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Graphical Abstract

Summary
Despite studies suggesting an association between mitochondrial DNA (mDNA) and phenotypic variation 
in dairy cattle, breeders have overlooked the impact of the cytoplasmic genome. To determine the effect of 
mDNA in dairy breeding practices, we redefine breeding value as composed of both mitochondrial and nuclear 
components and demonstrate how it should be used in selection, as mDNA is only transmitted by females. We 
used simulations to test different scenarios regarding the use of mDNA in dairy breeding. Our results suggest 
a benefit in accounting for mDNA. The magnitude of the benefit depends on the definition of breeding value, 
selection strategy, and animal category.

Highlights
• mDNA variation explains sizable phenotypic variance per nucleotide.
• mDNA variation is often ignored in most breeding operations. 
• We defined breeding values with both nuclear DNA (nDNA) and mDNA components.
• Females should be selected on both nDNA and mDNA, whereas males only on nDNA.
• Our simulations show accounting for mDNA improves genetic evaluations and genetic gain.
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Abstract: Mitochondria play a significant role in numerous cellular processes through proteins encoded by both the nuclear genome 
(nDNA) and mito genome (mDNA), and increasing evidence shows that traits of interest might be affected by mito-nuclear interactions. 
Whereas the variation in nDNA is influenced by mutations and recombination of parental genomes, the variation in mDNA is solely 
driven by mutations. In addition, mDNA is inherited in a haploid form, from the dam. Cattle populations show substantial variation in 
mDNA between and within breeds. Past research suggests that variation in mDNA accounts for 1% to 5% of the phenotypic variation in 
dairy traits. Here we simulated a dairy cattle breeding program to assess the impact of accounting for mDNA variation in pedigree-based 
and genome-based genetic evaluations on the accuracy of EBVs for mDNA and nDNA components. We also examined the impact of 
alternative definitions of breeding values on genetic gain, including nDNA and mDNA components that both affect phenotype expres-
sion, but mDNA is inherited only maternally. We found that accounting for mDNA variation increased accuracy between +0.01 and 
+0.03 for different categories of animals, especially for young bulls (+0.03) and females without genotype data (between +0.01 and 
+0.03). Different scenarios of modeling and breeding value definition affected genetic gain. The standard approach of ignoring mDNA 
variation achieved competitive genetic gain. Modeling but not selecting on mDNA expectedly reduced genetic gain, whereas optimal use 
of mDNA variation recovered the genetic gain.

Most breeding research and applications focus on how variation 
between and within nuclear genomes (nDNA) affects eco-

nomically important traits. However, other genomic elements, such 
as mitochondrial genomes (mDNA), may also affect response to 
selection (Bell et al., 1985). In dairy cattle, ~30% of the phenotypic 
variation for milk yield is associated with variation in the nDNA 
(e.g., García-Ruiz et al., 2016), which is a molecule of ~3 Gb (e.g., 
Srirattana and St. John, 2017). In contrast, variation in the mDNA, 
which spans only ~16 kbp (e.g., Srirattana and St. John, 2017), is 
associated with 1% to 5% of the phenotypic variation (Bell et al., 
1985; Schutz et al., 1992; Brajkovic et al., 2023). These propor-
tions indicate that dairy breeding could benefit from accounting for 
mDNA variation. With the advances in SNP array technologies and 
the increasing accessibility of whole-genome sequencing, it will 
soon be possible to routinely include the variation in nDNA and 
mDNA in genetic evaluations and practical breeding programs. 
Mitochondria have critical roles in cellular processes. They gener-
ate energy, synthesize ATP, contribute to metabolic homeostasis, 
and so on. Their evolution from an autonomous prokaryote in-
volved gene loss and transfer, leading to close integration with the 
host’s nDNA (Ladoukakis and Zouros, 2017). Recent research is 
unveiling the extent of such integration and the effects of mito-
nuclear interactions in the expression of many traits (St. John, 
2021; Ward et al., 2022; Rosenberg et al., 2023). Unlike nDNA, 
mDNA is transmitted between generations via maternal lineages 
without recombination (Sato and Sato, 2013; Roger et al., 2017). 
This mechanism is thought to avert conflicts and safeguard the ge-
nome from selfish genes and the consequential reduction in fitness 

