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Abstract
Background Ambrosia artemisiifolia is a highly invasive herb with deleterious effects on public health and 
agricultural systems. Flowering time in this species has been reported to vary along a latitudinal gradient, which may 
contribute to local adaptation and invasion success in China. However, the molecular basis for the flowering time 
differentiation remains unclear.

Results A common garden experiment confirmed a latitudinal gradient in flowering time among seven Chinese 
populations. Differentially expressed genes (DEGs) across sampling times and flowering time groups were identified 
through transcriptome sequencing and analyses of DGE and WGCNA, and were partially annotated to circadian 
rhythm, light response and hormone response through GO enrichment. By annotating to Flowering Interactive 
Database (FLOR-ID) and protein-protein interaction (PPI) databases, 53 candidate genes for flowering time 
differentiation were identified, with 23 of these genes linked to the photoperiod pathway. Additionally, 43 of 53 
candidate genes exhibited expression correlated with latitude. Six genes, including FKF1, FT, FUL, MAF2, WNK4 and 
WNK5, were inferred to promote flowering, while 5 genes, FBH3, FLK, NCL(1), POL2A, and ZHD4, likely repress flowering, 
based on their expression patterns in relation to latitude and sampling times. Notably, NCL(1), FBH3, MAF2, and FLK 
may function differently in A. artemisiifolia compared to Arabidopsis thaliana.

Conclusions This study identified key candidate genes related to the differentiation of flowering time in Chinese 
ragweed populations, providing valuable insights into molecular mechanisms of phenological adaptation and 
invasive success of ragweed.
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Background
Plant adaptations to their habitats are crucial for their 
growth, survival and reproduction [1]. Invasive plant 
populations generally experience novel environments 
from their native habitats and this may lead to the rapid 
evolution of local adaptation to their introduced abi-
otic or biotic conditions [1, 2], which may result in them 
eventually outperforming native populations [3]. Numer-
ous studies have confirmed that local adaptation plays an 
important role in the successful establishment and spread 
of invasive species [4–6]. One clear manifestation of local 
adaptation is clinal variation in characteristics related to 
adaptation [1]. Flowering time, a key trait in the transi-
tion from vegetative to reproductive development, is 
known to be highly susceptible to local selection [7]. It 
has been reported that latitudinal clinal variation of flow-
ering time plays crucial roles in the successful invasion of 
several species, such as Lythrum salicaria [4], Medicago 
polymorpha [8], and Ambrosia artemisiifolia [6]. Many 
studies have demonstrated that genes associated with 
flowering time and plant growth are linked to the suc-
cess of invasive species [2, 9]. These findings suggest that 
the ability to adapt to different environments through 
genetic variation in key developmental processes, such 
as flowering time, can promote the successful invasion 
of introduced plants. Hence, unraveling the molecular 
mechanisms underlying the differentiation of flowering 
time is imperative for understanding factors that contrib-
ute to successful invasion of introduced species.

Flowering time is thought to be a quantitative trait and 
is influenced by both genetic and environmental factors 
[10]. Environmental factors, including light, temperature, 
water availability, and humidity, as well as endogenous 
factors, such as hormones and age, collectively contribute 
to the intricate regulation of flowering in plants [11–13]. 
Extensive research in model species, such as Arabidopsis 
thaliana, has identified numerous genes and pathways 
involved in regulating flowering time [14]. In A. thaliana, 
the dynamic process of flowering is primarily induced by 
seven pathways, including the photoperiod, vernalization, 
gibberellin, temperature, autonomous, age, and sugar 
pathways [15, 16]. These exogenous and endogenous sig-
nals function as upstream signals and transmit informa-
tion to floral integrators, such as FLOWERING LOCUS 
T (FT) and SUPPRESSOR OF OVEREXPRESSION OF 
CO 1 (SOC1). These integrators subsequently integrate 
and relay diverse signals to downstream genes that ulti-
mately trigger the process of flowering [16]. Genetic 
mechanisms regulating flowering time have also been 
elucidated in many other species, revealing both conser-
vation and divergence in flowering time regulation across 
taxa [17, 18]. For example, key elements of the genetic 
network that regulate flowering time, including homolo-
gous genes such as photoreceptors (PHYTOCHROMEs, 

PHYs), circadian clock genes (GIGANTEA, GI), and inte-
gration factors (FTs), are conserved across species such 
as A. thaliana, rice (Oryza sativa), and many temperate 
cereals [17]. However, functional disparities in primary 
flowering-related genes have been observed among spe-
cies. The BOLTING TIME CONTROL 1 (BTC1) has been 
shown to regulate flowering time in sugar beet [19] and 
E11 in soybean [20], but not in A. thaliana. In addition, 
genetic factors regulating flowering time differ among 
species or geographical regions within species. For 
example, allelic variation at the FLOWERING LOCUS C 
(FLC) locus accounts for variation in flowering time in 
Capsella rubella [21]. Genes such as Pseudo-Response 
Regulator 37 (PRR37), FRI-LIKE3a (FRL3a), and GIGAN-
TEA 1 (GI1) have been identified as significant contribu-
tors to the variation in flowering time in Zea mays [22]. 
Additionally, the effect of FLOWERING LOCUS T-like 9 
(PhFTL9) on flowering time has been observed in Pani-
cum hallii [23]. These findings highlight the complexity 
and diversity of the genetic mechanisms controlling flow-
ering time across species, emphasizing both the conser-
vation of key regulatory elements and the emergence of 
species-specific adaptations.

