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Abstract
1. Intensive agriculture often comes at the expense of soil health. A shift towards 

practices that foster soil health will support yield and defences against pests and 
diseases. Growing crops in monoculture is the standard in modern agriculture, 
though strip- cropping, in which different crops are planted in strips, is a 
promising strategy in the transition towards sustainable agriculture. Increasing 
crop diversity is hypothesized to positively influence arbuscular mycorrhizal fungi 
(AMF), thereby enhancing soil health, but the mechanisms by which AMF- plant 
symbioses contribute to higher yields and reduced pest populations in strip- 
cropping systems remain unclear.

2. We used a green- house experiment with potato plants to explore the soil legacy 
effects of mono- cropping versus strip- cropping systems, AMF inoculation and 
aphid infestation on AMF root colonization, the induction of plant defences (un-
targeted LCMS- based metabolomics), aphid population size and potato yield.

3. We found that potato plants grown in strip- cropping soil had higher AMF colo-
nization than plants grown in mono- cropping soil. Potato plants grown in strip- 
cropping soil also had higher shoot nitrogen content, increased solamargine 
levels, and reduced aphid populations. AMF root colonization was only enhanced 
by the addition of commercial AMF in mono- cropping soils. Potato plant metabo-
lites were affected by strip- cropping soil, including jasmonic acid (JA) derivatives. 
Structural equation models revealed that strip- cropping soil directly reduced 
aphid populations and also had a negative direct effect on the JA precursor OPC- 
8, and hydroxyJA- glucosides, indicating complex effects of strip- cropping soils 
on JA- inducible plant defences. Indirect benefits of strip- cropping soil and AMF 
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1  |  INTRODUC TION

Intensive agricultural production often comes at high environmental 
costs to soil health, resulting in decreased soil biodiversity and or-
ganic matter, with consequent increased soil erosion, and nutrient 
leaching (Yang et al., 2020). These environmental costs decrease 
beneficial below- ground interactions that foster plant growth and 
resilience against stress and increase the reliance of crop plants 
on external inputs for fertilization and pest management (Morris 
et al., 2007). To support the duelling priorities of farmers who are 
interested in growing crops using less environmentally harmful 
methods without yield costs, sustainable management alternatives 
are needed. Before the green revolution, diverse crop rotations and 
intercropping systems were common practices used to enhance soil 
health, increase plant resilience, and maintain crop productivity. The 
combined stressors of agricultural intensification and global climate 
change, resulting in more frequent pest outbreaks are causing exten-
sive crop failures (Deutsch et al., 2018). Agricultural practices that 
benefit soil–plant interactions, thereby increasing plant resilience 
and crop yield, need to be restored (Rillig et al., 2019) and the mech-
anisms by which these practices confer benefit need clarification.

The importance of below- ground interactions between plants 
and soil biota is recognized in both natural and managed ecosystems 
(Bender et al., 2016). Soil microorganisms that associate with plant 
roots play a critical role in nutrient acquisition as well as increasing 
resistance to biotic stress, such as herbivorous pest insects (Friman 
et al., 2021; Larimer et al., 2010; Morris et al., 2007; Porter et al., 2020; 
Rho et al., 2018). Arbuscular mycorrhizal fungi (AMF), which engage in 
symbiotic interactions with more than 60% of terrestrial vascular plant 
species, can be used to improve the sustainable management of crop-
ping systems (Kiers & van der Heijden, 2006; Rillig et al., 2019). AMF 
provide plants with nutrients, and in return, receive carbohydrates and 
fatty acids from their host (Lanfranco et al., 2018). In the context of crop 
production, AMF are typically valued for their potential to enhance 
plant growth, nutrient uptake, and yield (Garcia de Leon et al., 2020). 

Yet, they induce a range of changes in their host plant growth and me-
tabolism which can alter plant tolerance to stress (Balog et al., 2017; 
Borowicz, 2013; Hartley & Gange, 2009; Song et al., 2015; Vannette 
& Rasmann, 2012), or plant defences against herbivorous insects (Jung 
et al., 2012; Koricheva et al., 2009; Pozo & Azcón- Aguilar, 2007). Under 
more stressful biotic and abiotic conditions, such as drought or her-
bivory, the benefits AMF confers on their plant hosts are expected to 
become more critical, reflecting a positive synergy (Porter et al., 2020).

Many widely grown crops form AMF symbioses (Hijri, 2016; Tran 
et al., 2019), but the potential of optimizing these beneficial interac-
tions to reduce pest damage in agricultural systems remains largely 
unexploited. Indeed, soil inoculation using commercial AMF strains 
have often failed, as they do not capture the natural diversity in AMF 
communities (Hart et al., 2018; Jansa et al., 2006). Given that AMF 
responses are the product of complex interactions between plants, 
AMF species, the environment and farm management practices, this 
is not surprising (Ryan & Graham, 2018). While studies focusing on 
cosmopolitan AMF taxa, such as Rizophagus irregularis (Malik, 2018), 
are essential in advancing our fundamental knowledge of AMF- plant 
interactions, they provide only a partial understanding of crop in-
teractions with AMF in the field. To realize the potential of AMF to 
enhance sustainable agriculture practices, how natural assemblages 
of AMF differentially shape crop plant- herbivore interactions needs 
to be examined (Rillig et al., 2019; Thirkell et al., 2017).

