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ABSTRACT
The spotted- wing drosophila, Drosophila suzukii and the cosmopolitan vinegar fly D. melanogaster feed on soft fruit and berries 
and widely overlap in geographic range. The presence of D. melanogaster reduces egg- laying in D. suzukii, possibly because 
D. melanogaster outcompetes D. suzukii larvae feeding in the same fruit substrate. Flies use pheromones to communicate for 
mating, but pheromones also serve a role in reproductive isolation between related species. We asked whether a D. melanogaster 
pheromone also modulates oviposition behaviour in D. suzukii. A dual- choice oviposition assay confirms that D. suzukii lays 
fewer eggs on blueberries exposed to D. melanogaster flies and further shows that female flies have a stronger effect than male 
flies. This was corroborated by treating berries with synthetic pheromones. Avoidance of D. suzukii oviposition is mediated by 
the female D. melanogaster pheromone (Z)- 4- undecenal (Z4- 11Al). Significantly fewer eggs were laid on berries treated with 
synthetic Z4- 11Al. In comparison, the male pheromone (Z)- 11- octadecenyl acetate (cVA) had no effect on D. suzukii oviposition. 
Z4- 11Al is a highly volatile compound that is perceived via olfaction and it is accordingly behaviourally active at a distance from 
the source. D. suzukii is known to engage in mutual niche construction with the yeast Hanseniaspora uvarum, which strongly 
attracts flies. Adding Z4- 11Al to fermenting H. uvarum significantly decreased D. suzukii flight attraction in a laboratory wind 
tunnel and a field trapping assay. That a D. melanogaster pheromone regulates oviposition in D. suzukii demonstrates that heter-
ospecific pheromone communication contributes to reproductive isolation and resource partitioning in cognate species. Stimulo- 
deterrent diversion or push- pull methods, building on combined use of attractant and deterrent compounds, have shown promise 
for control of D. suzukii. A pheromone that specifically reduces D. suzukii attraction and oviposition adds to the toolbox for D. 
suzukii integrated management.
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1   |   Introduction

Sex pheromones serve, first of all, mate communication, but 
may also regulate heterospecific interactions. Sex signals 
that enhance mate finding and diminish, in addition, hy-
brid matings between cognate species are under combined 
sexual and natural selection (Blows  2002; Ritchie  2007). A 
heterospecific role of pheromones has been shown in moths 
where sex pheromones have been studied comprehensively 
(Roelofs and Brown  1982; Witzgall et  al.  1996; Baker  2008; 
El- Sayed  2023; Fouchier et  al.  2023), and also in Drosophila 
(Higgie, Chenoweth, and Blows 2000; Higgie and Blows 2007, 
2008; Khallaf et al. 2020). A change in the composition of cu-
ticular hydrocarbon blends involved in mate finding, in re-
sponse to sympatric populations of another species, has been 
demonstrated in the sibling species D. birchii and D. serrata. 
Reinforcement of mate recognition in zones of overlap gen-
erates this reproductive character displacement, leading to 
reproductive isolation (Higgie, Chenoweth, and Blows  2000; 
Higgie and Blows 2007).

Associated with the human global expansion, D. melano-
gaster is a cosmopolitan commensal (Arguello, Laurent, and 
Clark 2019; Sprengelmeyer et al. 2020). Aided by the importa-
tion of fresh berries, the spotted- wing drosophila, D. suzukii 
has spread all over within 15 years and has become econom-
ically most important, since it oviposits on ripe and unripe 
berries (Walsh et al. 2011; Cini et al. 2014; Asplen et al. 2015; 
Kwadha et al. 2021).

Invaders face competition from established species sharing 
the same resources. Although D. suzukii oviposits on fruit and 
berries during earlier phenological stages than D. melanogas-
ter (Atallah et  al.  2014; Keesey, Knaden, and Hansson  2015; 
Ramasamy et al. 2016), larvae co- occur and interact in food sub-
strates, where D. melanogaster outcompetes D. suzukii (Dancau 
et  al.  2017; Shaw et  al.  2018; Rombaut et  al.  2023). This leads 
to the question of whether D. suzukii can avoid contact with D. 
melanogaster.