(Hastings, 1992). In addition, mDNA is thought to have a higher 
mutation rate compared with nDNA, which may result from the 
intramitochondrial environment (Ladoukakis and Zouros, 2017). 
Mitochondrial DNA is categorized into haplogroups, reflecting 
interpopulation variation. However, variation within populations 
(breeds) is also observed (Dorji et al., 2022). This diversity is as-
sociated with various traits. In humans, mDNA polymorphisms 
are associated with genetic disorders and variations in quantitative 
traits (Stewart and Chinnery, 2015). In dairy cows, mDNA plays 
a role in milk yield and composition (Bell et al., 1985; Schutz et 
al., 1992; Spehar et al., 2017), possibly due to the energy-intensive 
lactation process. All this suggests that mDNA variation should be 
accounted for in breeding programs. Gibson et al. (1997) demon-
strated that even small contributions from mDNA to the total varia-
tion of a trait can drive differences in performance between mater-
nal lineages. The maternal inheritance of mDNA enables tracking 
maternal lineages from founders via pedigrees (Schutz et al., 1992; 
Brajkovic et al., 2023). Spehar et al. (2017) estimated that variation 
between pedigree maternal lineages accounted for 2% to 3% of the 
phenotypic variance for milk yield in the Croatian Holstein popula-
tion, whereas a genomic analysis in the same population accounted 
for up to 5% of the phenotypic variance (Brajkovic et al., 2023). 
An earlier simulation study accounting for variation between ma-
ternal lineages suggested an increase in the accuracy of EBV for 
cows by 0.01 when the maternal lineages accounted for 2.5% of 
the phenotypic variance and 0.04 when they accounted for 10% 
(Boettcher et al., 1996). Gibson et al., (1997) also highlighted that 
accounting for maternal lineages reduces the bias of EBV for cows 
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because they transmit both nDNA and mDNA components of their 
breeding value to their offspring. Considering the limited number 
of studies and the ongoing questions, this work aims to expand the 
past research by evaluating (1) the impact of accounting for the 
mDNA variation on the accuracy of genetic evaluation and (2) the 
impact of alternative breeding value definitions (including nDNA 
and mDNA components) on genetic gain in a simulated dairy cattle 
breeding program.

A dairy cattle breeding scheme was simulated with the R pack-
age AlphaSimR (Gaynor et al., 2021). All the simulation scripts are 
available at https: / / github .com/ HighlanderLab/ gfortuna _mtdna 
_breed. We simulated nDNA and mDNA independently. To simu-
late nDNA chromosome haplotypes, we used the coalescent simu-
lator MaCS (Chen et al., 2009) as implemented in AlphaSimR with 
the “CATTLE” parameters for 10 diploid chromosomes (to reduce 
computation time) with 108 bp each, mutation rate of 2.5 × 10−8, 
recombination rate of 1 × 10−8, and historical effective population 
sizes (Ne) as described in MacLeod et al. (2013). We chose 1,000 
loci per chromosome as SNP markers and another 1,000 as QTL. 
For the mDNA haplotypes, we considered 1 haploid chromosome 
with 16,202 bp, mutation rate of 2.5 × 10−7, and no recombination. 
We set mDNA Ne to 1,000 in the most recent generation. We in-
creased the historical Ne from MacLeod et al. (2013; see GitHub) 
to obtain over 1,000 polymorphic loci in line with literature (Xia et 
al., 2019; Dorji et al., 2022; Brajkovic et al., 2023). We chose all 
polymorphic loci (on average 1,084 across 100 replicates) in the 
mDNA as SNP markers. We evaluated a scenario where all or only 
one randomly chosen SNP were/was a QTL. Both simulated nDNA 
and mDNA haplotypes were randomly allocated to nuclear and 
mito genomes of 1,000 founding individuals. The nDNA was then 
passed between generations with recombination in diploid form, 
whereas mDNA was passed only from mothers to their progeny 
without recombination in haploid form. We defined one polygenic 
trait with a heritability of 0.3, partitioned between nDNA 
san
2 0 25=( ).  and mDNA sam