Diverse plant communities have been shown to enhance AMF 
communities in natural (Hiiesalu et al., 2014) and agricultural systems 
(Guzman et al., 2021; Montesinos- Navarro et al., 2012). In addition, 
crop diversity has been suggested to alleviate stresses associated with 
continuous mono- cropping, such as the accumulation of soil pathogens 
and pests and reduced performance of beneficial soil microorganisms 
(Eisenhauer et al., 2012; Latz et al., 2012; Wang et al., 2021). Benefits 
of crop diversity on soil communities are expected to accumulate over 
time and profit the next generation of crop plants (i.e. legacy effects; 
Eisenhauer et al., 2012; Wang et al., 2021). Spatial crop diversification 
practices, such as strip- cropping, in which different crops are planted in 

inoculation on tuber yield were mediated by their direct positive effects on plant 
nitrogen content.

4. Our results emphasize the potential of strip- cropping to enhance AMF root colo-
nization in the field. We show that soil legacy effects of strip- cropping alter the 
plant metabolome in ways that suppress of aphid populations. Strip- cropping 
legacy effects are the result of crop diversity, crop neighbour and edge effects 
resulting from crop management practices. While the mechanisms by which soil 
from strip- cropping supresses pest populations still need to be identified, our 
study underscores the potential for strip- cropping to enhance pest control and 
yield via soil mediated processes.

K E Y W O R D S
arbuscular mycorrhizal fungi, biological inoculation, crop diversification, jasmonic acid, 
metabolomics, pest population growth, soil health, Solanum tuberosum
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alternating strips, can enhance ecosystem services, including pest and 
disease control, biodiversity and yield (Beillouin et al., 2021). Though 
crop diversification enhances soil health and beneficial plant–soil inter-
actions, it remains unclear which mechanisms drive the positive effects 
on pest control in diversified cropping systems, and how increased 
AMF diversity and abundance contribute to bottom- up pest control.

Potato (Solanum tuberosum), the third most important food crop 
in the world (Gervais et al., 2021), suffers from aphid- transmitted 
viruses (Dedryver et al., 2010). Intercropping potato with cereals 
or leys reduces aphid populations and fungal pathogens (Bouws & 
Finckh, 2008; Nakahira et al., 2012), and could increase AMF di-
versity and abundance (Guzman et al., 2021; Montesinos- Navarro 
et al., 2012). Potato readily associates with several AMF strains. AMF 
inoculation increases potato yield (Douds et al., 2007; Hijri, 2016) 
and improves resistance to pathogens (Alaux et al., 2018, 2020; 
Bharadwaj et al., 2008; Gallou et al., 2011; Ismail et al., 2012; Yao 
et al., 2002). The AMF- mediated plant resistance to pests and patho-
gens is proposed to be supported by the metabolization (i.e. induced 
production) of phytohormones, including salicylic acid, jasmonic acid 
(JA) and their derivates (Miozzi et al., 2019). In another Solanaceae 
crop, AMF inoculation reduced the number of aphids by increasing 
plant- induced anti- nutritive defences (Balog et al., 2017).

Despite its potential, strip- cropping legacy effects on AMF abun-
dance and its downstream effects on herbivorous insects have seldom 
been quantified (but see: Zhang et al., 2024). Strip- cropping legacy 
effects are the result of complex interactions between crop diversity, 
crop- combination identity and crop management on soil. This study ex-
plored the effects of soil collected from long- term organic mono-  and 
strip- cropping farming systems and AMF inoculation on potato plant 
growth and the induction of defences against the major vector of po-
tato virus Y, the green peach aphid, Myzus persicae. Specifically, these 
experiments aimed to test the hypotheses: (1) that strip- cropping re-
sults in higher AMF root colonization of potato than commercial AMF 
inoculation, (2) that greater AMF root colonization in the strip- cropping 
soils increases tuber yield, particularly under herbivory stress (pos-
itive synergy) and (3) that greater AMF root colonization in the strip- 
cropping soils affects above- ground potato metabolites, and induces 
plant defences that decrease pest population size. These hypotheses 
were assessed using structural equation models to disentangle the di-
rect and indirect pathways between AMF root colonization, pest abun-
dance and yield. In addition, interactions between AMF inoculation, 
herbivory and strip- cropping soil legacy were further validated using 
generalized mixed models.

2  |  MATERIAL S AND METHODS

Scale of 
inference

Scale at which the 
factor of interest is 
applied

Number of replicates at the 
appropriate scale

Individuals 
(plants)

Individuals 80 individuals/10 replicates 
per treatment combination

2.1  |  Greenhouse experiment on aphid 
populations and plant performance

We conducted a complete randomized block design greenhouse facto-
rial pot experiment with eight treatments and 10 replicates per treat-
ment (n = 80) with one potato plant (S. tuberosum, ‘Fontane’) per 5 L 
pot, at Wageningen University, Netherlands, between February and 
April 2022. The experiment consisted of three factors, ‘Strip- cropping 
legacy’ (with two levels), ‘AMF inoculation’ (with two levels) and 
‘Herbivore’ (with two levels). The greenhouse was organized in 10 spa-
tial blocks and each of the eight treatments was present in each block.

For the strip- cropping legacy treatments, plants were grown ei-
ther in soil from the middle of 100 m2 mono- cropped plots (mono) or 
from the edge of strip- cropped plots (strip), collected from the long- 
term organic strip- cropping experiment at Wageningen University 
(51°59′33.06″ N, 5°39′43.56″ E; Supplementary Material, Figure S1). 
The pre- crops were the same in each soil treatment (i.e. barley), while 
pumpkin was grown in the neighbouring strip in the strip- cropping 
fields. Soil from each treatment was homogenized, air- dried and 
sieved prior to potting. To explore AMF communities in each ho-
mogenized soil inoculum, fungal communities were assessed via se-
quencing following the protocol of Liu et al. (2023, Supplementary 
Material S2). Soils were classified as sandy and did not differ in nutri-
ents and organic matter content (Table S1).

