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Abstract
Boreal forests, which account for one-third of the world’s forested areas, play a crucial 
role in global climate regulation and provide significant ecological, economic, and cultural 
benefits. However, boreal ecosystems face substantial threats from climate change, lead-
ing to increased disturbances such as wildfires, insect outbreaks, and disease. In response, 
reforestation emerges as a vital strategy for maintaining and restoring forest cover. In this 
perspective paper, we summarize some recent research on plantation establishment in 
boreal ecosystems of eastern North America and Scandinavia, emphasizing the effective-
ness of mechanical site preparation (MSP), species-specific responses, and soil nutrient 
dynamics. We suggest key areas for future research, including the long-term sustainabil-
ity of MSP, the development of adaptive strategies to climate variability, species-specific 
optimization of planting techniques, and integration of technological advances. Addressing 
these research needs will support the development of adaptive silviculture practices that 
enhance boreal stands resilience and productivity, helping to meet reforestation objectives 
and mitigate the impacts of climate change. We aim to stimulate regional, national, and 
international research initiatives, contributing to the resilience and sustainability of boreal 
ecosystems.
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Introduction

Boreal forests account for approximately one-third of the world’s forests. They are crucial 
for global climate regulation through their role in energy, water and gas exchange. Boreal 
forests are significant carbon reservoirs: estimates suggest that the total carbon reserve 
in the circumboreal zone ranges from 272 to 1715 billion tons (Bradshaw and Warkentin 
2015; Pan et al. 2011). Beyond their ecological value, boreal forests have substantial eco-
nomic significance, providing timber and pulp resources, biomass for bioenergy, and sup-
porting recreational and ecotourism activities (Börjesson et al. 2017; Gauthier et al. 2015; 
Paré et al. 2016). Communities rely on them for fishing, hunting, gathering, recreation, and 
economic activities (Burton et al. 2010). In addition, they are central to the cultural, spir-
itual and medicinal traditions of many Indigenous communities (Bélisle and Asselin 2021). 
Finally, boreal forests support a wide range of plant and animal species, contributing to 
global biodiversity and offering wildlife habitats (Martin et al. 2023).

Global change poses a threat to boreal forests, with its impacts expected to be more pro-
nounced in these regions than elsewhere (Gauthier et al. 2015; Wotherspoon et al. 2024). 
Projected changes in temperature and moisture may have an overall beneficial but lim-
ited effect on forest regrowth rates (Danneyrolles et al. 2023; Wang et al. 2023), but these 
effects might be transitory (D’Orangeville et al. 2018). Moreover, there is a substantial risk 
of permanent loss of boreal forest cover as climate change affects the survival, establish-
ment, and growth of boreal tree species. Regeneration failures are likely to become more 
frequent following natural disturbances such as wildfires (Boucher et al. 2020), whose risks 
are exacerbated by climate change (Ellis et al. 2022). For instance, in Québec, eastern Can-
ada, the 2023 wildfire season set records due to extreme warm and dry conditions, burning 
4.5 million ha; this level of wildfire activity significantly affects forest productivity, tim-
ber supply, and the socio-economic stability of forest-dependent communities (Boulanger 
et  al. 2024). Drought and heat are key drivers of increased forest mortality (Senf et  al. 
2020) and substantial reductions in forest growth and carbon sequestration (Laudon et al. 
2024). Moreover, wind storms, insect outbreaks and disease risks are increasing with ris-
ing temperatures, further threatening forest stability and regeneration (Blennow et al. 2010; 
D’Orangeville et al. 2023; Gardiner et al. 2013; Hlásny et al. 2021; Venäläinen et al. 2020). 
The cumulative impacts of these factors (Fig. 1), combined with widespread interactions 
between agents are likely to amplify disturbances (Seidl et al. 2017), and lead to shifts in 
boreal forest ecosystems towards new, potentially less desirable states.

In response to these challenges, reforestation is emerging as a key strategy to maintain 
or restore forest cover following both natural and anthropogenic disturbances (Cyr et  al. 
2022). It is also a crucial tool for adapting forests to climate change, particularly through 
breeding, selection and assisted migration of tree species (Bolte et al. 2009; Keskitalo et al. 
2016; Palik et al. 2022). While it is not beneficial in all contexts (Kirschbaum et al. 2023), 
tree planting is widely regarded as a natural climate solution to mitigate the impacts of cli-
mate change (Bastin et al. 2019; Drever et al. 2021). Some countries within the circumbo-
real region have committed to large-scale tree planting initiatives, such as Canada’s 2 Bil-
lion Trees program, or the EU’s biodiversity strategy for 2030 that includes the planting of 
3 billion trees. These initiatives, for instance, aim to capture carbon, enhance biodiversity, 
improve forests and societies’ resilience to climate change, support human well-being, and 
reduce the risk of wildland fires and floods to communities.