Common ragweed (Ambrosia artemisiifolia) is a wind-
pollinated annual herb native to North America and 
Mexico [24]. This species has been unintentionally intro-
duced into multiple regions around the world, includ-
ing Asia, South America, Oceania, and Europe. Invasive 
populations of this species commonly have high genetic 
diversity probably due to multiple introductions and 
genetic admixture from diverse origins [25–28]. The 
detrimental impact of A. artemisiifolia on the economy 
and public health is increasing in both native and inva-
sive areas because of its highly allergenic pollen and the 
formidable challenge it poses in disturbed habitats [29–
33]. Investigating the underlying mechanisms behind its 
extensive spread will facilitate the effective management 
of this species in invasive ranges. Latitudinal variation 
in flowering time of A. artemisiifolia has been docu-
mented in both its native and invasive ranges [5, 6]. The 
genetic differentiation of flowering time and other phe-
notypic traits between different Chinese populations 
has been observed in common garden experiments, and 
flowering time is considered to play an important role 
in the local adaptation of invasive populations through 
its direct and indirect effects on fitness [6]. Therefore, 
elucidating the genetic factors underlying variation in 
flowering time would greatly contribute to unravel-
ing the intricate mechanisms facilitating its successful 
spread. Although several flowering-related genes have 
been quantitatively analyzed via real-time quantitative 
PCR and have been shown to be associated with differ-
entiation of flowering time in Chinese populations [34], 
a more thorough investigation is needed to obtain more 
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comprehensive information on the genetic mechanisms 
of this differentiation.

In this study, we investigated the variation in flower-
ing time and the genetic basis underlying this variation 
among seven populations of A. artemisiifolia from dif-
ferent latitudes across China. We observed a latitudinal 
cline in flowering time in a common garden experiment 
[6]. To explore candidate genes controlling flowering 
time differentiation, RNA-Seq analyses were conducted 
on these seven populations at three sampling times cov-
ering different developmental stages of the populations. 
Analysis of differential gene expression (DGE) was con-
ducted to examine variation in gene expression across 
populations with different flowering times at each sam-
pling time and across sampling times for each flowering 
time group. In addition, weighted gene co-expression 
network analysis (WGCNA) was also performed on the 
seven populations, using flowering time and population 
as phenotypes, to identify critical modules and pivotal 
genes responsible for the differentiation of flowering 
time between populations in A. artemisiifolia. Through 
these analytical methods, we aim to determine (1) the 
molecular mechanism for flowering time differentiation 
in Chinese invasive populations of A. artemisiifolia; (2) 
the mechanisms of local adaptation for Chinese popula-
tions of A. artemisiifolia and (3) the crucial regulatory 
networks and pathways that govern flowering time. The 
present study provides novel insights into the genetic and 
environmental interactions influencing flowering time in 
A. artemisiifolia, paving the way for more effective strate-
gies in management of invasive plants.

Methods
Common garden experiment
The common garden experiment was conducted in 
the field garden at Beijing Normal University (39.96°N, 
116.36°E). In 2019, seeds of A. artemisiifolia (voucher 
specimens were identified by Prof. Wan-Jin Liao and 
deposited in the herbarium of Beijing Normal Univer-
sity) were collected from seven geographically separated 
populations in China along a latitudinal cline, including 
Mudanjiang (MDJ, 44.60°N, 129.68°E), Dandong (DD, 
40.18°N, 124.32°E), Wangping (WP, 39.98°N, 116.01°E), 
Wuhu (WH, 31.22°N, 118.37°E), Huanggang (HG, 
30.46°N, 114.93°E), Nanchang (NC, 28.68°N, 115.83°E), 
and Fengkai (FK, 23.45°N, 111.50°E) populations, with 
each population consisting of seeds obtained from 30 
maternal families (Fig.  1). On April 18, 2020, ten seeds 
were randomly chosen from each of 10 families and sown 
in Petri dishes filled with moist vermiculite, resulting in a 
total of 100 seeds sown per population. The Petri dishes 
were placed at 4  °C for cold stratification for two weeks 
and then transferred to ambient temperature to facili-
tate germination. Time to germination was recorded for 
each sample. After the development of the first set of true 
leaves, 25 seedlings for each population were randomly 
chosen and transplanted into 9  cm pots filled with a 
blend of vermiculite and potting soil at a 1:1 ratio. Finally, 
a total of 96 individuals with similar growth perfor-
mance, were monitored throughout the growing season, 
each population with 5–22 plants. Flowering time was 
recorded as the duration in days from seed germination 
to the initial appearance of male inflorescences, taking 
into consideration the potential protandry of this spe-
cies [35]. Difference in flowering time among populations 
was tested by carrying out the Kruskal-Wallis test in R (v 
4.1.1), followed by Dunn’s Test for pairwise comparisons 
with Benjamini-Hochberg adjusted p values.

