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Abstract: Species-level phenology models are essential for predicting shifts in tree species under
climate change. This study quantified phenological differences among dominant miombo tree species
and modeled seasonal variability using climate variables. We used TIMESAT version 3.3 software
and the Savitzky–Golay filter to derive phenology metrics from bi-monthly PlanetScope Normalized
Difference Vegetation Index (NDVI) data from 2017 to 2024. A repeated measures Analysis of Variance
(ANOVA) assessed differences in phenology metrics between species, while a regression analysis
modeled the Start of Season (SOS) and End of Season (EOS). The results show significant seasonal
and species-level variations in phenology. Brachystegia spiciformis differed from other species in EOS,
Length of Season (LOS), base value, and peak value. Surface solar radiation and skin temperature
one month before SOS were key predictors of SOS, with an adjusted R-squared of 0.90 and a Root
Mean Square Error (RMSE) of 13.47 for Brachystegia spiciformis. SOS also strongly predicted EOS, with
an adjusted R-squared of 1 and an RMSE of 3.01 for Brachystegia spiciformis, indicating a shift in the
growth cycle of tree species due to seasonal variability. These models provide valuable insights into
potential phenological shifts in miombo species due to climate change.

Keywords: PlanetScope imagery; TIMESAT; Savitzky–Golay filter; regression modeling; Unmanned
Aerial Vehicle (UAV)

1. Introduction

Miombo woodlands thrive in tropical Africa and are dominated by the Brachystegia,
Julbernadia, and/or Isorberlinia genera [1]. Wet miombo woodlands receive annual rainfall
ranging from 800 to 1500 mm and a dry period lasting from 3 to 5 months, whereas dry
miombo woodlands receive annual rainfall ranging from 500 to 1000 mm with a dry period
lasting from 5 to 8 months [2,3]. The woodlands cover 2 million km2 across Angola,
Zimbabwe, Zambia, Malawi, Mozambique, Tanzania, and the Democratic Republic of
Congo [4]. In these countries, miombo woodlands play a major role in livelihoods by
providing household energy, timber, and food such as mushrooms, fruits, and honey [5–8].

The increasing demand for forest products and the expansion of cropland due to
population growth result in woodland loss [7–9], threatening the existence of miombo tree
species [10]. Another threat to miombo tree species are rising temperatures, which are
projected to reduce 5% of the already degraded miombo woodland cover in Tanzania by
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2085 [11]. Miombo woodlands in wetter areas are expected to decline by up to 42% by
2070, while those in drier areas may increase by 23% over the same period in Sub-Saharan
Africa [12]. This shift suggests that climate change could impact the canopy cover, thereby
causing a significant threat to the ecosystem and livelihoods of communities depending on
the woodlands.

Empirical information on the response of tree species to climate variability and change
is essential for understanding the effects of climate change on miombo woodland develop-
ment. One measure that could provide insights into the response of tree species to climate
is phenology, which is strongly influenced by climate [13,14]. Phenology is the study of
the timing of recurrent biological events, how these events are influenced by climate and
human activities, and how they relate among species. In vegetation, phenological events
include, among others, leaf budburst, leaf shedding, first flower, last flower, and first ripe
fruit. These events are specific traits of each plant species, and the combined effects of all
species characterize and maintain an ecosystem [15,16].

Space-borne optical sensors are primarily applied to track Land Surface Phenology
(LSP) in miombo woodlands [17]. Remote sensing is a cost-effective approach, allow-
ing for frequent monitoring across vast and remote areas, making it more practical than
ground-based methods. Coarse-resolution remote sensors are commonly used, limiting
phenology monitoring efforts to the vegetation level. Monitoring LSP at this scale has
shown that temperature better explains variations in miombo vegetation phenology than
precipitation [18]. Additionally, photoperiods are identified as reliable predictors of the
start of the season, while both temperature and photoperiod were reliable predictors of the
end of the season for Southern African savanna trees [19]. These factors contribute to the
observed pre-rain green-up and post-rain dormancy onset in savannas and woodlands,
including miombo woodlands [20,21].