The AMF inoculation treatment consisted of plants with (AMF+) 
and without (AMF0) commercial AMF (Rhizophagus irregularis spores 
in liquid solution inoculated at planting, Koppert Biological Systems, 
Supplementary Material S3). AMF colonization can be very rapid, 
especially under green- house pot conditions. To avoid missing dif-
ferences in colonization between treatments and to assess effec-
tiveness of AMF inoculation in mono-  and strip- cropping soils prior 
to harvest, a full- factorial experiment was set- up with eight potato 
plants randomly assigned to a soil legacy treatment and AMF inoc-
ulation treatment (n = 32 pots). Four plants per treatment combina-
tion were destructively sampled 40 and 60 days after planting to 
assess AMF colonization prior to harvest (method described below).

The herbivore treatment consisted of plants with and without 
aphid infestation (Myzus persicae). Plants were infested with aphids 
6 weeks after planting of the seed potato. Herbivore infestation was 
done on two scales: on the leaf, to assess treatments effects on the 
plant metabolome, and on the whole plant, to assess treatments ef-
fect on yield and aphid population size (Supplementary Material S4). 
At the leaf scale, four late instar nymphs were placed on a fully ex-
panded leaf just below the growth apex of the plant and covered 
with a leaf bag, the leaf bag, including the leaf, were collected after 
2 weeks for metabolomics analyses. At the plant scale, three late- 
instar and two early instar nymphs were placed randomly on the 
other parts of the plants and the whole plant was covered with a 
mesh bag. The aphid infestation at the whole- plant scale lasted 
4 weeks. All plants, including control plants, without herbivores, 
were covered with both the leaf and plant bag to keep them under 
the same light conditions (Supplementary Material S4).
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Four weeks after aphid infestation (90 days after planting), whole 
potato plants were harvested and number of aphids counted at the 
whole- plant scale. Potato shoots and roots were separated at har-
vest. An equal weight subsample of roots per plant was stored in 
70% alcohol for AMF root colonization analyses (Supplementary 
Material S5). Shoot and root dry weight were determined after 96 h 
of drying at 65°C. To quantify AMF root colonization, potato root 
subsamples before harvest (40 and 60 days after planting, n = 32) and 
at harvest (90 days after planting, n = 80) were stained using ink and 
vinegar and the proportion of AMF root colonization (including all 
AMF structures: hyphae, arbuscules, and vesicles) was determined 
using 100 gridline intersect method (Giovannetti & Mosse, 1980; 
Supplementary Material S5). After measuring dry weight, leaf nitro-
gen (N) and phosphorus (P) content were spectrophotometrically 
determined in grounded leaves following H2SO4- Se digestion, ac-
cording to the protocol of Houba et al. (2000). Tuber number and 
fresh weight per plant were quantified at harvest, and used to calcu-
late total tuber weight per plant (g) and mean individual tuber weight 
per plant (g).

2.2  |  Liquid chromatography mass spectrometry

To assess treatment effects on the plant metabolome, bagged leaves 
were collected from the control and herbivore treatments and flash- 
frozen in liquid nitrogen 2 weeks after aphid infestation and stored 
at −80°C. Frozen leaf material was ground into a fine powder under 
liquid nitrogen using a ball shaker device (74 of the 80 leaves were 
recovered for further analyses, as 6 leaves were thawed and there-
fore discarded). A quality control sample was prepared by pooling 
the powders from a random mixture of leaf samples from each treat-
ment. The samples were extracted and submitted for untargeted 
liquid chromatography- mass spectrometry (LC–MS) profiling as 
described in Garrido et al. (2021) (for protocol see Supplementary 
Material S6).

LC–MS results were processed and aligned using Metalign 
software (Lommen, 2009) following the procedure described by 
Garrido et al. (2021). After filtering, mass peaks were clustered using 
MSClust software (Tikunov et al., 2012). This clustering resulted in 
relative intensity data for 1169 putative compounds across samples. 
The compound intensity was calculated from the sum of intensi-
ties of all mass peaks in its cluster, that is total ion count. The base 
peak mass was automatically searched in the KNApSAcK metabo-
lite database (http:// kanaya. naist. jp/ knapsack) with ‘Solanaceae’ 
as a filter, for possible elemental formula and annotation using a 
maximum mass deviation of 5 ppm. Detailed information regarding 
LC–MS data processing and metabolite annotations can be found 
in Supplementary Material S7. In addition, linear mixed effect mod-
els (LMMs), and a random forest approach were used to identify 
compounds that strongly associated to treatments (Supplementary 
Material S8). These methods confirmed 85 compounds of interest, 
which were subsequently manually checked and annotated based on 
in- house databases and indicative in- source fragments, if present. 

Using this combination of methods, 184 compounds were putatively 
annotated, with 37 compounds annotated manually (Supplementary 
Material S8).

2.3  |  Statistical analyses

To investigate the hypothesis that soil with a strip- cropping legacy 
will benefit AMF root colonization more than commercial AMF 
inoculation, we analysed the effect of AMF inoculation and strip- 
cropping legacy treatment on AMF root colonization before and at 
harvest, using two models. Before harvest, a model with AMF in-
oculation (AMF+/AMF0), soil legacy (mono/strip), and days after 
planting (i.e. 40 [n = 16], 60 [n = 16] days after planting) and their 
three- way interaction was analysed using a linear model. At harvest, 
fixed factors included soil legacy, AMF inoculation and herbivore 
treatments and their three- way interactions, with block as a random 
effect in glmmTMB (Magnusson et al., 2021). AMF root colonization 
proportion models were fitted with a binomial distribution. Model 
assumptions were checked using DhArma (Hartig & Lohse, 2020). At 
harvest, an individual level random effect was included to account 
for overdispersion in the AMF colonization data. Standard model 
reduction with AICc and step- wise removal of non- significant vari-
ables was applied. When significant effects were found, post- hoc 
tests using emmeans (Lenth et al., 2023) were carried out.