On July 18th, August 21st, and September 27th, 2020, 
leaf tissues were collected from three biological replicates 
for each population at approximately 12 p.m. Samples 
were cut into pieces and immediately stored in RNAl-
ater solution (Life Technologies, CA, USA) at -20  °C 
until RNA extraction. The three sampling times covered 
almost all the developmental stages of all seven popula-
tions (Additional file 1 Table S1). Leaf tissue was used for 
transcriptome analysis to elucidate the genetic under-
pinnings of interpopulation variation in flowering time, 
as genes associated with flowering may be expressed in 
leaves and regulate the development of floral organs and 
the timing of flower emergence [36].

RNA extraction, library construction and Illumina 
sequencing
Total RNA from each sample was extracted via the 
TRIzol® Plus RNA Purification Kit (Thermo Fisher 

Fig. 1 Populations of Ambrosia artemisiifolia included in this study. The red 
dots indicate the sampling sites. The population codes used in this study 
are as follows: MDJ for Mudanjiang, DD for Dandong, WP for Wangping, 
WH for Wuhu, HG for Huanggang, NC for Nanchang and FK for Fengkai
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Scientific, Inc.). The quality of the RNA was assessed via 
agarose gel electrophoresis and a NanoPhotometer® spec-
trophotometer (IMPLEN, CA, USA), and the concentra-
tions were evaluated via a Qubit® RNA Assay Kit on a 
Qubit® 2.0 fluorometer (Life Technologies, CA, USA).

Libraries for each sample were constructed using 
approximately 3  µg of RNA as input material. The 
sequencing libraries were prepared via the NEBNext® 
UltraTM RNA Library Prep Kit for Illumina® (NEB, USA) 
following the manufacturer’s guidelines, and index codes 
were added to assign sequences to each respective sam-
ple. The index-coded samples were subjected to cluster-
ing on a cBot Cluster Generation System via the TruSeq 
PE Cluster Kit v3-cBot-HS (Illumina) according to the 
manufacturer’s instructions. After cluster generation, the 
libraries were sequenced on an Illumina NovaSeq 6000 
platform using 150  bp paired-end reads at a depth of 6 
Gb per sample.

De novo transcriptome assembly
Reads were cleaned using Trimmomatic (version 0.39) 
[37] with default settings. This process involved trimming 
adapter sequences, removing reads containing poly-
N regions and deleting reads with quality less than 3. 
Additionally, reads shorter than 36 bases were excluded 
from the analysis. A de novo transcriptome assembly was 
conducted to assemble the contigs into a nonredundant 
set of unigenes via Trinity (v2.1.1), setting 300 as the 
minimal length of assembled contigs. Sequence redun-
dancy was reduced using CD-HIT (v4.8.1) by removing 
sequences with over 97% identity. The longest transcripts 
were considered as nonredundant unigenes. The effec-
tiveness of the assembly was evaluated through N50 
calculation in Trinity (v2.1.1) and examination of gene 
mapping to OrthoDB database in benchmarking univer-
sal single-copy ortholog (BUSCO) (v3.0.2). Potential pro-
tein coding domain sequences  (CDS) for unigenes were 
predicted using TransDecoder (v5.5.0). We explored mul-
tiple assembly strategies, including assembling all indi-
viduals together and assembling samples from different 
populations at specific time points, and selected the final 
assembly based on N50 values and completeness evalua-
tions using BUSCO. After comparing various assemblies, 
the July sample from the DD population provided the 
highest N50 and BUSCO scores and was selected as the 
reference.

Differential gene expression analysis of samples among 
sampling times and among flowering time groups
For all high-quality reads after Trimmomatic filtering, 
read counts were obtained by mapping to the reference 
of DD population in July. Then, the Fragments Per Kilo-
base Million (FPKM) values for each sample were esti-
mated using the RSEM package (v1.3.3) and employed 

as the indicator of gene expression level [38, 39]. Genes 
with FPKM-value greater than 1 in at least one individ-
ual in each population were retained and their FPKM-
values were normalized into Trimmed Mean of M-values 
(TMM) for subsequent study.