However, economic incentives and a greater focus on the boreal biome in international 
forums are needed to support these adaptation and mitigation actions (Gauthier et al. 2015). 
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Indeed, the establishment of planted seedlings in boreal environments faces significant 
challenges (Grossnickle 2000). Factors such as relatively poor soils, short growing seasons, 
temperature extremes, insect damage, and competition from early successional species can 
limit seedling survival and early growth (Luoranen et  al. 2023). These challenges, cou-
pled with planted species fitness and resilience to climate change (Robert et al. 2024), can 
undermine the capacity of tree planting programs to achieve their objectives. The establish-
ment of plantations in boreal ecosystems has been a significant research topic in recent 
decades, especially in North America and Scandinavia. However, global change brings 
new complexities to this field. Increased public scrutiny of forestry operations, the need for 
reconciliation with Indigenous Peoples, and the rising risk of invasions by non-native plant 
and insect species due to warmer climates are all factors that must be considered.

Boreal forests are characterized by harsh climatic conditions and unique ecological 
dynamics. They present both challenges and opportunities for sustainable plantation prac-
tices. Recent studies have provided valuable insights into various aspects of plantation 
establishment, including mechanical site preparation (MSP), species-specific responses, 
soil nutrient dynamics, and the impact of climate variability. Our objectives in this per-
spective paper are to summarize some of the recent research on plantation establishment 

Long-term sustainability
of mechanical site preparation

Remote sensing technologies
and AI in reforestation

Adaptive silvicultural
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Facilitative and competitive
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Species-specific responses and
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Fig. 1  Five components of research that address the four predominant stressors to boreal forests due to cli-
mate change in order to ensure successful regeneration
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in boreal ecosystems of eastern North America and Scandinavia, and to identify key areas 
for future research initiatives. We did not intend to conduct a systematic literature review. 
Instead, based on our experience, we aimed to highlight key recent developments and 
research needs in the field, to stimulate regional, national, and international research efforts 
in boreal reforestation and restoration. By doing so, we hope to support the development of 
adaptive silviculture practices to climate change and help meet the reforestation objectives 
of northern countries.

Plantation establishment in boreal ecosystems: recent research 
and future directions

One of the primary focus areas in recent research has been the effects of MSP on soil 
health and tree growth. Several studies have highlighted that MSP in boreal ecosystems 
offers short-and mid-term benefits by creating suitable planting microsites and reducing 
competition by shrub species. For example, there are sustained growth benefits to planted 
conifers many years post-MSP (Wotherspoon et al. 2020), yet there is a potential for these 
effects to diminish over time due to changing competitive dynamics with the shrub layer 
(Reicis et al. 2023). Boreal forest soil biotic communities are also affected by site prepara-
tion (Peck et al. 2016; Smenderovac et al. 2023), which can impact both tree growth and 
soil C stocks. There is a need for better understanding of carbon stock changes due to MSP 
(Dufour et al. 2024; Mäkipää et al. 2023; Mjöfors et al. 2017), which can vary significantly 
based on climatic and microsite conditions. While short (Nilsson et al. 2019), mid- (Uotila 
et  al. 2022) and longer term (Hjelm et  al. 2019) studies have reported positive growth 
responses of planted species to MSP, there is a need for long-term studies to understand 
the persistence of these effects on nutrient availability and soil health (Ring and Sikström 
2024). Recent results further highlight the importance of nutrient management and soil 
health in optimizing plantation outcomes (Nilsson et  al. 2024). There is, overall, a need 
to investigate the long-term sustainability of MSP by assessing its effects on soil nutri-
ent dynamics, microbial community dynamics, and forest productivity over several decades 
(Sutinen et al. 2010, 2019). This research should include comprehensive longitudinal stud-
ies that monitor changes in soil properties and nutrient profiles to ensure the benefits of 
MSP are maintained without compromising ecosystem health.