To investigate the treatment effects on potato leaf metabo-
lome (i.e. metabolite composition), metabolomic data were log- 
transformed (0's were replaced by half of the minimal observed 
value for each compound, Wei et al., 2018) and scaled and analysed 
using NMDS (Garrido et al., 2021). PERMANOVA was used to de-
termine the statistical significance of strip- cropping legacy, AMF in-
oculation and herbivore treatments alone and in combination using 
adonis function from the vegan package (Oksanen et al., 2022). To 
assess treatment effect on plant metabolites, the 184 putatively 
annotated metabolites were analysed for treatments effects using 
general linear mixed effect models (glmmTMB), with individual me-
tabolite intensity as response variable and interactions between 
treatments as explanatory variables and block as random effect. 
To account for multiple comparisons, a false discovery rate correc-
tion was applied (Benjamini & Hochberg, 1995), and for significant 
models, post- hoc tests were run. Out of the 184 initially annotated 
putative compounds, 29 compounds were significantly affected by 
treatments (Supplementary Material S8). These compounds were 
grouped into six biochemical classes (i.e. primary metabolites and 
respiratory products, indolic compounds, terpenoids, phenylpro-
panoids, steroids and octadecanoid compounds, associated with 
jasmonic acids, Figure S8) and were assessed for inclusion in the 
piecewise structural equation model (pSEM) analyses.

Direct and indirect effects of strip- cropping legacy and AMF 
inoculation at harvest on potato tuber yield and aphid population 
size were investigated using pSEMs (piecewiseSEM, Lefcheck, 2016). 
Two pSEMs models were built to capture the hypothesized hier-
archical relationships of treatments on tuber yield (n = 80) and on 
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aphid population size (proxy for resistance to pest infestations, 
n = 40; Figure 1). Detailed information regarding data processing and 
analyse for the pSEMs can be found in Supplementary Material S9. 
To determine standardized pSEM path coefficients, raw coefficients 
were scaled. Fischer's C statistic, based on p- values calculated from 
a test of directed separation, was used to evaluate full model fit and 
missing paths, that is paths not defined in the component models, 
were included when these improved model fit. A chi- squared test of 
Fischer's C with p > 0.05 indicates that the full model represents the 
data well and that there are no missing paths. If significant missing 
paths were identified during analysis, or when bidirectional effects 
were expected, the alternate model was compared using AICc.

Finally, to further investigate all potential two-  and three- way 
interactions between strip- cropping legacy, herbivory and AMF 
inoculation treatment on plant and aphid population size, we used 
generalized linear mixed effect models (GLMMs, glmmTMB). These 
analyses complement the pSEMs models that are not as robust as 
GLMMs to assess interactions between several factors. To test the 
hypothesis that soil with a strip- cropping legacy will lead to higher 
plant growth, particularly under herbivory stress, we assessed the 
interactive effects of strip- cropping legacy, AMF inoculation and 
herbivory at harvest (90 days after planting) and their two-  and 
three- way interactions on plant response variables—including shoot 
and root dry weight, tuber count per plant, total and mean individual 
tuber weight per plant, and shoot N and P content. To account for 
differences in sizes of the planted potato tuber on biomass and yield 
measurements, weight of the original potato tuber was included as 
a co- variate in these models. All plant response variables were fitted 

with a Gaussian distribution except for tuber count per plant fitted 
with a Conway- Maxwell Poisson distribution to correct for overdis-
persion. To assess the hypothesis that greater AMF root colonization 
in the soils with a strip- cropping legacy will decrease pest popula-
tion size, aphid count data were analysed on the subset of potato 
plants infested with aphids (n = 40), using a Poisson distribution after 
checking model fit and overdispersion. Fixed factors included soil 
legacy (mono/strip), AMF inoculation (AMF0/AMF+) and their two- 
way interaction. Block was included in all models as a random effect. 
R2 was calculated using r.squaredGLMM (MuMIN, Barton, 2018). All 
analyses were done in R (version 4.2.1).

3  |  RESULTS

3.1  |  AMF colonization

At 40 and 60 days after planting, potatoes grown in soil with the 
strip- cropping legacy showed more natural AMF root coloniza-
tion in treatments without additional inoculation (control AMF0) 
compared to potatoes grown in soil with the mono- cropping 
legacy (root colonization of 33.0 and 32.2% in strip- cropping soil 
vs. 14.8 and 13.9% in mono- cropping soil at 40 and 60 days after 
planting, respectively; Figure 2, Table S11). The additional AMF in-
oculation treatment (AMF+) resulted in significant increase in the 
proportion of AMF root colonization compared to the control for 
potatoes grown in soils with a mono- cropping legacy, but not a 
strip- cropping legacy (Figure 2, Table S11). At harvest, 90 days after 