D. suzukii is attracted to (Hamby et al. 2012; Mori et al. 2017; 
Jones et  al.  2022; Kleman et  al.  2022) and engages in niche 
construction with the fruit- associated yeast H. uvarum, 
which protects larval substrates against fungal infestations 
(Chakraborty et al. 2022). Low ethanol production, compared 
with other yeasts, matches the low ethanol tolerance of D. su-
zukii larvae (Stamps et al. 2012; Buser et al. 2014; Chakraborty 
et  al.  2022). Avoidance of microbiota associated with other 
species is a possible mechanism to evade competition between 
fruit- feeding drosophilds (Rombaut et al. 2023). However, D. 
suzukii feeds on many fruits and berries, in a wide range of 
habitats (Bühlmann and Gossner 2022; Olazcuaga et al. 2022; 
Guay et al. 2023), which entails a wide variation in the com-
position of associated microbiota (Jones et  al.  2022; Koerte 
et al. 2020).

Insect- produced compounds, in comparison, are more specific 
and reliable mediators of interaction between competing spe-
cies, since they are independent of the food substrate. And, there 
is indeed growing evidence that chemical cues from different life 
stages of D. melanogaster deter oviposition in D. suzukii (Dancau 

et al. 2017; Shaw et al. 2018; Snellings et al. 2018; Kidera and 
Takahashi 2020; Kienzle and Rohlfs 2021; Tungadi et al. 2022, 
2023; Rombaut et al. 2023).

If pheromones play a heterospecific role, the ensuing question 
is whether male or female pheromones of D. melanogaster mod-
ulate oviposition behaviour in D. suzukii. The male D. melan-
ogaster pheromone (Z)- 11- octadecenyl acetate (cVA) is not a 
species- specific signal, since it is shared by many drosophilid 
flies (Bartelt, Schaner, and Jackson 1985; Schaner, Bartelt, and 
Jackson 1987; Schaner et al. 1989; Hedlund et al. 1996; Khallaf 
et  al.  2021). While cVA modulates mating in D. melanogas-
ter (Ejima et  al.  2007; Kurtovic, Widmer, and Dickson  2007; 
Lebreton et al. 2014) and inhibits mating in D. suzukii (Dekker 
et al. 2015), there is no indication that it would deter oviposition 
in female flies.

D. melanogaster females, on the other hand, produce a cuticu-
lar hydrocarbon (Z,Z)- 7,11- heptacosadiene (7,11- HD), that is 
perceived via contact chemoreceptors at close range to enhance 
courtship in conspecific males and to inhibit courtship in males 
of the sibling species D. simulans (Billeter et  al.  2009; Billeter 
and Wolfner 2018; Kohl, Huoviala, and Jefferis 2015; Auer and 
Benton  2016). Apart from D. melanogaster, 7,11- HD has only 
been found in two island- endemic Drosophila and in trace 
amounts in the cosmopolitan species D. virilis, among other di-
enic cuticular hydrocarbons (Jackson and Bartelt 1986; Khallaf 
et al. 2021).

It is probably difficult to test 7,11- HD in isolation, since au-
toxidation continuously affords aldehydes, including (Z)- 
4- undecenal (Z4- 11Al), which is a strong attractant for 
conspecific D. melanogaster males and females, and has an 
antagonistic effect on the attraction of D. simulans (Lebreton 
et al. 2017). Both 7,11- HD and Z4- 11Al enhance courtship in 
D. melanogaster males (Billeter et al. 2009; Borrero- Echeverry 
et al. 2022), but only Z4- 11Al is active over a distance, since 
it is highly volatile and perceived via an olfactory receptor, 
DmelOr69aB. Traces of Z4- 11Al left by females on surround-
ing substrates, or even on males during mating, become a 
public message that is perceptible even by the human nose 
(Lebreton et al. 2017; Frey et al. 2022).

We therefore asked whether the D. melanogaster female sex 
pheromone Z4- 11Al mediates heterospecific interactions with 
D. suzukii. We show that Z4- 11Al has an antagonistic be-
havioural effect on D. suzukii, both at a distance and at close 
range. Z4- 11Al impaired female flight attraction to the yeast H. 
uvarum, in a wind tunnel and field trapping assay and reduced 
oviposition on blueberries.