To conduct DGE analysis, we categorized the seven 
populations into three groups according to the flowering 
stages of the populations at sampling times (Additional 
file 1 Table S1): the early-flowering (EF) group, which 
included the MDJ population; the late-flowering (LF) 
group, which included the FK population; and the group 
with moderate flowering time (MF), which included 
the DD, WP, WH, HG, and NC populations. The DGE 
analysis was conducted on samples from different sam-
pling times (July, August and September) and samples 
from the different flowering time groups (LF, MF and LF) 
using DESeq2 (version 1.24.0) based on a model using 
the negative binomial distribution [40]. The comparisons 
with log2 (fold change) value greater than 1 or smaller 
than − 1 and adjusted p-value less than 0.05 were consid-
ered to be significant and the genes were considered to 
be differentially expressed genes (DEGs). The DEGs were 
enriched to the Gene Ontology (GO) database via the 
clusterProfiler package (version 3.12.0), using enricher 
function with BH (FDR correction with Benjamini-Hoch-
berg) method. The enriched terms for the DEGs were 
identified to be significant when adjusted p-value ≤ 0.05. 
GO terms that had annotations of “photosynthesis” and 
“photosystem” were considered as photosynthesis related 
functions, terms of “water deprivation”, “stress”, “cold” 
and “heat” were flagged as functions of response to stress, 
term of “biosynthetic process” was regarded as functions 
of biosynthetic process and terms of “hormone”, “sali-
cylic acid”, “abscisic acid”, “ethylene” and “jasmonic” were 
deemed as hormone related functions. The DEGs were 
subsequently subjected to a search for orthologous genes 
regulating flowering in the curated Flowering-Interactive 
Database (FLOR-ID) [41], which is an interactive data-
base of flowering-time gene networks in Arabidopsis 
thaliana. Additionally, via protein‒protein interaction 
(PPI) analysis, the DEGs were annotated to the STRING 
database [42], and genes with functions related to flow-
ering regulation were considered as flowering-related 
genes. Flowering-related DEGs among sampling times 
and among flowering time groups are considered to 
play crucial roles in the differentiation of flowering time 
among populations of Ambrosia artemisiifolia. The cor-
relations between the expression levels of these candidate 
genes and origin latitude were analyzed using Spearman 
correlation analyses in R software (v 4.1.1), to further 
assess correlations between candidate gene expression 
and the latitudinal cline in flowering time.
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Weighted gene co-expression network analysis (WGCNA)
To investigate the genetic basis underlying the dif-
ferentiation of flowering time, we constructed a co-
expression network on the basis of gene expression data 
obtained from samples collected at each sampling time. 
The WGCNA package (v 1.72-5) in R (v 4.1.1) was uti-
lized to build the expression network [43]. The similar-
ity matrix between each pair of genes across all samples 
was calculated based on their Pearson’s correlation val-
ues, and the genes were clustered into different modules 
using “dynamic tree cut” method in WGCNA. The power 
threshold parameter was set to 5. The type of topologi-
cal overlap matrix (TOM) was set to unsigned, and the 
minimal number of genes in the modules was set to 50. 
We performed two WGCNA analyses using flowering 
time and population as the phenotype, respectively. The 
Pearson correlation coefficients between the phenotypes 
and gene modules were calculated using the cor and cor-
PvalueStudent functions and visualized within a heatmap 
plot using labeledHeatmap function. The gene modules 
significantly related to flowering time differentiation were 
identified. Subsequent annotation of all genes within 
these pivotal modules was conducted using the GO data-
base via the R package clusterProfiler (version 3.12.0) to 
ascertain their functions. Moreover, to further delineate 
critical genes specifically involved in the regulation of 
flowering time, all genes within the pivotal modules were 
cross-referenced with the Flowering-Interactive Database 
[41] and the PPI protein STRING database [42]. The can-
didate genes identified in these WGCNA were consid-
ered to be related to the differentiation of flowering time 
if they differ in expression among sampling time in the 
DGE analyses simultaneously. The correlations between 
the expression levels of these genes and the origin lati-
tudes of populations were evaluated using Spearman cor-
relation analyses in R (v 4.1.1) to elucidate the candidate 

flowering-related genes responsible for the latitudinal 
clinal pattern of flowering time.

Results
Variation in flowering time among populations
Flowering time showed a notable disparity among popu-
lations (W = 0.923, p < 0.001), with populations originat-
ing from lower latitudes exhibiting delayed flowering 
compared with those from higher latitudes (Fig. 2). The 
flowering time, days from germination to flowering, was 
48.3 ± 5.99 (mean ± SE) for plants from the northern MDJ 
population, 122.5 ± 1.13 for plants from the southern FK 
population. Flowering time varied from 56.8 ± 2.06 to 
101.2 ± 1.95 for the moderate five populations.

De novo transcriptome assembly
About 1230  million clean reads were obtained, with an 
average of 21  million per library. After Trimmomatic 
filtering, 1212  million high-quality reads remained 
(Additional file 1 Table S2). The high-quality reads 
were assembled, leading to the identification of 79,600 
transcripts. The assembly of the DD July sample pro-
vided the highest N50 value and BUSCO completeness 
score. Specifically, the N50 was 958 bp, with a GC con-
tent of 40.44%. BUSCO analysis revealed that approxi-
mately 77.5% of the 1440 core embryophyte genes were 
complete, indicating comprehensive mapping of the 
sequences. Therefore, the July sample from the DD pop-
ulation was employed as the reference for subsequent 
analyses.

Identification of DEGs among sampling times
A total of 26,628 genes were identified to differ among 
sampling times through DGE analysis, with 11,897 
upregulated and 14,731 downregulated (Fig.  3A). For 
each flowering group (EF, MF, and LF), the lowest num-
ber of DEGs of July vs. August was observed, compared 
to the July vs. September and August vs. September con-
trasts (Fig. 3A). Specifically, the EF group had 37 upregu-
lated and 31 downregulated genes, the MF group had 371 
upregulated and 592 downregulated genes, and the LF 
group had 71 upregulated and 54 downregulated genes in 
the July vs. August contrast.

