purposes in aquaculture species is 
underexplored (Song et al., 2023a). The above is not surprising, 
considering that the topic is understudied even in more mature in-
dustries (plants or terrestrial animals) (Montesinos-López et al., 2021a). 
The required number of samples for efficient implementation of DL is 
probably one of the main restrictive factors. More specifically, to effi-
ciently train a model with several hundreds of thousands or even mil-
lions of parameters, datasets of corresponding sizes are required. At the 
same time, DL models are computationally demanding, necessitating 
access to substantial resources.

In the current study, datasets of moderate size for DL standards were 
simulated, each consisting of 36000 phenotyped animals with accom-
panying genotypes from 54000 SNPs. It has to be stressed that in terms 
of size, the above is probably within the higher upper limit of the 
datasets that a typical aquaculture breeding company would possess. 
Across all simulated scenarios, the best-performing neural network 
performed slightly better in terms of prediction accuracy (by ~ 4 %) 
than a most commonly BLUP-based animal breeding model (rrBLUP). At 
the same time, practically all MLPs that were tested had a substantially 
higher prediction accuracy (~20 % - 40 %) than RF. The above results 
are in the upper range of what has been previously documented in most 
studies (Montesinos-López et al., 2021a; Vu et al., 2022). However, in-
creases above 10 % in terms of prediction accuracies using NNs 
compared to custom breeding models have also been reported (Pook 
et al., 2020; Nguyen et al., 2022; Luo et al., 2024).

It is likely that since the training dataset of the current study (n =
27000) was considerably higher compared to previous studies (~ n =
400 – 8000), DL models were more adequately trained. In addition, the 
fact in the simulated datasets, the trait was not fully polygenic, with 
QTLs accounting for 2/3 of the narrow sense heritability, might explain 
to a certain degree why rrBLUP did not have the highest prediction 
accuracy of all tested models. As BLUP models impose a strong prior that 
heavily shrinks all QTLs towards zero might have restricted the upper 
level of prediction accuracy in the tested simulation scenarios. On the 

Fig. 4. Prediction accuracies of multilayer perceptrons (MLPs) with 5 hidden layers and 100, 300, 500 and 1000 neurons on each layer. The above models were fitted 
with the ReLU, ELU or SELU activation functions, each coloured differently. The above combinations were also fitted with and without dropout, as depicted in the 
two subplots. The prediction accuracies were based on the Pearson correlation coefficient between the estimated and the true breeding value of each animal. The 
depicted values were estimated from 10 simulated datasets. In each case, the training and test datasets consisted of 27000 and 9000 animals, respectively.
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other hand, no such prior expectations are imposed on the NNs. Of 
course, it should be noted that rrBLUP was only slightly worse than the 
best-performing NNs, which automatically makes identifying the caus-
ative reason particularly difficult.

Furthermore, as a word of caution, the above results do not prove 
that DL models will be more efficient than customed animal breeding 
models in an actual aquaculture breeding program. As the former are 
mainly tested in simulated data, while the latter have been battle-tested 
for several years across a wide range of species and traits, additional 
studies are needed, preferably using real-life data. Furthermore, it is 
worth mentioning that the individual estimated breeding values from 
the NNs appeared to be more biased compared to rrBLUP (~ 10 % more 
deflated in the case of the NN with the highest prediction accuracy).

Applying the same DL models in the KHV carp dataset resulted in 

competitive but slightly worse predictions than previously documented 
ones from GBLUP (Palaiokostas, 2021). In this case the LCNNs per-
formed better compared to MLPs and CNNs. As the dataset, in this case, 
consisted of ~1200 animals only, the highly parameterised neural net-
works were not the most efficient choice, though nonetheless, compet-
itive predictions were obtained. It should also be pointed out that the 
structure of this dataset did not allow for an efficient hyperparameter 
fine-tuning of the NNs in a similar fashion to the simulated datasets. 
Instead, a cross-validation scheme was used as animals from only a 
single generation were available. Overall, as the aforementioned dataset 
represents at least the average size of publicly available data in aqua-
culture breeding it is fair to infer that more objective evaluations of DL 
models to the ones of the current study are difficult due to lack of 
appropriate data.

Fig. 5. Prediction accuracies of convolution neural networks (CNNs). CNNs with 1 or 3 convolution layers (CLs), number of channels of 8, 16 or 32 and a kernel size 
of 3 or 6 were fitted. The above combinations were also fitted with or without max pooling. All the fitted CNNs had 1 dense layer with 300 neurons before the output 
layer. The prediction accuracies were based on the Pearson correlation coefficient between the estimated and the true breeding value of each animal. The depicted 
values were estimated from 10 simulated datasets. In each case, the training dataset consisted of 27000 animals and was tested on a dataset of 9000 animals.
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Neural network architectures

Three DL model architectures were used in this study, including 
MLPs CNNs and LCNN. The prediction accuracy derived from CNNs was 
lower (~ 4 – 13 %) from both the LCNN, MLPs and rrBLUP, suggesting 
that the topology used in this study is most likely not the most suitable 

for breeding-related predictions. CNNs models were consistently slightly 
worse in predicting human height than other DL and linear models 
(Bellot et al., 2018). On the other hand, CNNs models outperformed 
rrBLUP and other DL models in accurately predicting phenotypes of 
interest in wheat from corresponding genotypic information (Ma et al., 
2018).