2   |   Materials and Methods

2.1   |   Insects

D. melanogaster, Dalby strain (Sweden) (Lebreton et al. 2012) 
and an Italian strain of D. suzukii (Revadi et  al.  2015) were 
maintained on a standard sugar syrup- yeast- cornmeal me-
dium at 25°C ± 2°C, RH 50% ± 5%, and a photoperiod of 12:12 
(L:D). Emerging flies were collected 3–6 h post- eclosion. 
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Flies were immobilized with CO2 during 2–4 min and sexed 
under a microscope. Males and females were kept separately: 
2–4- days- old D. melanogaster and 4–6- days- old D. suzukii 
flies were used for experiments. D. suzukii were mated 2–4 h 
after onset of the photophase, and single mating pairs were 
transferred to clean vials. Mated females were kept 1–2 h in 
the vial before testing (Pitnick, Markow, and Spicer  1995; 
Revadi et al. 2015).

2.2   |   Chemicals

(Z)- 4- undecenal (Z4- 11Al) was synthesized (Lebreton 
et al. 2017): chemical and isomeric purity were > 99% and 98.6%, 
respectively. (Z)- 11- octadecenyl acetate (Z11- 18Ac; cVA) was 
purchased from PheroBank (Wijk bij Duurstede, Netherlands): 
(E)- 2- undecenal (E2- 11Al) was a gift from E. A. Wallin 
(Sundsvall, Sweden): chemical and isomeric purity were > 99%, 
respectively. Synthetic compounds were diluted in ethanol.

2.3   |   Dual Choice Oviposition Assays

Ripe blueberries (Vaccinium corymbosum L.), were obtained 
from a local grocery shop. Berries were rinsed with distilled 
water before use. Only berries with blue- coloured pulp were 
used (Little, Chapman, and Hillier 2018).

In the first assay, two berries of similar weight (±0.1 g) were 
placed in a Petri dish (Ø 115 × 65 mm; VWR). To assess if ex-
posure to D. melanogaster induces oviposition avoidance in D. 
suzukii, blueberries were pre- exposed to three or 10 mated D. 
melanogaster males (n = 24 and 21, respectively) or unmated 
females (n = 20 and 23, respectively) in polystyrene Drosophila 
vials (Ø 25 × 95 mm; Fisher Scientific) during 2 h. Berries kept 
in vials without D. melanogaster were used as a control. A sin-
gle gravid female D. suzukii was then added into each Petri dish 
and eggs laid into the two blueberries were counted after 24 h. 
An oviposition index (OI) was calculated, the quotient of the 
differential and the sum of eggs, laid on treatment and control 
berries (OI = eggs control—eggs treatment/eggs control + eggs 
treatment).

Similarly, for establishing whether aversion is induced by D. 
melanogaster pheromone, we tested pairs of berries treated with 
either 5 ng Z4- 11Al or 5 μL ethanol (n = 34), and berries with 
5 ng cVA or 5 μL ethanol (n = 49). For comparison, headspace 
collections of D. melanogaster females contained ca. 3 ng Z4- 
11Al per female (Lebreton et al. 2017). A control assay compared 
untreated berries with berries treated with 5 μL ethanol. A sub-
sequent dose–response test included berries treated with 5 μL 
ethanol and either 0.5 ng (n = 36), 5 ng (n = 34) or 50 ng (n = 39) 
Z4- 11Al. Additional control experiments were done with 5 μL 
ethanol vs. 5 μL ethanol or untreated berries, respectively, and 
with 5 ng Z4- 11Al vs. 5 ng of the positional isomer E2- 11Al 
(n = 34).

We used a second dual choice oviposition assay to establish if 
aversion to Z4- 11Al is olfactory. Five mated D. suzukii females 
were introduced in a BugDorm cage (30 × 30 × 30 cm; Megaview, 
Taiwan), where one berry was placed on top of each two 30- mL 

polypropylene cups (Nolato Cerbo AB, Trollhätan, Sweden). 
The cup lids were made of a fine fabric net that allowed emission 
of volatiles from inside the cup while restricting flies from enter-
ing the cups. Berries were either exposed to volatiles of Z4- 11Al 
(100 ng) or the solvent ethanol (100 μL) dispensed from 1.5- mL 
microcentrifuge tubes held in upright position inside the cups. 
After 7 h, flies were removed, and eggs laid on each berry were 
counted to determine the OI (n = 25 cages).