F I G U R E  1  The diagram shows the hypothesized effects that were tested in the preliminary component mixed models for (a) tuber yield 
(n = 80) and (b) aphid population size (n = 40) pSEMs. (a) We hypothesized that aphid presence would induce plant defences, which are 
costly to produce and thus negatively affect shoot biomass (dry weight, DW) and yield. However, we expected strip- cropping soil and AMF 
inoculation to positively affect yield and biomass via enhanced AMF root colonization. (b) When aphids were present, we expected strip- 
cropping soil and AMF inoculation to up- regulate plant defences and positively affect biomass and yield via AMF root colonization, leading 
to reduced aphid population size and increased yield. Grey and red lines represent hypothesized positive and negative effects respectively, 
double arrows show relations that are bidirectional. Shoot nitrogen (N, mmol/kg) and phosphorous (P) were positively correlated (rho = 0.6, 
p < 0.001) for both pSEMs models and therefore only shoot N was included in the models. Only plant compounds that were selected by 
the dredge method were included as “induced plant defence” (Supplementary Material S9). These pSEMs were built to specifically test for 
hypothesized effects of treatments on yield and aphid population size rather than to test all possible effects of metabolites and AMF root 
colonization on potato yield and aphids.
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planting, AMF root colonization was not significantly affected by 
strip- cropping legacy or AMF inoculation (Figure S2). Fungal com-
munity sequencing indicated greater AMF relative abundance in 
the homogenized strip- cropping compared to mono- cropping soil 
inoculum (Figure S2).

3.2  |  Metabolome differences between treatments

Leaf metabolites significantly differed between soils with a mono-  
and strip- cropping legacy (sum of squares: 0.003, F: 2.60, R2: 0.03; 
p: 0.044) and aphid infested and uninfested plants (sum of squares: 
0.008, F: 7.14, R2: 0.09; p: 0.001), independent of AMF inoculation 
treatment (Figure 3A,B). Although the first axis of the NMDS did 
not relate to any higher order variables (i.e. shoot dry weight, aphid 
control, shoot N and tuber weight) in either pSEM model, 29 out 
of 184 annotated metabolites were affected by treatments based 
on GLMMs (Figure S8). Strip- cropping affected six compounds in 
total, including a reduction in a compound putatively identified as 
3- Oxo- 2- (2- entenyl) cyclopentaneoctanoic acid (OPC- 8), a pre-
cursor of the plant defence hormone jasmonic acid (JA) (Züst & 
Agrawal, 2016). AMF inoculation resulted in a reduction in the in-
active JA- forms hydroxyl- JA and methylhydroxy- JA glucosides in 
strip- cropping soils, possibly an indication of weaker downregula-
tion of downstream JA responses compared to mono- cropping soil 
(Miersch et al., 2008). AMF inoculation also resulted in a reduction 
in the terpenoid- glycoside linalool- 3- rutinoside independent of soil 

type. An increase in solamargine, a steroidal glycoalkaloid known 
for its cytotoxic effects leading to reduced aphid reproduction 
(Güntner et al., 2000), was observed in strip- cropping, but not in 
mono- cropping soils. Independent of soil type or AMF inoculation, 
aphid presence down- regulated the terpenoid- glycoside linalool- 
3- rutinoside and up- regulated compounds in the phenylpropanoid 
pathway, known to be involved in antimicrobial activity and defence 
signalling (Bauters et al., 2021), via an increase in several phenyl-
propenoic acid conjugates (caffeoyl dopamine, coumaroyl alcohol 
glucoside, feruloylquinic acid). In locally infested leaves, aphids also 
up- regulated torvonin A and Indole- 3- acetic acid (IAA) alanine, the 
latter indicative of plant growth modulation via the auxin phytohor-
monal pathway (Chou & Huang, 2005). Tuberonic acid glucoside, in-
volved in tuber formation, also significantly decreased during aphid 
infestation, indicating that below- ground growth was halted by her-
bivory. For more insights in treatment effects on metabolites see 
Supplementary Material S6.

3.3  |  Direct and indirect effects of treatments on 
tuber yield and aphid population

Two piecewise SEMs were used to explore the network of corre-
lations between AMF inoculation, aphid infestation and soil treat-
ment on tuber yield and aphid population size separately. Seven 
putatively annotated plant metabolites were identified as the most 
relevant non- correlated metabolites as explained in the methods 
(Supplementary Material S9). These included: methylhydroxy- JA 
glucoside, α- ketoglutarate (AKG), N- (phenylmethyl) adenosine, L- 
tyrosine, coumaryl alcohol glucoside, the steroidal glycoalkaloid tor-
vosid H and linalool- 3- rutinoside, a terpenoid- glycoside.

In the full pSEM model, all treatments indirectly affected yield 
by influencing plant nitrogen which positively related to tuber yield. 
There was a negative relationship between aphid presence and plant 
nitrogen, while strip- cropping soil and AMF inoculation were posi-
tively associated to plant nitrogen (Figure 4a). There was a negative 
effect of aphid presence on tuber yield via the downregulation of 
α- ketoglutaric acid, which plays a key role in energy metabolism in 
the tricarboxylic acid cycle (Wu et al., 2016). AMF inoculation had 
an overall positive effect on shoot biomass (sum of direct and indi-
rect effects = 0.13) and aphid presence and strip- cropping soil had 
an overall negative impact on shoot biomass (−0.37 and −0.11, re-
spectively; Figure S10).

With regard to the aphid population model, strip- cropping soil 
had contrasting direct and indirect effects on aphid population size 
(Figure 4b). Positive indirect effects of strip- cropping on aphid pop-
ulation size were associated with a reduction in methylhydroxy- JA 
glucoside, but the direct negative effect of strip- cropping legacy on 
aphid population size was greater than the indirect positive effect 
(−0.43 and 0.22 respectively), resulting in an overall negative effect 
(−0.21). We also found indirect negative effects of AMF root coloni-
zation on aphid population size through increased methylhydroxy- JA 
glucoside accumulation.