2 0 05=( ).  components in the base 
population. The QTL allele substitution effects for nDNA and 
mDNA were sampled from a Gaussian distribution that generated 
targeted genetic variances and heritability after environmental 
variation from Gaussian distribution was added. The trait was ex-
pressed only in cows and was generated as

 y a a p eij i n j m j j ij= + + + +µ , , , [1]

where yij is the phenotype of animal j in lactation i, µi is the popula-
tion mean for lactation i (6,733 kg for first lactation and 7,440, 
7,344, 7,482, and 7,168 kg for the following lactations), an,j is the 
nDNA breeding value for animal j (nTBV), am,j is the mDNA 
breeding value for animal j (mTBV, which was the same as for its 
mother, maternal grandmother, and so on), pj is the permanent en-
vironment effect of animal j sampled from N y0 0 1 2, . ,s( )  and eij is 

the environmental effect sampled from N y0 0 6 2, . .s( )  Therefore, in 
the base population the simulated phenotypic variance was 
s s s s sy a a p en m

2 2 2 2 2 0 25 0 05 0 10 0 60 1 00= + + + = + + + =. . . . . .
We defined an individual j’s breeding value in 2 ways: (1) as 

nDNA breeding value (nTBV) and (2) as the sum of nDNA and 
mDNA breeding values (tTBV = nTBV + mTBV). Definition (2) 

is correct for phenotype expression in males and females because 
both sexes have nDNA and mDNA, and for inheritance in females 
because only they transmit nDNA and mDNA to the next gen-
eration. Hence, for females, definition (2) should always be used, 
whereas for males, definition (1) should be used for selection and 
definition (2) should be used for modeling their own phenotype 
data. However, male phenotypes are seldom modeled in dairy 
breeding.

We analyzed the phenotype data to estimate breeding values 
(EBV) using the generative model (1) with pedigree- and genome-
based information and accounting for the mDNA variation or not. 
In the pedigree-based model, we assumed an an

~ ,N 0 2As( ) with A 
being the pedigree relationship matrix for the nuclear genome of 
dimension equal to the number of animals in the pedigree, and 
am aN

m
~ ,0 2Is( ) with I being an identity matrix of dimension 

equal to the number of distinct maternal founder lineages/haplo-
types. In the genome-based model, we assumed an n aN

n
~ ,0 2H s( ) 

with Hn being the “single-step” joint pedigree- and genome-based 
relationship matrix for nDNA with dimension equal to the number 
of animals in the pedigree (Aguilar et al., 2010), and 
am m aN

m
~ ,0 2G s( ) with Gm being the genome-based relationship 

matrix for mDNA with dimension equal to the number of distinct 
mDNA in the data, nm. Note that nm was smaller than the number of 
distinct maternal founder lineages/haplotypes in pedigree. We cal-
culated the mDNA genomic relationship matrix as 
G M Mm m m k= T / , where M W Pm m m= −  with Wm an nm × ns 
matrix of mDNA haplotypes encoded as 0s (for ancestral allele) 
and 1s (for mutation) for nm distinct mDNA and ns polymorphic 
loci (we assume we know all these loci by sequencing mDNA 
within pedigrees; Brajkovic et al., 2023), Pm a matrix of mutation 
frequencies, k p p

l

n
l l

s= −( )
=∑ 1

1 , and pl the mutation frequency at 
locus l. To speed up simulations, we fixed variance components to 
simulated values during the burn-in phase (see the next para-
graphs). After the burn-in phase, we estimated the variance compo-
nents and used these new estimates for the remainder of the simula-
tion. We fitted all the models with the BLUPF90 suite (Misztal et 
al., 2018).

We evaluated 16 scenarios driven by 3 factors across 100 repli-
cates. All scenarios included a burn-in step of 10 years of progeny 
testing-based selection. The first factor was the breeding scheme: 
(1) progeny testing-based selection (PT) and (2) genomic selec-
tion (GS). We simulated a 20-year breeding program considering 
overlapping generations, generating 35,179 animals annually. This 
population size was determined to produce 5 Elite Sires every year 
with a selection intensity of 0.9. In the PT scenarios, the male se-
lection pathway had a generation interval of 6 years, with 4 years 
for the progeny test. This time was reduced to 2 years in the GS 
scenarios. To ensure accurate genetic evaluations, each Waiting 
Bull was required to have at least 100 phenotyped daughters at the 
time of testing. The female selection pathway involved 5 lactations 
over a 7-year generation interval. We categorized the animals into 6 
groups: Elite Dams (top 250 first-lactation cows), Commercial (best 
70% first-lactation cows after Elite Dams selection), Heifers (7,110 
females without lactation record), Young Bulls (97% male offspring 
from Elite categories—nucleus population), Waiting Bulls (top 50 
Young Bulls based on breeding values), and Elite Sires (5 highest-
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rated males based on breeding values). Elite Dams and Commercial 
females were replaced at a 30% rate/year and 100% after their 
fifth lactation, whereas all Elite Sires were replaced after 5 years 
in the category. In GS scenarios, 10,200 genotypes were generated 
each year. The reference population began with 8,944 genotyped 
females. New genotypes, 613 males and 2,461 females, were added 
every year. All genotyped animals were from the nucleus. Old 
records were removed to keep the number of genotyped animals 
within the 25,000 limit of the free version of BLUPF90.