2.4   |   Hanseniaspora uvarum Culture

The yeast Hanseniaspora uvarum is often found in association 
with D. suzukii (Hamby et  al.  2012; Chakraborty et  al.  2022). 
Following Kleman et  al.  (2022), colonies of H. uvarum grown 
on potato dextrose agar (PDA; Difco) (39 g/L) were used to es-
tablish liquid pre- cultures in potato dextrose broth (PDB; Difco) 
(24 g/L). An aliquot of 3 mL from 1- day- old preculture was in-
oculated in 50 mL PDB in 100- mL fermentation flasks (Duran- 
Group, Mainz, Germany). Both pre- cultures and cultures were 
maintained in a shaking incubator at 25°C and 260 rotations/
min for 24 h.

2.5   |   Wind Tunnel Assay

A glass wind tunnel with a 100 × 30 × 30 flight section (Becher 
et al. 2010) was used to test the effect of Z4- 11Al on upwind flight 
attraction to H. uvarum yeast volatiles. Mated 4–6- days- old D. 
suzukii females that had been starved for 6 h were flown indi-
vidually to fermenting H. uvarum headspace, alone or blended 
with Z4- 11Al (n = 73/stimulus). Charcoal- filtered air (0.4 L/
min) was blown through a wash bottle containing 30 mL of a 
H. uvarum culture that had been inoculated 20–24 h before test-
ing. The outlet was a teflon tube (Ø 0.5 cm) placed at the up-
wind end of the tunnel. A piezo sprayer (El- Sayed, Gódde, and 
Arn 1999) delivered ethanol at a rate of 10 μL/min (control), or 
synthetic Z4- 11Al at 10 ng/min, dissolved in 10 μL/min ethanol, 
into the yeast plume. The outlet from the wash bottle and the 
sprayer were placed side- by- side to merge plumes in the centre 
of a glass cylinder (12 cm Ø × 10 cm), aligned with wind direc-
tion. The downwind end of the glass cylinder was covered by 
a metal mesh (pore size 2 × 2 mm): females flying upwind and 
approaching this metal mesh (< 5 cm) were scored. Air blown 
by a horizontal fan into the wind tunnel was filtered with active 
charcoal elements. Glassware and metal mesh were decontami-
nated in an oven during 8 h at 350°C.

2.6   |   Field Trapping

For field trapping, red Drososan traps (Koppert Biological 
Systems) were baited with H. uvarum in liquid medium (PDB) 
and synthetic Z4- 11Al was released from an open 1.2- mL 
glass vial, held with a wire above the yeast bait, inside the trap 
(Kleman et al. 2022). The four treatments comprised 30 mL liq-
uid PDB medium and 1 mL ethanol (control); 30 mL PDB and 
960 ng Z4- 11 Al in 1 mL ethanol; H. uvarum in 30 mL PDB and 
1 mL ethanol; H. uvarum in 30 mL PDB and 960 ng Z4- 11 Al in 
1 mL ethanol. Traps were placed in a quadrangular arrangement 
with 5 m distance between the traps at three sites in Montevideo, 
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Uruguay (n = 5/site). After 2 days, traps were collected and the 
captured drosophilid flies were identified.

2.7   |   Statistical Analysis

All analyses were calculated with R software (R Core 
Team  2021), at α = 0.05. The R package ‘lme4’ (Bates 
et  al.  2015) was used for generalized linear mixed models 
(GLMM). To test normality of residuals from GLMMs, we 
used a Shapiro–Wilk test. The number of eggs laid was anal-
ysed by a GLMM fitted with a binomial distribution. We con-
sidered pre- exposure and treatment with synthetic chemicals 
as a fixed effect, while fly (replicates) and day were considered 
random effects. The flight assay was analysed by GLMM fitted 
with a binomial distribution, with stimulus and day consid-
ered as fixed and random effects, respectively. Field captures 
were analysed by a GLMM fitted with a Poisson distribution 
followed by Tukey's contrast pairwise comparison between 
the different treatments (R package ‘multcomp’; Hothorn, 
Bretz, and Westfall 2008).