Information on the phenological dynamics of miombo tree species and their interac-
tions with climate is limited. This is due to the mixed pixel effect, where the pixel value of
course–resolution satellite images contains reflectance from multiple species and vegetation
types. Species-specific phenology information is needed, as phenology is a species-specific
trait [22].

With advances in remote sensing technology, particularly sensors with very high
spatial resolution and global daily revisit capabilities, this study aimed to develop a
climate-driven phenology model for dominant tree species in western Tanzania using
high-resolution sensors. Such models are essential for predicting shifts in species ranges in
response to environmental changes. The specific objectives of the study were:

(i) To calculate average phenological metrics: Start of the Season (SOS), End of the Season
(EOS), Length of the Season (LOS), Maximum Normalized Difference Vegetation Index
(MaxNDVI), and NDVI at Maximum Time (NDVItmax) for the dominant tree species;

(ii) To quantify the differences in phenological metrics among the dominant tree species;
(iii) To model the effects of climate on the leaf phenological changes in dominant tree

species in miombo woodlands.

2. Materials and Methods
2.1. Study Area

The study was conducted on a 9-hectare site within the Tongwe West Forest Reserve
in the Tanganyika District of the Katavi Region (Figure 1). The site is located at 30◦29′13′′E
longitude and 5◦27′41′′S latitude, with an elevation of 1492 m above sea level. The average
yearly temperature ranges from 15 ◦C to 25 ◦C, and the total annual rainfall is 1210 mm.
The soil at the site is predominantly ferralic cambisols with moderately deep to deep soils
and moderate to high fertility [23]. These climatic and edaphic conditions support the wet
miombo woodlands.

Most miombo tree species are deciduous, shedding their leaves during the dry season.
Consequently, distinct leafing phenology seasons have been observed, as follows: the
warm dry pre-rain season (September), the rainy season (October–April), and the dry
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season (May–August). Given the close linkage between climate and phenology, miombo
phenology could serve as a valuable bio-indicator of the effects of climate variability and
change on miombo woodland species. The dominant miombo tree species at the site are
Brachystegia spiciformis (Mtundu), Julbernardia globiflora (Muva), and Pterocarpus tinctorius
(Mkurungu), which dominate the woody biomass [24].
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Figure 1. Site location: (A) within the miombo woodland distribution, (B) in Tongwe Forest Reserve,
Tanganyika District, Katavi Region, Tanzania, and (C) at elevations measured in meters above
sea level.

2.2. Flow Chart

Figure 2 illustrates the type of data collected and the methods used.

2.3. Collection of Data
2.3.1. Tree Crown Data

To obtain the tree crown layer, we selected tree crowns with a minimum area of 9 m²
(equivalent to a PlanetScope pixel) that were solitary or part of populations of the same tree
species on the ground. The selection was made concurrently by acquiring tree coordinates
using differential GPS. After that, we established 16 Ground Control Points (GCPs) on the
site for geo-referencing images.

We acquired drone images using the Mavic Air 2S with an RGB sensor on 13 March
2024 at 08:30 a.m. (East Africa Time). The drone flew in an east–west direction at a speed of
15.7 km/h and an altitude of 40 m above ground. The images had 80% forward and 80%
side overlap, with a spatial resolution of 1 cm.
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Agisoft Metashape Professional software, version 1.5.1, was used to create the or-
thomosaics, which were geo-referenced using 16 Ground Control Points (GCPs). The
coordinates of individual tree crowns were aligned with their corresponding crowns, and
the tree species were digitized from the drone orthophoto in ArcMap 10.4.1 software. In
total, we digitized 21 crowns for Brachystegia spiciformis (B. spiciformis), 21 for Julbernardia
globiflora (J. globiflora), 21 for Pterocarpus tinctorius (P. tinctorius), and 13 for a combined class
of other species for this study (Figure 3).
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the drone orthophoto of the site in western Tanzania.

The digitized tree crowns were used to extract 21 pure pixel values from PlanetScope
NDVI images for each species group: Brachystegia spiciformis (B. spiciformis), Julbernardia
globiflora (J. globiflora), Pterocarpus tinctorius (P. tinctorius), and others.