GO enrichment analysis revealed DEGs were partially 
annotated to photosynthesis, response to stress, biosyn-
thetic processes and response to phytohormones func-
tions (Additional file 1 Table S3-1 – S3-9). Among the 
genes upregulated in July and August compared to Sep-
tember in the EF group, 200 and 48 genes were related to 
photosynthesis, respectively. Similarly, in the MF group, 
252 genes in July and 254 genes in August that showed 
higher expression levels than September were related to 
photosynthesis. In the EF and MF groups, 48 and 485 
genes that were upregulated in September compared to 

Fig. 2 Box plot showing the flowering times of different populations of 
Ambrosia artemisiifolia in China. The central line in the box represents the 
median value. Lowercase letters indicate differences between populations 
(p < 0.05)
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July and August were associated with stress response, 
respectively. In the LF group, there were 110 upregu-
lated genes involved in biosynthetic processes in July and 
August compared to September, respectively. Addition-
ally, 209 upregulated genes in September were associated 
with the response to phytohormones in the LF group. The 
results of annotation to the FLOR-ID and PPI STRING 

databases indicated that 27, 126, and 39 flowering-related 
genes were differentially expressed across sampling times 
in the EF, MF and LF groups, respectively (Additional file 
1 Table S4).

Fig. 3 Number of up- and downregulated DEGs between sampling times (A) and between flowering time groups (B) for the Chinese invasive popula-
tions of Ambrosia artemisiifolia. EF, MF and LF represent the population groups with early, moderate and late flowering times, respectively
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Candidate genes involved in flowering time differentiation 
identified through DGE analysis
A total of 12,135 genes were identified to differ among 
flowering time groups through DGE analysis, with 6584 
upregulated and 5551 downregulated (Fig.  3B). Some 
DEGs were enriched in terms related to hormone regu-
lation, sugar metabolism, and floral development (Addi-
tional file 1 Table S3-10 – S3-18). The annotation to the 
FLOR-ID and PPI STRING databases indicated that 21, 
35 and 48 flowering-related DEGs between flowering 
time groups were identified in July, August and Septem-
ber, respectively (Additional file 1 Table S5).

There were 41 genes identified to be flowering-related 
and differed in expression among sampling times and 
among flowering time groups through DGE analysis 

(Fig.  4). These genes are involved mainly in pathways 
regulating transition to flowering, including the photope-
riod, temperature, age, autonomous, sugar and hormone 
pathways and the integrator and floral meristem identi-
ties controlling flower development (Fig. 4). Notably, 16 
of 41 genes were involved in photoperiod pathway in 
regulating flowering. 34 of 41 genes showed significant 
latitude-correlated expression (Table  1). Specifically, 5, 
9 and 9 genes were positively correlated with latitude 
in July, August and September, respectively (Table  1). 
While 8, 9 and 9 genes were negatively correlated with 
latitude in July, August and September, respectively 
(Table 1). Among the genes whose expression levels were 
positively correlated with latitude, FLAVIN-BINDING, 
KELCH REPEAT, F BOX 1(1) (FKF1(1)), FKF1(2), FT, 

Fig. 4 Heatmap of expression levels of flowering-related genes that exhibited different expression levels among sampling times and among flowering 
time groups through DGE analysis, with blue rectangles indicating low expression and red rectangles denoting high expression. The rows and columns 
are not clustered. Each column represents the expression levels of candidate genes in samples from different populations and different times (with letters 
representing different populations and numbers representing different sampling times). Each row represents the expression level of a specific candidate 
gene. The flowering regulatory pathways in which these genes are involved, are labeled on the right
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FRUITFULL (FUL) and MADS AFFECTING FLOW-
ERING 2 (MAF2) had higher expression in August 
compared to July in the MF group which was in vegeta-
tive stage in July and flowering stage in August (Addi-
tional file 1 Table S1, 6). Meanwhile, FKF1(1), FKF1(2), 
FT, FUL, MAF2, WNK lysine deficient protein kinase 
4 (WNK4) and WNK5(2) showed higher expression in 
September compared to July or August in the LF group 
which was in vegetative stage in July or August and flow-
ering stage in September (Additional file 1 Table S1, 6). 
For the genes with expression levels negatively associated 
with latitude, FBH3 displayed a higher expression level in 
July compared to August in the MF group, and Neuronal 
Calcium sensor-1-Like (NCL), polymerase epsilon cata-
lytic subunit A (POL2A)(1) and Zinc-finger homeodomain 
protein 4 (ZHD4) exhibited a lower expression level in 
September compared to July or August in the LF group 
(Additional file 1 Table S6).

Candidate genes associated with flowering time 
differentiation identified through WGCNA
There were 25, 46, and 37 co-expression modules iden-
tified for samples collected in July, August and Septem-
ber, respectively. The green and pink modules were 
significantly correlated with both flowering time and the 

earliest-flowering MDJ population in July (Additional file 
2 Fig. S1A). In August, 8 modules (magenta, steel blue, 
light cyan1, red, salmon, dark green, green, and blue 
modules) showed significant correlation either with flow-
ering time and flowering populations (DD, WP, WH, HG, 
or NC), or with flowering time and the population that 
had not yet flowered (FK) but not with the DD, WP, WH, 
HG and NC populations (Additional file 2 Fig. S1B). In 
September, 3 modules (magenta, midnightblue and light-
green) were significantly correlated with flowering time 
and the FK population, which initiated flowering latest in 
September (Additional file 2 Fig. S1C). These gene mod-
ules were considered to be the most relevant modules for 
flowering time differentiation and were subjected to sub-
sequent analyses.