3   |   Results

3.1   |   D. suzukii Lays Fewer Eggs on Blueberries 
Exposed to D. melanogaster Flies

In a first dual choice oviposition assay, D. suzukii females laid 
fewer eggs on berries that had been exposed to 10 mated D. mela-
nogaster males or females, compared with untreated control 
berries (Figure 1a; n = 21, Z = 4.65, p < 0.001; Figure 1b, n = 23, 
Z = 4.9, p < 0.001). Exposure to 3 flies did not have a significant 
effect (Figure  1a,b). A direct comparison between berries ex-
posed to 10 males and 10 females, showed that berry exposure 
to D. melanogaster mated females had a stronger effect on D. 
suzukii oviposition avoidance than exposure to D. melanogaster 
mated males (Figure 1c; n = 23, Z = −4.75, p = 0.002).

3.2   |   Female D. melanogaster Pheromone Z4- 11Al 
Induces Oviposition Avoidance in D. suzukii

We next asked whether contamination of berries with D. mela-
nogaster male or female pheromones caused a reduction in D. 
suzukii egg- laying.

D. melanogaster males transfer cVA to females during mating, 
which reduces the response of males to freshly mated females 
(Billeter and Wolfner  2018). D. suzukii, unlike many other 
drosophilid species, does not produce the male aphrodisiac 
pheromone cVA, but D. suzukii females carry a dedicated ol-
factory receptor, and they perceive and respond to cVA (Dekker 
et al. 2015). Likewise, D. melanogaster females transfer Z4- 11Al 
to mating males (Frey et al. 2022) and D. suzukii expresses an 
ortholog of the receptor tuned to Z4- 11Al in D. melanogaster 
(Lebreton et al. 2017; Walker et al. 2023).

Accordingly, the antagonistic effect of D. melanogaster mated 
males and females on D. suzukii oviposition (Figure 1a,b) could 
have been due to either male or female pheromone. Treating 

berries with synthetic pheromones confirms the result of a di-
rect comparison of berries exposed to D. melanogaster males and 
females (Figure 1c). Synthetic male pheromone cVA did not af-
fect D. suzukii egg- laying at all (Figure 1d), whereas 5 and 50 ng 
of the female pheromone Z4- 11Al induced significant oviposi-
tion avoidance (Figure  1e; n = 34, Z = −2.38, p = 0.001; n = 39, 
Z = −4.05, p = 0.005).

Berries treated with 5 ng of another unsaturated aldehyde, (E)- 
2- undecenal (E2- 11Al) were strongly preferred for oviposition in 
a choice test with 5 ng of Z4- 11Al. Ethanol, used as solvent for 
synthetic compounds, had no effect on oviposition (Figure  1f; 
n = 34, Z = 3.32, p = 0.001).

Finally, another dual choice assay was done to establish whether 
aversion to Z4- 11Al is olfactory. Berries were placed on netted 
cups, emanating Z4- 11Al diluted in ethanol (100 ng Z4- 11Al 
per cup) or ethanol alone. Significantly more eggs were laid on 
berries exposed to ethanol alone (oviposition index 0.19 ± 0.1; 
n = 25, Z = 2.05, p = 0.04).

3.3   |   Attraction of D. suzukii to the Yeast H. 
uvarum Yeast is Reduced by Z4- 11Al

D. suzukii is strongly attracted to the odour of fermenting 
H. uvarum yeast (Kleman et  al.  2022; Spitaler et  al.  2022; 
Rehermann et  al.  2022). Releasing Z4- 11Al at a rate of 10 ng/
min, into a plume of H. uvarum headspace in a wind tunnel, sig-
nificantly reduced the attraction of D. suzukii (Figure 2a; n = 73, 
Z = −2.08, p = 0.03).

This was confirmed in a field trapping assay, where addition of 
Z4- 11Al to a H. uvarum bait significantly reduced trap captures 
of both D. suzukii and D. simulans (Figure 2b; n = 5, p = 0.02). 
Notably, Z4- 11Al did not have an effect on D. melanogaster at-
traction (Figure 2b).