Research has highlighted the impact of climate variability on MSP outcomes. Climate 
conditions, such as cooler and wetter regimes, significantly influence the effectiveness of 
MSP (Henneb et al. 2020). Studies on this topic have underlined the importance of under-
standing how different climatic conditions affect the long-term success of MSP treatments 
and tree growth (Sikström et al. 2020), particularly under the anticipated effects of climate 
change. Given the projected shifts in climate patterns, it is crucial to develop adaptive silvi-
culture strategies that can maintain their efficacy across diverse climatic scenarios (Achim 
et  al. 2022). MSP has shown the potential to increase water use efficiency in some spe-
cies (Wotherspoon et al. 2020), but more research is required to identify resilient species 
and genotypes, and develop strategies to mitigate the impacts of biotic and abiotic stress-
ors. Research should focus on enhancing seedling growth and survival under various stress 
conditions, investigating genetic and physiological responses of tree species to climate and 
different silvicultural practices (Robert et al. 2024), and aiming to identify best practices 
for different species and site conditions to enhance resilience and productivity through 
genetic adaptation and phenotypic plasticity.
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Forest assisted migration is a central component of many adaptive silviculture strate-
gies (e.g., Nagel et al. 2017). This approach involves relocating tree species or genotypes 
from their native climates to areas projected to have similar conditions in the future, with 
the aim of preserving and sustaining stand function, productivity, and overall ecosystem 
health (Pedlar et al. 2012). When implemented effectively, assisted migration of tree spe-
cies is considered a sine qua non for preserving the forest carbon sink under climate change 
(Chakraborty et al. 2024; Pedlar 2024). In Canada and other regions, the movement of seed 
sources within existing species’ range limits is already being implemented for a few com-
mercial species, guided by climatic matching of seedlots (McKenney et al. 1999; St.Clair 
et  al. 2022). Large-scale silviculture experiments are being established to examine the 
interactions between silvicultural systems and forest assisted migration (e.g., Royo et  al. 
2023; Thiffault et  al. 2024). While short-term results related to regeneration growth and 
survival are expected soon, mid- and long-term findings from these studies will be essen-
tial for informing deployment practices and shaping policy.

Species-specific responses to MSP and planting techniques have also been a subject 
of extensive research. Most research on MSP and plant performance has been conducted 
using few conifer tree species (Löf et al. 2012). Tree species exhibit varied responses to 
MSP (Nordin et al. 2023; Thiffault et al. 2010), illustrating that one-size-fits-all approaches 
are not optimal. This variability requires further research to optimize MSP and planting 
techniques tailored to specific species to maximize growth and survival rates. Additionally, 
there is a need to further explore the interactions between MSP and other silvicultural treat-
ments such as fertilization (Thiffault and Jobidon 2006) and stock types (Johansson et al. 
2007; Thiffault et al. 2012); research efforts should address silvicultural strategies that con-
sider these complex interactions to enhance reforestation success, such as those between 
planting position, seedling size, and organic fertilizers (Häggström et al. 2021, 2024). This 
includes understanding how different species respond to reforestation practices under a 
range of environmental conditions to maximize growth and survival rates (Luoranen et al. 
2023, 2024), as well as further our understanding of the interactions between drought, 
insect damages, and protection measures (Domevscik et al. 2024; Wallertz et al. 2024).

The role of facilitation and competition interactions in seedling establishment also 
requires further investigation. For instance, some species like alder (Alnus spp.) can play 
a dual role in forest renewal, as they can both facilitate and compete with target tree spe-
cies (Urli et al. 2020). Climate shifts will lead to changes in understory plant communities 
(Chalumeau et al. 2024; Villén‐Peréz et al. 2020), potentially introducing new facilitative 
and competitive interactions for boreal tree species. With warmer conditions, neighbor-
ing vegetation is expected to develop more rapidly, increasing competition with seedlings. 
This stresses the need for ongoing research to adapt vegetation management strategies, 
including potentially intensifying or increasing the frequency of mechanical site prepara-
tion (MSP) and other control methods, to ensure successful forest regeneration (Thiffault 
2021). Understanding the interactions between silviculture and potential nurse species 
(Thiffault and Hébert 2017), as well as between planted species (Roy Proulx et al. 2024a) 
is vital for developing management practices that balance these effects while taking advan-
tage of mixed plantations (Löf et al. 2014). There is an overall need to investigate the roles 
of different species in mixed stands, focusing on their facilitative and competitive inter-
actions (e.g., Roy Proulx et al. 2024b), to promote the best species mixtures in terms of 
survival and growth when establishing plantations (Aldea et al. 2024). Moreover, we note 
the need to pursue research efforts on the restoration of mixed stands from pure planta-
tions (Löf et al. 2023), to favor more diverse and resilient forest types in the face of global 
change. While the restoration of mixed stands is a priority, the low number of tree species 
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traditionally used in boreal forestry, such as in Scandinavia and Canada, presents chal-
lenges. These constraints necessitate region-specific research approaches to identify suit-
able species combinations and management practices that promote diversity and resilience.