Fig. 6. Prediction accuracies of local convolution neural networks (LCNNs). LCNNs with 1 or 3 convolution layers (CLs), number of channels of 4, 8, 10 or 12 and a 
kernel size of 8, 10 or 12 were fitted. All the fitted LCNNs had 1 dense layer with 300 neurons before the output layer. The prediction accuracies were based on the 
Pearson correlation coefficient between the estimated and the true breeding value of each animal. The depicted values were estimated from 10 simulated datasets. In 
each case, the training dataset consisted of 27000 animals and was tested on a dataset of 9000 animals.

Fig. 7. Prediction accuracies from a multilayer perceptron (MLP), convolution neural network (CNN), local convolution neural network (LCNN), ridge-regression 
best linear unbiased prediction (rrBLUP) and a random forest (RF) model. The MLP was hyperparametrized with 5 hidden layers, 100 neurons on each layer and 
with the ReLU activation function. The CNN had 1 convolution and 1 fully connected layer. The former had 8 channels and a kernel size of 3, while the latter had 300 
neurons. The LCNN had 1 convolution and 1 fully connected layer. The former had 4 channels and a kernel size of 8, while the latter had 300 neurons The RF model 
had a maximum of 2000 base estimators, a learning rate 0.1 and a maximum tree depth of 8. The prediction accuracies were based on the Pearson correlation 
coefficient between the estimated and the true breeding value of each animal. The depicted values were estimated from 10 simulated datasets. In each case, the 
training and test datasets consisted of 27000 and 9000 animals, respectively.
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However, as pointed out by Pook et al. (2020) a convolutional layer 
in its customed form will attribute the same effect to a particular 
sequence of SNPs (it’s length defined by the pre-selected filter size) 
regardless of its location in the genome. The above appears to be a 
restrictive attribute, as ordering SNPs in an array is not associated with 
their actual effects. As a result, the authors suggested LCNN as a natural 
extension of CNN where instead of weight sharing a region-specific filter 
is used (Pook et al., 2020). In the current study LCNN clearly out-
performed CNN in practically all cases and, in the case of the KHV 
dataset performed better than the MLPs. In the study of Pook et al. 
LCNNs had ~10 % or more higher prediction accuracies than other DL 
models and GBLUP. However, taking into account the inherent flexi-
bility of NNs fine-tuned CNNs could also be value. By applying a sparse 
CNN whose hyperparameters were fine-tuned through Bayesian opti-
misation, reductions in terms of prediction error between 3 % and over 
25 % in both simulated and real pig datasets were found (Waldmann 
et al., 2020).

Effect of hyperparameters on the prediction efficiency of neural networks

All things considered, NNs appear to come with a blessing in 
disguise. On the one hand, the wide variety of available model archi-
tectures/topologies, together with a plethora of accompanying hyper-
parameters, empowers NN with the necessary flexibility to handle 
efficiently a range of very different problems. At the same time, this 
exact same attribute constitutes their usage a daunting task as fine- 
tuning their hyperparameters is a non-trivial task. The current study 
attempted to understand the effect of various NN hyperparameters on 
prediction accuracy, focusing on real and simulated data resembling 
aquaculture breeding scenarios.

Initially, the effect of only a handful of hyperparameters, like the 
choice of optimiser, learning rate and batch size, were screened as they 
have been highlighted as some of the most important ones in a wide 
range of problems (Geron, 2019). Regarding the choice of optimizer, 
only slight differences were found among members of the adaptive 
optimisation family, with Adam appearing suitable, as shown previously 
in different types of problems (Kingma and Ba, 2017). Moreover, 

learning rate and batch size had a negative effect only when large de-
viations from the default values were attempted (e.g learning rate 
100-fold higher than the default value of 0.001 or a batch size exceeding 
128). Otherwise, their effect was negligible. It is important to stress that 
the above inferences are based on a sparse search of hyperparameter 
values (e.g., only three different values of learning rate and batch size 
were attempted). Regardless, the data of this study support that the 
default values for learning rate and batch size don’t seem to require 
extensive fine-tuning when performing genomic predictions.

Aiming to get further insights regarding the effect of hyper-
parameters in prediction accuracy, the effect of the number of hidden 
layers, neurons per layer, choice of activation function and the inclusion 
of a common regularisation technique known as dropout were further 
investigated. An architecture consisting of five hidden layers was chosen 
for the tested MLPs, as it showed a slight but consistent advantage over 
architectures with three hidden layers for the simulated datasets. Using 
100 neurons per layer with the ReLU activation function resulted, on 
average, in the highest prediction accuracies among the tested models.