4   |   Discussion

We confirm observations that egg- laying in spotted wing 
Drosophila D. suzukii is reduced in the presence of a cog-
nate species, D. melanogaster (Shaw et  al.  2018; Kidera and 
Takahashi 2020; Kienzle and Rohlfs 2021; Tungadi et al. 2022, 
2023; Rombaut et al. 2023) and show that this oviposition avoid-
ance is mediated by the D. melanogaster female sex pheromone 
Z4- 11Al. When sharing food resources, larvae of D. suzukii 
are outcompeted by D. melanogaster (Dancau et al. 2017; Shaw 
et  al.  2018; Rombaut et  al.  2023), which provides an adaptive 
explanation for the response to heterospecific sex pheromone.

4.1   |   Pheromones Mediate Specific Mate 
Recognition and Reproductive Isolation

Pheromones serve specific mate finding and recognition, first 
of all. Sexual selection for efficient mate communication is, 
however, not an automatism for pheromone- mediated inter-
actions between different species. The recognition concept of 
species has called attention to the singular importance of mate 
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communication adapted to the respective habitats of species, 
while it raised concern over the idea that the avoidance of hybrid 
matings is under strong selection, too, for its conceptual anthro-
pomorphic bias and a lack of supporting data (Paterson 1985).

Meanwhile, experimental proof has been afforded for the in-
teraction between sexual selection and species recognition 
through reinforcing natural selection against hybrid matings. 
Pheromone composition in the sibling species D. birchii and D. 

FIGURE 1    |    Antagonistic effect of Drosophila melanogaster flies and synthetic sex pheromone Z4- 11Al on D. suzukii egg- laying, in a dual choice 
oviposition assay. The oviposition index is the quotient, of the differential and the sum, of the eggs laid on the control and the treated blueberry. 
A positive oviposition index shows that more eggs were laid on the control berry (right- hand side). (a, b) Blueberries were exposed to 3 and 10 D. 
melanogaster male or female flies. Compared with untreated berries, D. suzukii females laid significantly fewer eggs on berries pre- exposed to 10 
males or 10 females. (c) In a direct comparison, D. suzukii females laid fewer eggs on berries that were pre- exposed to females rather than males. (d) 
Synthetic cVA, a D. melanogaster male pheromone, had no effect, (e) while 5 ng and 50 ng of the female pheromone Z4- 11Al decreased oviposition. 
(f) Ethanol had no effect on oviposition preference, and significantly more eggs were laid on berries treated with the unsaturated aldehyde E2- 11Al, 
compared to Z4- 11Al. Error bars show standard errors: asterisks show significance, according to GLMM fit by maximum likelihood (***p < 0.001).
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-0.2 0.2 0.40

(e)

***

***

0.5 ng
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50 ng Z4-11Al

***

Ethanol

Ethanol

5 ng Z4-11Al

Untreated

Ethanol

5 ng E2-11Al
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serrata differs between allopatric and sympatric populations, 
because contact between the two species in zones of geographic 
overlap gives rise to reproductive character displacement. And, 
the differences in pheromone communication observed over the 
natural range can also be generated by experimental sympatry 
in the laboratory (Higgie, Chenoweth, and Blows 2000; Higgie 
and Blows 2007, 2008).

Another strong argument for dual roles of pheromones is the 
widespread occurrence of interspecific pheromone antagonists 
in beetles and moths, where the same compounds recipro-
cally serve intra-  and interspecific communication (Birch and 
Wood  1975; Lambert and Spencer  1995; Witzgall et  al.  1996; 
Seybold et  al.  2018). Pheromone analysis in moths frequently 
finds compounds that are attractive and antagonistic, respec-
tively, within and between species, and such studies have even 
revealed cryptic species (Priesner and Baltensweiler  1987; 
Pelozuelo et  al.  2004; Domingue et  al.  2007; Bengtsson 
et  al.  2014). Conversely, a lack of distinct pheromone barriers 
in geographically overlapping populations of sibling species 
is indicative of yet incomplete reproductive isolation (Saveer 
et al. 2014; Unbehend et al. 2014).

4.2   |   Pheromones Also Mediate Resource 
Partitioning

Chemically mediated interference between species is not re-
stricted to premating sexual communication, but also con-
cerns oviposition and consequently the use of larval food 
resources.