Through GO enrichment of the identified modules, 
we found that 6 and 7 genes were annotated to “pol-
len germination” and “pollen tube growth”, respectively 
(Additional file 1 Table S7) and these were considered to 
be relevant for flower development. In addition, 4 genes 
were annotated to “response to red light” which may be 
involved in flowering regulation, and 4 genes were anno-
tated to “regulation of jasmonic acid-mediated signal-
ing pathway” in hormone regulation (Additional file 1 
Table S7). Furthermore, 79 genes from the candidate 

Table 1 Spearman correlations between the expression levels of the candidate genes which were identified through the DGE analysis 
and WGCNA and origin latitude of Chinese invasive Ambrosia artemisiifolia populations at each sampling time
Gene Sampling time Method Gene Sampling time Method

July August September July August September
2MMP -0.22 -0.11 -0.82*** DGE GASA10 -0.38 -0.51* 0.16 DGE
ADF1 0.52* 0.24 0.07 WGCNA HIPP03(1) 0.54* 0.67*** 0.11 DGE
AGL15 0.29 0.21 0.80*** DGE HIPP03(2) -0.35 -0.57** -0.34 DGE
AGL24(1) -0.50* -0.87*** -0.88*** DGE LUG -0.47* -0.48* -0.28 DGE
AGL24(2) -0.13 -0.51* -0.80*** WGCNA MAF2 0.74*** 0.58** -0.34 DGE
AGL42 0.29 0.48* 0.31 DGE/WGCNA MYR2(1) 0.37 0.59** 0.07 DGE
ALKBH10B -0.39 -0.78*** -0.61* DGE/WGCNA MYR2(2) 0.12 0.48* 0.47 DGE
AP2(1) -0.51* -0.16 -0.50 DGE NCL(1) -0.46* -0.57** -0.61* DGE
AP2(2) -0.12 -0.12 -0.53* DGE NCL(2) 0.450* 0.46 -0.77*** DGE/WGCNA
AP2(3) 0.15 0.37 0.70** DGE POL2A(1) -0.66** -0.67*** 0.06 DGE
ARF1 -0.44* -0.26 0.24 DGE/WGCNA RFI2 -0.62** -0.60** 0.11 WGCNA
BRN1(1) -0.54* -0.66** -0.46 DGE SEP1 0.29 0.21 0.80*** DGE
BRN1(2) -0.66** -0.70*** -0.79*** WGCNA SPL4 -0.32 -0.21 -0.81*** DGE
CIB1 -0.08 0.04 -0.58* WGCNA SUS4 -0.25 -0.32 0.62* DGE/WGCNA
COR27 -0.21 -0.05 0.75** DGE TPL -0.70*** -0.472* 0.14 WGCNA
FBH3 -0.05 0.36 -0.59* DGE/WGCNA ULP1D 0.14 0.17 0.58* DGE
FKF1(1) 0.28 0.24 0.57* DGE WNK11 0.44* 0.34 0.08 WGCNA
FKF1(2) 0.19 0.43 0.82*** DGE WNK4 0.37 0.44* 0.46 DGE
FLK -0.51* -0.54* -0.59* WGCNA WNK5(2) 0.19 0.65*** 0.76*** DGE
FT 0.54* 0.75*** 0.01 DGE WNK8 0.21 0.59** -0.59* DGE
FUL 0.45* 0.19 -0.26 DGE ZHD4 -0.83*** -0.60** -0.25 DGE
FVE -0.60** -0.70** -0.61* WGCNA
The values indicate the correlation coefficients

Bold values indicate significant correlations. Statistical significance is denoted as follows: * p < 0.05, ** p < 0.01, *** p < 0.001. Candidate genes that showed no 
correlation with latitude at any of the sampling times were not listed
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modules were identified to be related to flowering regu-
lation through annotation to the FLOR-ID and the PPI 
STRING databases (Additional file 1 Table S8). Among 
these genes, 18 genes displayed differential expression 
levels among sampling times in our DGE analysis (Fig. 5) 
and are thus considered to be candidate genes for flower-
ing time differentiation across populations. These genes 
were mainly involved in the photoperiod, age, autono-
mous, sugar, hormone and flower development pathways 
in flowering regulation, with 9 of 18 genes in the photo-
period pathway.

The correlation analysis between candidate gene 
expression levels and origin latitude showed that 5 genes, 
including Actin-depolymerizing factor 1 (ADF1), NCL(2) 
and WNK11 in July, AGAMOUS-LIKE 42 (AGL42) in 
August, and SUCROSE SYNTHASE 4 (SUS4) in Sep-
tember, were positively correlated with origin latitude 
(Table 1). On the other hand, 6, 7 and 8 genes were nega-
tively correlated with latitude in July, August and Septem-
ber, respectively (Table  1). Among the genes that were 
negatively correlated with latitude, FLOWERING BHLH 
3 (FBH3) showed lower expression level in August com-
pared to July in MF group which was in vegetative stage 
in July and flowering stage in August (Additional file 1 
Table S6). FLOWERING LOCUS KH DOMAIN (FLK) 
had lower expression level in September compared to 
July in LF group which was in vegetative stage in July and 
flowering stage in September (Additional file 1 Table S6).