Surprisingly, including dropout gave consistently 3 – 12 % lower 
prediction accuracies. Probably, the fact that a relatively large training 
dataset was used alleviated the effect of overfitting. In addition, 
including a simple regularisation technique known as early stopping 
also contributed to the above. As a generic piece of information, it might 
be worth mentioning that the batch size (as long as it’s lower than the 
size of the training dataset) also imposes regularisation to the fitted 
model in a similar format to ensemble ML algorithms.

Non-highlighted advantages of NNs compared to regular breeding models

Aside from focusing solely on comparing prediction accuracies be-
tween NNs and other breeding or ML models, there are attributes and 
tools related to the ecosystem of the former that are worth stressing. 
Even though NNs are computationally intensive, the fact that their 
application goes beyond the field of breeding triggered the development 
of highly efficient software, e.g. TensorFlow. As an example, the ana-
lyses of this study were conducted primarily in the Swedish HPC Alvis on 
a node with four NVIDIA A100 graphical processing units (GPUs). The 

Fig. 8. Prediction of carp resistant to koi herpes virus (KHV). The area under the curve (AUC) scores from a multilayer perceptron (MLP), convolution neural network 
(CNN), local convolution neural network (LCNN) and a genomic best linear unbiased prediction (GBLUP) model were used as proxies to assess each model. The 
highest AUC score points to the best-performing classifier. The depicted values were estimated from a 5-fold cross-validation repeated 5 times to reduce potential bias 
due to the allocation of animals to the training and validation sets.
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code did not require any specific changes from the user’s side compared 
to what would be needed if it was run on a laptop, as TensorFlow 
handled everything behind the scenes. Moreover, the fact that in NNs, 
training takes place using batches of the available data instead of 
requiring the entire dataset, as is the case with BLUP- or Bayesian-based 
breeding models, means that the computational time increases linearly 
with sample size. In comparison and due to the prohibitive computa-
tional costs of applying GBLUP-based models in large datasets, speci-
alised algorithms have been developed where the so-called core animals 
from the training dataset are identified and used to invert the genomic 
relationship matrix (Misztal et al., 2014; Pocrnic et al., 2016a, 2016b; 
Bradford et al., 2017).

An additional and surprisingly non-highlighted aspect of NNs 
compared to breeding models is the availability of accompanying tools 
like TensorBoard that greatly facilitate monitoring the training status by 
providing informative plots. Overall, it is fair to say that the available 
software packages for DL have prioritised user friendliness and demo-
cratised their usage.

Future applications in aquaculture breeding

Even though competitive and, in some instances, higher prediction 
accuracies compared to rrBLUP were obtained with NNs, it is unlikely 
for the latter to replace the former, at least in the format used here. A 
primary disadvantage of NNs compared to BLUP-based evaluations is 
that the machinery responsible for predictions in the former is rather 
opaque (Montesinos-López et al., 2021b). Furthermore, the obtained 
predictions lack an accompanied uncertainty metric like reliabilities in 
BLUP-based breeding values. A further disadvantage of NNs, at least in 
the crude form attempted here, are not optimal for providing informa-
tion regarding the underlying genetic architecture of the trait(s) under 
study compared to some animal breeding models. However, appropriate 
adjustments in network architecture and topology could allow the 
identification of QTLs, at least in some instances (Waldmann et al., 
2020; Zhao et al., 2021).

Although the concept of breeding values is centred around additive 
effects, having reliable machinery for estimating non-additive effects 
can improve the prediction accuracy of genomic selection (Varona et al., 
2018). The inherent attribute of NNs on capturing non-linear associa-
tions could open new possibilities, enabling more efficient mating 
crosses compared to purely additive models. The fact that competitive 
and even slightly higher prediction accuracies compared to rrBLUP were 
obtained in this study, even though the underlying genetic architecture 
of the simulated data was purely additive, suggests that there is potential 
for further exploring suitable NN architectures and topologies.

Reaping the full potential of NNs in selective breeding could be 
reached by utilizing information from different sources, e.g., multi- 
omics data simultaneously. Encouraging results using simulated data 
were obtained when customed animal breeding models were extended 
with NNs, allowing multi-omics data to be included in breeding evalu-
ations (Zhao et al., 2022). With sequencing costs continuously dropping, 
the possibility of generating large datasets that contain information from 
multi-omics platforms no longer seems like science fiction. Furthermore, 
using NNs could contribute to recording more inciteful phenotypes (Xue 
et al., 2023; Føre et al., 2024; Ashraf Rather et al., 2024) that could 
better reveal the actual genetic potential of the breeding candidates and 
allow for the most compatible matings.

Conclusions

Neural networks can be a valuable addition to the aquaculturist 
breeder toolbox. Competitive and, at times, higher prediction accuracies 
of up to 4 % were obtained using MPLs compared to rrBLUP using 
simulated datasets. On the other hand, when a publicly available dataset 
on KHV resistance in carp was used, the tested NNs did not improve 
previously obtained prediction accuracies. As the size of the training 

dataset of the above was substantially lower compared to the simulated 
sets it would be worth investigating in the future the performance of NNs 
in larger datasets. Finally, the ability of NNs to capture non-linear as-
sociations and receive data from different sources (e.g. multi-omics) 
would be worth exploring.
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