The second factor was a statistical model accounting for mDNA 
variation or not and selection on different definitions of breeding 
value: (1) using a standard model (without mDNA) and selecting 
both females and males on their nDNA EBV (Standard), (2) us-
ing a model with mDNA and selecting both females and males on 
their nDNA EBV (Baseline), (3) using a model with mDNA and 
selecting females on their nDNA plus mDNA EBV and selecting 
males on their nDNA EBV (Optimum), and (4) using a model with 
mDNA and selecting both females and males on their nDNA plus 
mDNA EBV (Extreme). We consider the Optimum scenario to be 
the correct strategy to be used, hence the name.

The third factor was the assumption that all or just one polymor-
phic locus in mDNA is a QTL.

We evaluated all the scenarios with (1) accuracy of the last year 
of genetic evaluation as the correlation between true and estimated 
breeding value for Standard and Baseline scenarios because accu-
racy does not change with the Optimum and Extreme scenarios and 
(2) genetic gain for mTBV, nTBV, and tTBV = mTBV + mTBV (in 
units of tTBV standard deviation from year 10) as the mean after 
20 years of selection for scenarios Standard, Baseline, Optimum, 
and Extreme.

We present results separately for the following 5 categories: 
(1) heifers, (2) first-lactation cows (Cows1), (3) cows with 2 to 
5 lactation records (Cows2–5), (4) young bulls, males without 
progeny; and (5) proven bulls, progeny-tested males. For the GS 
scenarios, the female categories were split to show the difference 
between genotyped and nongenotyped animals. We present only 
the scenario where all mDNA polymorphic loci were QTL (the 
other scenario with a single QTL was qualitatively the same).

In both PT and GS cases, accounting for mDNA variation 
increased the accuracy of nDNA EBV between 0.01 and 0.03, 

depending on the animal category (Table 1). In the PT case, the 
highest increase was observed for the young bulls (+0.03) and 
Cows2–5 (+0.03). The same was observed in the GS; accuracy of 
nDNA increased 0.03 in young bulls and 0.03 for nongenotyped 
Cows2–5, whereas for genotyped Cows2–5 the increase was 0.02. 
The accuracy of mDNA EBV in both PT and GS was close to one 
for all animal categories (results not shown), which is expected 
given the lack of recombination in mDNA. However, variation 
between simulation replicates was substantial and larger than dif-
ferences.

Genetic gain for mTBV, nTBV, and tTBV after 20 years of 
breeding with different estimation and selection scenarios is shown 
in Figure 1. Modeling but not selecting on mDNA variation (Base-
line) reduced genetic gain for tTBV compared with not modeling 
it (Standard). This was due to the lack of genetic gain for mTBV 
with the Baseline scenario, whereas the Standard scenario partially 
captured the mTBV variation even without direct modeling and 
selection, via “mTBV-biased” estimation of nTBV. Modeling and 
selecting on mDNA variation recovered genetic gain for tTBV in 
Optimum and Extreme scenarios. There was an indication of in-
creased gain for mTBV with the Optimum and Extreme scenarios, 
though variation between simulation replicates was substantial, 
particularly for the Extreme scenario. These trends were similar 
for the PT and GS breeding scheme.

This study shows that considering mDNA variation can improve 
dairy breeding by increasing accuracy of selection, but genetic 
gain depends on how mDNA variation is modeled and selected 
upon. In the following, we discuss: (1) mDNA causal sites, (2) 
mDNA demography, (3) mDNA heteroplasmy, and (4) interactions 
between mDNA and nDNA.