F I G U R E  2  Model estimates of the effects of soil (strip-  (strip) 
vs. mono- cropping (mono) soils) and AMF inoculation (control 
conditions [AMF 0] vs. AMF inoculated [AMF +]), on the proportion 
of AMF root colonization of potato plants before harvest (40 and 
60 days after planting [dap]). Letters indicate significant post- hoc 
test differences (p < 0.05), dots represent estimated mean values 
and bars show 95% confidence intervals (CI).
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3.4  |  Effects of strip- cropping soil and AMF on 
plant and aphid performance

GLMMs analyses confirmed the pSEMs result that, potato shoots 
grown in soil with a strip- cropping legacy had higher nitrogen 
content than potato shoots grown in soil with mono- cropping 
legacy (mmol/kg, est. ± SE = 148 ± 57.5; p = 0.012, Figure S11, 
Table S11). In addition, in line with the pSEMs, the addition of 
AMF inoculate to mono-  and strip- cropping legacy soils increased 
mean tuber weight compared to the control (AMF0) (grams (g), 
est. ± SE = 6.59 ± 3.09; p = 0.036, Figure 5A, Table S11). When 
plants were exposed to herbivory, AMF inoculation buffered the 
negative effects of aphid presence on shoot biomass (Figure S11) 
and shoot nitrogen content (Figure 5B, Table S11). Potato root 
biomass (i.e. excluding tubers) was marginally increased by AMF 
inoculation (g, est. ± SE = 0.13 ± 0.06; p = 0.062), and 20% lower 
in plants infested with herbivores (g, est. ± SE = −0.21 ± 0.07; 
p = 0.004; Figure S11). In line with the pSEM results, aphid 
population size was higher on potato plants grown in soils 

with a mono- cropping legacy than strip- cropping legacy 
(est ± SE = 0.39 ± 0.14; p = 0.045), but inoculation with AMF 
mitigated this effect with comparable aphid population sizes 
between soils with a mono-  and strip- cropping legacy (Figure 5C). 
These results indicate positive cascading effects of strip- cropping 
legacy soil on the capacity for potato plants to supress aphids, 
and positive effects of AMF inoculation on tuber yield and shoot 
biomass, particularly under aphid herbivory.

4  |  DISCUSSION

The legacy effects of increasing crop diversity through strip- 
cropping have been shown to support AMF communities, plant 
health, and pest control, but the complex relationship between 
these is poorly understood in agricultural soils. Here, we begin to 
elucidate the mechanisms by which strip- cropping and the pres-
ence of AMF confer benefits to crop plants. Our data showed that 
potato plants grown in soil with a strip- cropping legacy engaged 

F I G U R E  3  Non- metric multidimensional scaling ordination plots showing differences in potato leaf metabolome assemblages between (A) 
strip-  and mono- cropping soils and (B) herbivore and no- herbivore treatments (NMDS stress: 0.148, dots corresponds to leaf metabolome 
assemblage per plant). (C) LMMs model outputs showing the effect of herbivore presence, soil legacy and AMF inoculation treatments on 
the intensity (i.e. total ion counts per scan at chromatographic peak height) of the three plant induced compounds (log- transformed) involved 
in the pSEMs models (Figure 4). White aphids represent no aphid infestation, and black aphids represent aphid infestation treatments.
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more in AMF symbiosis and had greater AMF root colonization than 
plants grown in mono- cropping soil during the early establishment 
phase. Inoculating AMF benefited AMF root colonization more in 
mono-  than in strip- cropping soil up to 60 days after planting. Both 
direct and indirect positive effects of strip- cropping soil on potato 
yield and aphid pest management were found. We highlight indirect 
benefits of strip- cropping and AMF inoculation on tuber weight via 

positive effects on shoot nitrogen, as well as complex interactions 
between strip- cropping soil and plant metabolites involved in plant 
defence pathways. Finally, we show, that strip- cropping legacy alters 
the potato metabolome in ways that are ecologically significant for 
aphid population growth and tuber yield, with overall positive ef-
fects of strip- cropping soil legacy on tuber yield and aphid popula-
tion control.

F I G U R E  4  Piecewise structural equation models showing the direct and indirect effects of treatments on (a) total tuber weight per plant 
(Chisq = 12.93, p = 0.93, n = 22; Fisher's C = 41.67, p = 0.572 and n = 44) and (b) aphid population size (Chisq = 8.04, p = 0.999, n = 25; Fisher's 
C = 59.30, p = 0.173 and n = 50). Standardized coefficients are provided for each relationship and marginal (Rm) and conditional (Rc) R

2 are 
provided for each response variable. Grey and red arrows indicate significant (p ≤ 0.05) positive and negative relationships respectively. 
The width of each arrow is proportional to the standardized path coefficients. Only compounds that related to higher order variables 
were included to avoid overfitting the models. MeJA- Glc, methylhydroxy jasmonic glucoside; AKG, α- ketoglutaric acid. All variables and 
hierarchical mixed models used in the analyses are summarized in Supplementary Material S8 and full pSEM including biomass data are 
presented in Figure S11.