Discussion
Latitudinal cline of flowering time in Chinese ragweed 
populations
Multiple studies have shown that Ambrosia artemisiifolia 
has a remarkable capacity for local adaptation, enabling 
it to thrive and reproduce effectively in novel environ-
ments [5, 6, 34, 44]. Flowering time, a pivotal trait, has 
been observed to be negatively correlated with latitude 
of origin in A. artemisiifolia and is thought to play an 
important role in adaptation to the local environment 
[5, 6]. Given the sensitivity of fruit development to frost 
in A. artemisiifolia, only early-flowering plants can pro-
duce viable seeds at high latitudes [44]. In addition, Li 
et al. conducted a reciprocal transplant experiment on 
A. artemisiifolia and revealed that the northern popu-
lation exhibited earlier flowering and greater produc-
tion of female flowers and seeds than their southern 
counterparts did, suggesting local adaptation through 
enhanced female fitness in the northern population [6]. 
Based on the current common garden planting, the MDJ 
and DD populations, which originate from the north-
ernmost regions, presented the earliest onset of flower-
ing, whereas the FK population, from the southernmost 
site, presented the latest flowering time, approximately 
sixty days later than that observed in the northernmost 
populations (Fig.  2). These results confirmed the lati-
tudinal flowering time clines in China (Fig. 2). We have 
investigated the genetic structure of Chinese invasive 
populations based on microsatellite markers and found 

Fig. 5 Heatmap of expression levels of flowering-related genes that exhibited different expression levels among sampling times through DGE analysis 
and among flowering time groups through WGCNA, with blue rectangles indicating low expression and red denoting high expression. The rows and 
columns are not clustered. Each column represents the expression levels of candidate genes in samples from different populations and different times, 
with the names of the samples listed below the image (with letters representing different populations and numbers representing different sampling 
times). Each row represents the expression level of a specific candidate gene. The flowering regulatory pathways in which these genes are involved, are 
labeled on the right
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that each population is comprised of two shared genetic 
clusters (Li et al. unpublished). Therefore, the latitudinal 
cline of flowering time in Chinese populations may result 
from local adaptation to the abiotic conditions rather 
than from genetic origin of the populations.

Candidate genes for the flowering time differentiation
The DGE analysis and WGCNA, based on the transcrip-
tome sequences, identified 53 candidate genes underlying 
the differentiation of flowering time among populations 
(Figs. 4 and 5). Through our DGE analysis, we identified 
41 genes with differing expression across both sampling 
times and flowering time groups (Fig.  4). By combin-
ing DGE analysis among sampling times with WGCNA 
among populations, we found that 18 genes exhibited 
expression differences across both sampling times and 
populations (Fig.  5). Given 6 genes were identified in 
both analyses, a total of 53 genes demonstrated differen-
tial expression across sampling times and flowering time 
groups, indicating their association with flowering time 
differentiation (Figs.  4 and 5). These genes were mainly 
involved in the pathways of photoperiod, tempera-
ture, age, autonomous, sugar, and hormone, integrator 
and floral meristem identity in the flowering regulation 
pathways (Figs. 4 and 5). Notably, some of our candidate 
genes have also been identified to be related to flower-
ing time differentiation in other studies. For instance, FT, 
MAF2, FKF1 and PSEUDO-RESPONSE REGULATOR 
(PRR) were identified to be responsible for flowering time 
adaptation in A. artemisiifolia in the introduced Euro-
pean range [9]. In Lycoris radiata, AP2, AGL, and SQUA-
MOSA PROMOTER BINDING PROTEIN-LIKE (SPL) 
were found to play an important role in the differentia-
tion of flowering time [45]. In Mikania micrantha, SPLs, 
FLK, and FT were identified to be related to flowering dif-
ferentiation at different altitudes [46]. Additionally, FVE, 
PRRs and FT were detected to be critical in the genetic 
regulation of flowering time in Brassica napus [47].

Environmental factors driving flowering time adaptation
Through GO enrichment and annotation with Flowering-
Interactive and PPI protein STRING databases, we found 
that 23 of 53 candidate genes were annotated to the pho-
toperiod pathway, greater than all other pathways (Figs. 4 
and 5), highlighting the significant role of photoperiodic 
factors in the differentiation of flowering time among 
A. artemisiifolia populations in China. The evolution of 
photoperiodic regulation of flowering mainly encom-
passes the diversity of photoperiod response types, varia-
tions in the magnitude of photoperiodic response and 
changes in daylength thresholds [48]. For example, in an 
annual ecotype of Mimulus guttatus, higher elevation 
plants had greater critical photoperiod for flowering to 
ensure that floral initiation awaits the start of the growing 

season [49]. Photoperiodic regulation of phenology traits 
has also been reported in numerous woody species [50, 
51]. Moreover, temperature plays a significant role in 
flowering regulation and plant adaptation [48]. A strong 
effect of warming on first flowering has been reported 
through a meta-analysis of manipulative experiments 
across the globe [52, 53]. In this study, MAF2 is related 
to the temperature pathway and was identified to regu-
late the flowering time in A. artemisiifolia (Fig.  4). In 
addition, genes of age, autonomous, sugar and hormone 
pathways were also identified to be involved in the differ-
entiation of flowering time (Figs. 4 and 5). The overrep-
resentation of photoperiod pathway genes in this study 
suggest that photoperiod was the major cue driving the 
divergence of flowering time, leading to local adapta-
tions in A. artemisiifolia. Controlled experiments could 
be performed to verify this photoperiodic adaptation of 
flowering time. Responses of phenology to photoperiod 
and temperature could be used to predict the potentially 
range expansions of A. artemisiifolia populations, given 
their effects on plant development and flowering [54].