In tephritid fruit flies, host- marking pheromones are known to 
deter oviposition in specific and heterospecific females, but these 
compounds do not serve mate communication (Prokopy, Reissig, 
and Moericke  1976; Aluja and Boller  1992; Sarles et  al.  2015; 
Scolari et al. 2021). In contrast, D. melanogaster prefers to oviposit 
socially. A combination of microorganisms and pheromones de-
posited during oviposition, enhances the attraction of conspecific 
females (Wertheim et  al.  2002, 2006; Golden and Dukas  2014; 
Venu et  al.  2014; Durisko, Anderson, and Dukas  2014; Lin 
et al. 2015; Dumenil et al. 2016; Verschut et al. 2023).

We here show, for the first time, that the female sex pheromone 
of D. melanogaster Z4- 11Al deters egg- laying in another species, 
D. suzukii. This demonstrates that the response to heterospecific 
sex pheromones is indeed under strong natural selection and un-
derscores that resource partitioning via oviposition avoidance 
can further reinforce reproductive isolation.

The female D. melanogaster pheromone may even deter ovi-
position in other species. Our field trials show an antagonistic 
effect of Z4- 11Al on attraction to the fruit- associated yeast H. 
uvarum, not only in D. suzukii but also in the sibling species 
D. simulans.

4.3   |   Z4- 11Al Mediates Communication Between 
D. melanogaster and D. suzukii

In D. birchii and D. serrata, changes in mate preferences in 
response to sympatry correlate with male cuticular hydrocar-
bons (CHCs). The behaviourally active compounds, however, 
have not yet been identified, possibly also because of a lack of 
clearcut, qualitative sex- specific differences: CHCs in males 
and females differ only with respect to blend proportions 
(Higgie, Chenoweth, and Blows  2000; Howard et  al.  2003; 
Higgie and Blows 2007, 2008). Likewise, the behavioural evi-
dence that D. suzukii avoids host fruit occupied by D. melano-
gaster (Kidera and Takahashi 2020; Tungadi et al. 2022, 2023) 
has not yet been associated with specific chemicals. We here 
show, through a comparison of berries exposed to males and 
females, followed by experiments with synthetic pheromone, 
that the female D. melanogaster pheromone Z4- 11Al reduces 
egg- laying in D. suzukii.

Pheromone interference between D. melanogaster and D. 
suzukii depends on fly density. Even males had an effect, 
when berries were pre- exposed to a larger number of flies. 
A likely explanation is that mated flies carry both male and 
female pheromone, which are exchanged during mating 
(Bartelt, Schaner, and Jackson  1985; Everaerts et  al.  2010; 
Frey et al. 2022), and deposited on substrates visited (Farine, 
Ferveur, and Everaerts  2012; Dumenil et  al.  2016; Verschut 
et al. 2023).

Eggs laid by D. melanogaster females will further enhance ovi-
position avoidance by D. suzukii. Females coat their eggs with 
(Z,Z)- 7,11- heptacosadiene (7,11- HD) to prevent egg cannibalism 
(Narasimha et  al. 2019). 7,11- HD is the precursor of Z4- 11Al 
(Lebreton et al. 2017), and oxidation of 7,11- HD deposited with 
eggs will continuously afford Z4- 11Al, which makes it difficult 
to test 7,11- HD on its own.

FIGURE 2    |    Effect of Z4- 11Al on attraction of Drosophila suzukii 
females to volatiles of the yeast mutualist Hansenia uvarum. (a) In a wind 
tunnel, Z4- 11Al was released at 10 ng/min, into an airstream passing 
through a wash bottle containing a fermenting H. uvarum culture. (b) 
In a field trapping assay, Z4- 11Al dispensers added to traps baited with 
H. uvarum reduced captures of D. suzukii and D. simulans, not captures 
of D. melanogaster. Asterisks indicate a significant difference (p < 0.05) 
following GLMM fitted with binomial and Poisson distributions for 
landing and trap captures, respectively.