F I G U R E  5  Models estimates of the 
main and interactive effects of AMF 
inoculation on plant and aphid response 
variables on (A) mean individual tuber 
weight (g); (B) shoot N content (mmol/kg) 
and (C) aphid population size at harvest. 
Letters indicate significant post- hoc test 
differences (p < 0.05) and bars show 95% 
CI. White aphids represent no aphid 
infestation, and black aphids represent 
aphid infestation treatments.
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4.1  |  Strip- cropping legacy increases natural AMF 
colonization

In recent years, there has been debate about the effectiveness 
of commercial AMF products to colonize crops and promote crop 
health in the field due to environmental factors influencing the 
performance of commercial inoculants (Verbruggen et al., 2013). 
Our results indicate that commercial AMF inoculation is most use-
ful when there is not yet AMF- friendly management (e.g. crop di-
versity). Indeed, we find that commercial AMF inoculation was 
associated to greater AMF root colonization in mono-  but not in 
strip- cropping soils in the early stages of plant growth. Two criti-
cal environmental factors determining the success of commercial 
AMF inoculants are the availability of plant- accessible phosphorus 
and the presence of indigenous mycorrhizae communities (Jiang 
et al., 2021; Verbruggen et al., 2013), however, there were no dif-
ferences in plant- available soil phosphorus between strip-  and 
mono- cropping soils (Supplementary Material S1). We hypothesize 
that the success of commercial AMF inoculation in colonizing the 
roots of potato plants in mono- cropping soils is linked to the lack 
of native AMF communities in soil with a monocrop legacy. Higher 
plant richness is often associated with more abundant and diverse 
AMF communities (Guzman et al., 2021; König et al., 2010). In line 
with this, the relative abundance of AMF taxa sequence reads was 
higher in the strip-  compared to the mono- cropping soil inoculum 
(Supplementary Material S2). Therefore, AMF colonization was 
faster in plants grown in strip-  compared to mono- cropping soils, 
giving plants grown in strip- cropping soils a head start early in their 
growth. Commercial AMF inoculation did benefit mean individual 
tuber weight, potentially indicating a change in growth regulators 
in AMF inoculated treatments (Dutt et al., 2017). This might be due 
to the specific AMF strain inoculated, R. irregularis, which has been 
shown to benefit potato size, possibly via changes in tuber growth 
regulators (Hijri, 2016). Augmenting field AMF communities and 
crop root colonization could be achieved by increasing crop species 
richness as well as other AMF- friendly management practices such 
as reduced tillage and fungicide applications. While further studies 
are needed to clarify mechanisms, and define the impact of strip- 
cropping on AMF communities, our results showed that AMF inocu-
lation might not be as effective in farming systems already adopting 
AMF- friendly management practices like strip- cropping.

4.2  |  AMF inoculation benefits are more 
pronounced under herbivory

Under stressful pest infestation conditions our results indicate 
greater plant nutrient resource acquisition in plants inoculated 
with AMF. AMF inoculation was positively associated with plant 
nitrogen and biomass in plants infested with aphids. This supports 
the hypothesis that the benefits of AMF (e.g. nutrient uptake and 
plant growth) are more pronounced under stressful conditions, such 
as herbivory (positive synergy; Porter et al., 2020). As expected, 

we found that positive effects of AMF inoculation on tuber yield 
were mediated by higher shoot N. The same pathway, and of similar 
strength, was found for the positive effect of strip- cropping soil 
on tuber yield. Positive associations of strip- cropping on plant 
nutrients might also be linked to earlier AMF root colonization in 
strip-  compared to mono- cropping soils. Complex interactive effects 
between aphids and AMF inoculation on total tuber yield might 
have been missed as tuber growth was constrained by pot size and 
early harvest. AMF symbiosis and nutrient allocation in relation to 
induced stressed conditions is a complex and dynamic process and 
future studies should assess plant nutrient allocation in parallel to 
AMF root colonization over time.

4.3  |  Strip- cropping legacy and herbivory affects 
plant metabolome

The impacts of strip- cropping legacy on the potato leaf metabolome 
were likely due to changes in micro- biota and soil resources. This is in 
line with studies in other mixed- cropping systems, where changes in 
secondary metabolite leaf composition in intercropped treatments 
enhanced plant defences against herbivory and crop quality (Duan 
et al., 2021; Wu et al., 2021; Zhang et al., 2024). Our untargeted 
metabolome study revealed that strip- cropping soil legacy 
modulates both compounds required for de novo biosynthesis of 
JA as well as downstream JA conjugates and JA- induced secondary 
metabolites. Specifically, strip- cropping soil legacy reduced the 
putatively annotated compound OPC- 8, a precursor of jasmonic acid 
(Züst & Agrawal, 2016) and structural equation models showed that 
strip- cropping soil legacy down- regulated JAglucosides and some 
terpenoids. Although it is disputable how to interpret these findings 
without insights in other modulations along the JA pathway, they 
seem to indicate that at the sampling time, which was 2 weeks after 
aphid infestation, plants in strip- cropping soil attenuated de novo 
biosynthesis of JA, but retained existing JA activities by suppressing 
JA hydroxylation and glucosylation (Caarls et al., 2017; Miersch 
et al., 2008). Exact implications need further characterization of 
JA molecules on different time points. Production of secondary 
metabolites is regarded as costly and can inhibit plant growth (Erb 
& Kliebenstein, 2020). Up- regulation of JA- glucosides in leaves in 
potato plants grown in mono- cropping soils and in plants that did 
not receive AMF inoculation might indicate a stronger switch off 
of costly defences compared to plants grown in strip- cropping soil 
and AMF inoculated plants. Apart from soil- mediated effects, aphid 
presence significantly altered the leaf metabolome. Hydroxy- JA 
glucoside and several phenylpropanoids were up- regulated when 
aphids were present, indicating on one hand down- regulation of 
previous JA accumulation via hydroxylation and glucosylation 
(Caarls et al., 2017; Miersch et al., 2008), but also an accumulation 
of other plant defence compounds. Aphid infestation had a 
detrimental effect on potato yield and biomass, which could be 
linked to removal of photosynthates via feeding, induction of costly 
defence responses, and/or aphid- induced changes in source- sink 
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relationships (Watts et al., 2023). We found indirect negative 
effects of herbivory on tuber yield via decreased shoot nitrogen 
content and via down- regulation of α- ketoglutaric acid, an important 
metabolite implicated in the energy metabolism (Cheng et al., 2022). 
Herbivore damage often decreases the concentrations of nitrogen 
in shoots (Karban & Myers, 1989; Newingham et al., 2007). Reduced 
shoot nitrogen in plants infested with aphids could be due to plant 
reallocation of nitrogen away from the sites of damage (plant defence 
mechanisms; Newingham et al., 2007). A negative effect of aphids on 
plant nitrogen appears to be compensated for by AMF inoculation 
and strip- cropping practices that enhance AMF populations which 
directly facilitate increased plant uptake of nitrogen. To assess 
how herbivory and AMF interactively affect nitrogen allocation 
more detailed components of aphid performance (e.g. individual 
fecundity) and plant nitrogen budget (e.g. nitrogen in the roots and 
tubers) should be assessed (Newingham et al., 2007).