Roles of candidate genes in regulating flowering time
There were 43 of 53 candidate genes exhibiting latitu-
dinal correlated expressions (Table  1), suggesting their 
strong associations with the differentiation of flowering 
time along latitude. There were 7, 9 and 9 genes positively 
correlated with latitude in July, August and September, 
respectively (Table 1). These results suggest their positive 
effects on flowering because plants from higher latitude 
flowered earlier (Fig. 2). Conversely, 13, 15 and 14 genes 
were negatively correlated (Table  1) and may negatively 
affect flowering. Combined with the results of compari-
sons among sampling times (Additional file 1 Table S6), 
we further inferred that FKF1(1), FKF1(2), FT, FUL, 
MAF2, WNK4 and WNK5(2) may positively affect flow-
ering, because these genes were upregulated in the early-
flowering populations from higher latitude and showed 
increased expression after flowering compared to the 
vegetative stage. Similarly, FBH3, FLK, NCL(1), POL2A(1) 
and ZHD4 were inferred to have negative effects on flow-
ering, as they were downregulated in the early-flower-
ing population from higher latitudes and also showed 
reduced expression after flowering compared to the veg-
etative stage (Additional file 1 Table S6). FKF1, WNK4, 
WNK5, FBH3, NCL and ZHD4 have been reported to be 
involved in photoperiod pathway [55–59]. FKF1, WNK 
gene family, and NCL are regulated by circadian rhythms 
and facilitate flowering in Arabidopsis thaliana [56–59]. 
FBH3, as a CONSTANS (CO) transcriptional activator, 
caused early flowering when overexpressed [58]. ZHD4 
increases expression in the meristem adjacent to floral 
primordia after exposure to long days which can induce 
flowering in A. thaliana [60]. MAF2 is associated with 
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the temperature pathway, acting as a floral repressor in A. 
thaliana [61]. FLK and POL2A are involved in the auton-
omous pathway [62, 63]. FLK functions as a repressor of 
FLOWERING LOCUS C (FLC) expression and promotes 
flowering in A. thaliana, whereas POL2A may increase 
the expression of FLC and delay flowering [62, 63]. The 
upstream signals from the photoperiod, vernalization, 
gibberellin, temperature, autonomous, age, and sugar 
pathways act on the integrators FT and SOC1, activating 
downstream genes involved in the initiation of flowering, 
such as APETALA 1 (AP1), CAULIFLOWER (CAL), FUL 
and LEAFY (LFY) [64].

In this study, the roles of NCL(1), FBH3, MAF2, and 
FLK in flowering regulation, as indicated by their expres-
sion patterns, appear to differ from those observed in 
Arabidopsis thaliana. We suspect that the difference in 
the functions of homologous flowering genes may be par-
tially attributed to the difference in day length threshold 
for flowering, because Ambrosia artemisiifolia is a short-
day plant [65] while Arabidopsis thaliana is a long-day 
plant. For example, in the short-day Oryza sativa, Hd1 
follows circadian rhythm, homologous to CO in A. thali-
ana, but regulates the FT ortholog Hd3a in a opposite 
way to the long-day A. thaliana [66]. Furthermore, as 
the samples in this study were collected from July to Sep-
tember, significant changes in genes that function during 
early life stage could not have been detected [13], poten-
tially biasing our conclusions. It has been reported that 
some flowering time regulators, especially the circadian 
rhythms genes, were expressed at a very early stage [36, 
67]. Continuous sampling from the seedling phase to the 
flowering phase would allow us to avoid this problem in 
future studies.

Conclusions
In this research, we confirmed the latitudinal cline in 
flowering time across Chinese populations of invasive 
Ambrosia artemisiifolia and identified 53 candidate genes 
for the flowering time differentiation based on tran-
scriptome sequence. After annotation, photoperiod was 
inferred to be the main environmental factor driving this 
differentiation as 43% (23 out of 53) candidate genes were 
annotated to the photoperiod pathway. Among the can-
didate genes displaying latitudinal correlated expressions, 
7 genes were inferred to promote flowering, whereas 5 
genes likely exert a repressive effect on flowering. Inter-
estingly, 4 genes appear to function differently in A. arte-
misiifolia compared to their well-characterized roles in 
Arabidopsis thaliana, indicating diversity in regulating 
flowering time across plant taxa. Our findings revealed 
the molecular mechanisms of flowering time differentia-
tion in A. artemisiifolia, providing insights into its local 
adaptation to invasive environments and range expan-
sions in China.
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