Remote sensing technologies significantly influence forest management and silviculture 
by enabling the observation and mapping of forest stand composition, understory vegeta-
tion, and soil properties using ground-based, aerial, and satellite platforms (Almeida et al. 
2019; White et al. 2021). Advancements in drone system imagery and computer vision, for 
example, now facilitate the automatic identification and counting of planting microsites, 
making reforestation efforts more precise and efficient (Bouachir et al. 2019; Genest et al. 
2024). Drone-based photogrammetry, leveraging advanced imaging and automated single 
stem detection algorithms, has demonstrated promising potential for assessing regeneration 
performance by evaluating stocking, spatial density, and height distribution of both natu-
rally regenerating and planted conifer stands (e.g., Vepakomma et al. 2015). Further work 
is needed, however, to improve vegetation differentiation and classification (Goodbody 
et al. 2017) and enabling use in different stand conditions.

Integration of artificial intelligence (AI) with remote sensing tools also holds great 
potential to enhance reforestation and forest management efforts (Buchelt et al. 2024). AI-
powered drones equipped with advanced imaging technologies can perform tasks such as 
species identification, canopy height monitoring, and health assessments at unprecedented 
scales and resolutions. Models are being developed to improve transparency and trust, ena-
bling drones to perform real-time monitoring of reforestation success and even automate 
corrective actions. Drone systems are also being tested for seed-dispensing operations, 
combining AI with mission-planning algorithms to autonomously scout and depose seed in 
optimal locations, particularly in challenging terrains (Siedler 2022).

Multi-sensor drone platforms are changing forest inventory and monitoring, but more 
work is needed to fully integrate these tools into silvicultural prescriptions (Goodbody 
et al. 2024). These technological innovations collectively have the potential to improve the 
efficiency and accuracy of forest management while reducing risks and costs associated 
with traditional field surveys, supporting the rapid scale-up of mechanized reforestation 
activities (Ersson et al. 2022; Li et al. 2024; Manner and Ersson 2021; Ramantswana et al. 
2020). In that regard, advancements in mechanized planting systems are being pioneered, 
where automation efforts aim to develop autonomous machines capable of site preparation 
and tree planting with high precision and low environmental impact (Hansson et al. 2024). 
Research into mechanized planting highlights the potential to increase the efficiency and 
quality of tree establishment while addressing challenges like labor shortages and cost effi-
ciency (Ersson et al. 2018).

Conclusion

Boreal forests are of critical ecological, economic, and cultural importance. As climate 
change intensifies, the challenges to maintaining and restoring boreal forests will increase. 
With this perspective paper, we aim to contribute to this ongoing effort by highlighting 
recent research and proposing research needs for the field (Table 1). The establishment of 
plantations in boreal ecosystems requires an understanding of various ecological, climatic, 
and operational factors, including site preparation methods, planting material, and monitor-
ing of reforestation success, all of which are integral to forest management and silviculture 
treatments (Fig. 1). Recent research has provided valuable insights into these aspects, yet 
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significant gaps remain. Long-term studies on the sustainability of MSP benefits, the devel-
opment of adaptive strategies to climate variability, species-specific optimization of plant-
ing techniques, and the full integration of recent technological advances into silvicultural 
practices are essential for advancing boreal reforestation efforts. Although not explored 
in this perspective paper, integrating Indigenous Knowledge into forest renewal research 
is essential for enhancing the sustainability and resilience of boreal forests. Indigenous 
perspectives provide invaluable insights into environmental changes and forest manage-
ment practices, drawn from generations of close connection with the forest (Bélisle et al. 
2022). Traditional knowledge is particularly valuable in contexts where field experiments 
require extended periods to yield results, offering complementary insights that can accel-
erate understanding and decision-making (Di Sacco et  al. 2021; Wangpakapattanawong 
et  al. 2010). However, examples of collaborative forestry research that effectively inte-
grate Indigenous and scientific knowledge systems remain limited (Palaschuk and Bullock 
2019). By addressing the identified research needs, we hope to stimulate regional, national, 
and international research efforts in boreal reforestation and restoration. This should sup-
port the development of adaptive silviculture practices to climate change and help meet the 
reforestation objectives of northern countries.
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