4.4  |  Strip- cropping legacy affects pest 
population size

Soils with a strip- cropping legacy suppressed aphid population 
size. The mechanisms driving this direct negative effect could not 
be associated with effects on plant nutrients or specific plant me-
tabolites The direct negative effect of strip- cropping legacy on 
aphid population size is likely due to soil- mediated changes in in-
duced plant defences or plant tolerance that were not captured in 
the analyses performed here. When potato plants were exposed 
to aphid herbivory, we observed a higher abundance of solamar-
gine in plants grown in soil with a strip- cropping legacy compared 
to mono- cropping soil. This glycoalkaloid is known to have nega-
tive effects on the reproduction of the potato aphid Macrosiphum 
euphorbiae (Güntner et al., 2000) which may explain the observed 
reduction in M. persicae aphid population size in strip- cropping 
soils. In contrast to the strip- cropping, we did find indications that 
AMF could affect aphid performance via the JA pathway. Greater 
AMF root colonization during the earlier stages of plant growth in 
strip- cropping soil might have negatively affected aphid reproduc-
tion at plant harvest. This is in line with the finding that, greater 
AMF root colonization at harvest positively affected methylhy-
droxy- JA glucoside accumulation (Figure 4), which is indicative for 
the downregulation of a stronger JA induction during the previous 
infestation weeks, which may have supressed aphid population 
growth (Aslam et al., 2022; Cao et al., 2014). The indirect nega-
tive effect of AMF on aphid population in our experiment supports 
results found in other studies of negative effects of AMF on aphid 
population size which is associated to changes in plant induced 
defences (Bezemer & van Dam, 2005; Gehring & Whitham, 2003; 
Guerrieri et al., 2004; Hempel et al., 2009), though there are in-
consistencies in the literature (Babikova et al., 2014; Hartley & 
Gange, 2009; Koricheva et al., 2009). With this, our study indicates 
that a strip- cropping legacy affects the leaf metabolome and al-
ters plant defence responses (i.e. upregulation of solamargine and 

downregulation of OPC- 8) via soil- mediated mechanisms. These 
results are consistent with other studies in other mixed- cropping 
systems (Zhang et al., 2024). Strip- cropping legacy effects could 
result from crop diversity, the identity of the neighbouring crop 
or/and crop management practices at the edge of the strip. In 
our study, pumpkin was grown adjacent to the barley strip, and 
Cucurbitaceae- specific secondary metabolites, such as cucurbita-
cin, may also have exerted an effect on the recruitment of soil 
microbes (Kusstatscher et al., 2021). In future studies, targeted 
quantification of JA, salicylic acid and their conjugates as well 
as other defence metabolites and expression of defence- related 
genes in diverse cropping systems will help us to understand the 
underlying mechanisms of soil- mediated suppression of aphid 
pests in these systems.

5  |  CONCLUSIONS

Alternative cropping strategies that increase plant resilience to 
stressors are needed to transition towards sustainable agriculture. 
We found that potatoes grown in strip- cropping soil exhibited 
increased natural AMF symbiosis compared to those in mono- 
cropping soil, possibly explaining the higher shoot nitrogen content 
and reduced aphid population size in strip- cropping soil. The direct 
positive effects of strip- cropping legacy on pest management could 
also be attributed to alterations in other soil microbiota and re-
sources that impact plant defences. As AMF symbioses are dynamic, 
future studies need to assess these relations over time to unravel 
the complex relationships between AMF, plant nutrient status and 
yield. Strip- cropping legacy effects could result from crop diver-
sity, the identity of the neighbouring crop or/and crop management 
practices at the edge of the strip. While this study does not allow 
to disentangle the relative contribution of these different effects, 
our results emphasize the potential of strip- cropping to enhance 
AMF root colonization in the field. Additionally, commercial AMF 
inoculation countered the lack of AMF root colonization in mono- 
cropping soils in early stages of plant growth, and benefited plant 
nutrient acquisition and biomass, particularly under aphid infesta-
tion, supporting the idea that AMF benefits are more pronounced 
in stressful conditions. This research also identifies changes in plant 
metabolome and defence responses, influenced by strip- cropping 
legacy effects and AMF inoculation, which lead to reduced aphid 
populations. Specifically, we highlight complex relationships be-
tween strip- cropping and the JA pathway. While mechanisms sup-
porting the direct benefits of strip- cropping soil on pest control 
still need to be uncovered and tested across soil types and crop 
combinations, our study underscores the potential for integrated 
approaches like strip- cropping, to enhance pest control and overall 
plant health via soil mediated mechanisms.
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