We simulated scenarios with one mDNA segregating site as QTL 
as well as all segregating sites as QTL, which made no qualitative 
difference to results. When simulating one QTL, we assumed this 
site was the source of all observed phenotypic variation due to 
mDNA. However, when considering all sites, the effect of individ-
ual QTL was reduced. The absence of recombination creates strong 
linkage between loci along the mDNA, making the sum of several 
small-effect QTLs effectively equal to that of a single large-effect 
QTL. This also explains why the mDNA EBV had almost perfect 
accuracy, which in turn explains differences between the tested 
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Table 1. Accuracy (average ± SD across replicates) of EBV for different animal categories in the model with nDNA breeding 
value (Standard) or with nDNA and mDNA breeding value (Baseline) with the pedigree-based model in progeny testing-
based selection (PT) or with genome-based model in genomic selection (GS) scenarios

Scenario  Category1 Standard Baseline Difference

PT  Heifers 0.47 ± 0.03 0.48 ± 0.03 0.01 ± 0.03
 Cows1 0.61 ± 0.03 0.63 ± 0.02 0.02 ± 0.03
 Cows2–5 0.55 ± 0.03 0.58 ± 0.02 0.03 ± 0.04
 Young bulls 0.40 ± 0.08 0.40 ± 0.10 0.00 ± 0.10
 Proven bulls 0.74 ± 0.06 0.73 ± 0.06 0.00 ± 0.10

GS  Heifers (ngt) 0.41 ± 0.02 0.42 ± 0.02 0.01 ± 0.03
 Heifers (gt) 0.73 ± 0.03 0.75 ± 0.02 0.02 ± 0.03
 Cows1 (ngt) 0.56 ± 0.02 0.58 ± 0.01 0.02 ± 0.02
 Cows1 (gt) 0.77 ± 0.03 0.78 ± 0.02 0.02 ± 0.03
 Cows2–5 (ngt) 0.52 ± 0.03 0.55 ± 0.01 0.03 ± 0.03
 Cows2–5 (gt) 0.73 ± 0.03 0.75 ± 0.01 0.02 ± 0.03
 Young bulls (gt) 0.72 ± 0.05 0.75 ± 0.03 0.03 ± 0.06
 Proven bulls (gt) 0.75 ± 0.06 0.76 ± 0.06 0.00 ± 0.08

1gt = genotyped; ngt = nongenotyped.
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scenarios for modeling and selecting on mDNA variation. Future 
studies with collected data will give more information about the 
QTL, realized accuracies, and genetic gain.

Our initial simulations of mDNA indicated that we need larger 
Ne for mDNA than for nDNA (despite an order of magnitude larger 
mutation rate in mDNA) to obtain several segregating sites in 
mDNA in line with the observed variation both within and across 
cattle populations (Dorji et al., 2022; Brajkovic et al., 2023). As ex-
pected, we noticed that the lower the diversity among the mDNA, 
the smaller the impact of accounting for mDNA in breeding value 
estimation, in line with Boettcher et al. (1996). Theoretically, Ne 
for mDNA equals the number of females or a quarter of the nDNA 
Ne, though these relationships depend on the sex ratio (Birky et al., 
1983). In a recent study, Cubric-Curik et al. (2022) inferred the de-
mographic trend in Ne for mDNA in cattle. They found that mDNA 
Ne is increasing over time, which is opposite to results for nDNA 
in dairy cattle (MacLeod et al., 2013), but in line with the large 
diversity observed in mDNA (~1,000 polymorphic sites out of 
16,202 bp). The limited effect of accounting for mDNA observed 
in this study could be an underestimation due to the mismatched 
demographic parameters for the mDNA in our simulation. More 
research is needed to estimate demographic trends in nDNA and 
mDNA jointly and to understand how inheritance of these 2 DNA 
molecules interplays with modeling and selection.

We did not consider the presence of multiple mDNA copies 
with possible differences in mitochondria, known as heteroplasmy 
(Stewart and Chinnery, 2015). Future research should consider this 
additional variation, which is challenging because heteroplasmy 
varies between cells, tissues, and time points.

We did not consider interactions between mDNA and nDNA. 
Studies suggest that incompatibility between the 2 DNA can lead 
to mitochondrial malfunction, decreasing energy production ef-
ficiency and increasing oxidative damage (Pozzi and Dowling, 
2022; Ward et al., 2022). This factor could be relevant, and there-
fore, additional research is required, especially in the context of 
taurine-indicine crossbreeding systems (Ward et al., 2022).

In conclusion, the results show that accounting for mDNA varia-
tion can affect the success of dairy breeding. This study provides a 

genomic update of Boettcher et al. (1996) with additional results. 
With the increasing relevance of selection among females, espe-
cially for use in egg-transfer schemes, accounting for the mDNA 
will improve the accuracy of selecting more productive cows.
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