Field Trapping

Wind Tunnel Attraction

0 20 40 60%0 20 40 60%

0 20 40 60%
H. uvarum
H. uvarum + Z4-11Al

(a)

(b)

D. suzukii

D. suzukii

D. melanogaster

D. simulans

*

*
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Z4- 11Al also reduces D. suzukii flight attraction to H. uvarum, 
a highly attractive yeast mutualist associated with food sources 
(Hamby et al. 2014; Chakraborty et al. 2022; Kleman et al. 2022). 
This underscores that the interaction of fly pheromones and 
yeast volatiles, signalling suitable larval food resources, is un-
derstudied. A combination of specific social and habitat cues 
will further reinforce isolation between species.

In D. melanogaster, one variant of the olfactory receptor Or69a 
is tuned to Z4- 11Al, and the other to food odours (Lebreton 
et al. 2017). In D. suzukii, the orthologous DsuzOr69aB (Hickner 
et al. 2016; Walker et al. 2023) responds to Z4- 11Al and other 
unsaturated aldehydes (Cattaneo et al. 2023). Further functional 
characterization of the Or69a channel would be instructive, es-
pecially with respect to the question whether D. suzukii uses a 
pheromone of its own.

4.4   |   Competition Between Invasive 
and Established Species

The successful and rapid, worldwide range expansion of D. 
suzukii (Walsh et al. 2011; Cini et al. 2014; Asplen et al. 2015; 
Kwadha et  al.  2021) is remarkable in view of its low compet-
itiveness vis- à- vis the established cosmopolitan species D. 
melanogaster (Dancau et  al.  2017; Shaw et  al.  2018; Rombaut 
et al. 2023), which followed the human expansion out of Africa 
long ago (Lachaise and Silvain  2004; Mansourian et  al.  2018; 
Arguello, Laurent, and Clark 2019).

Competitive interaction of larvae in fruit is expected to occur 
at the expense of D. suzukii larvae. Although D. suzukii infests 
earlier phenological stages than D. melanogaster, D. melanogas-
ter may become attracted for oviposition before D. suzukii larval 
development is complete (Walsh et  al.  2011; Keesey, Knaden, 
and Hansson 2015; Rodrigues et al. 2015; Rombaut et al. 2017; 
Silva- Soares et al. 2017).

Flies in the wild encounter a wide range of plant hosts, and D. 
suzukii is likely to compete also with other drosophilid flies, in 
addition to D. melanogaster. Volatile signatures of flies may pro-
vide directions for spreading into new habitats and for colonizing 
competition- free fruit space. Heterospecific competition is a niche 
dimension that relies on sensory perception, like mutualistic in-
teractions during niche construction (Chakraborty et al. 2022).

4.5   |   Outlook on Integrated Management of D. 
suzukii

Field experiments with pheromones and fruit- associated yeasts 
or yeast volatiles will be needed to further evaluate the role of 
Z4- 11Al in regulating niche partitioning and also its potential 
application in D. suzukii population management.

One promising approach for D. suzukii control is to com-
bine larval or adult food attractants with killing agents (Mori 
et  al.  2017). More recently, push- pull strategies combining at-
tractants and deterrents have received attention, where the de-
terrent components are general insect repellents, plant essential 
oils or volatiles from fungal fruit pathogens that deteriorate 

larval development (Cloonan et  al.  2018; Wallingford, Cha, 
and Loeb  2018; Alkema, Dicke, and Wertheim  2019; Tungadi 
et al. 2023; Conroy et al. 2024).

Several deterrents could possibly be combined for enhanced ef-
ficacy. A drosophilid oviposition- deterrent pheromone would 
confer the advantage of higher specificity, compared with plant 
or fungal metabolites, where its efficacy versus other deterrents 
and repellents is yet to be evaluated. Volatile compounds, such 
as Z4- 11Al, are inconvenient to formulate for season- long field 
use, while the non- volatile hydrocarbon precursor 7,11- HD, that 
spontaneously oxidizes to afford Z4- 11Al, may be more suitable. 
Heterologous expression of biosynthetic enzymes for biotechno-
logical production in yeast may even facilitate large- scale pro-
duction (Chertemps et al. 2006; Dam et al. 2024).

Taken together, an oviposition deterrent that is active only in 
drosophilid flies has the potential of becoming a crucial compo-
nent in the integrated toolbox for D. suzukii management.
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