2.3.2. PlanetScope Images

PlanetScope surface reflectance images with four bands and a spatial resolution of
3 m × 3 m, covering the site, were obtained from Planet Labs under a research license.
From 2017 to 2024, we selected two images per month—one for the first half and one for
the second half of the month—targeting those with the lowest cloud cover percentage
(Appendix B). These surface reflectance data are ideal for analytical applications, and from
them, Normalized Difference Vegetation Index (NDVI) layers—a measure of greenness—
were created using Formula (1). The NDVI metric was used because of its simplicity and
sensitivity to canopy changes [18,21,25]. Additionally, this study focused exclusively on
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tree crowns, minimizing interference from soil reflectance, and aimed to observe relative
changes in canopy greenness over time.

NDVI =
NIR − Red
NIR + Red

(1)

where NIR and Red are the reflectance values in the near-infrared and red bands, respectively.

2.3.3. Climatic and Photo-Period Data

The most influential variables for the vegetation phenology in Africa were rainfall,
temperature, solar radiation, and, most importantly, the photoperiod [19]. Monthly rainfall
data in mm were obtained from the Climate Hazards Group InfraRed Precipitation with
Station data (CHIRPS) [26]. CHIRPS is a gridded rainfall time series with a spatial resolution
of 0.05◦ (5714.59 m) created from satellite imagery and in situ station data.

The monthly skin temperature and surface solar radiation downwards, obtained from
the Copernicus Climate Data Store [27] were used for temperature and solar radiation
data, respectively. These data are from the ERA5-Land reanalysis dataset, obtained at a
spatial resolution of 0.1◦ (11,130.66 m). Skin temperature, measured in Kelvin, represents
the temperature of the Earth’s surface. Surface solar radiation downwards, measured in
joules per square meter (J m−2), is the amount of solar radiation (also known as shortwave
radiation) reaching the Earth’s surface.

The photoperiod data were the day length data in hours, obtained from the Time and
date website [28].

2.4. Methods
2.4.1. Determination of Phenological Metrics

We calculated Land Surface Phenology (LSP) metrics—Start of the Season (SOS, Start
t), End of the Season (EOS, End t), Length of the Season (LOS, length), Base Value (Base
val.), Peak time (Peak t.), and NDVI at Peak time (Peak value, Peak val.)—from the seasonal
NDVI pattern of each point representing tree species crowns in ASCII format using the
TIMESAT version 3.3 software (Figure 4) [29–31].

The Savitzky–Golay method was used for fitting seasonal NDVI patterns in TIMESAT
(Figure 4). The NDVI data range was from 0.2 to 0.9, and the median filter spike method
was applied under common settings. Under class-specific settings, a seasonal parameter
of 1 (for one season), an adaptation strength of 2, and a Savitzky–Golay window size of 2
were used. Seasonal amplitude was used to define the start and end of the season, with a
value of 0.2 for both. In this case, the Start of the Season (SOS) was defined when NDVI
exceeded 20% of the seasonal amplitude, and EOS was defined when NDVI fell below 20%
of the seasonal amplitude [21]. Seasonal amplitude (Ampl.) is the difference between the
peak value (peak val.) and the base value (base val.).

The LSP metrics were computed for each pixel of the dominant tree species. Repeated
measures analysis of variance (ANOVA) was used to assess significant variations in LSP
metrics between the tree species.
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2.4.2. Modeling Phenology Parameters with Climatic Drivers

Before modeling, climatic and photoperiod data aggregated from a zero to three
months period preceding the Start of Season (SOS) dates and End of Season (EOS) months
for each year were used. The data at zero were termed as seasonal data, while those in
the one month, two month, and three month periods before the SOS and EOS date were
termed pre-season data.

The spatial climatic data—rainfall, skin temperature, and surface solar radiation—were
matched to the tree crown data using the same Coordinate Reference System (CRS). Due to
the coarse spatial resolutions of the rainfall, temperature, and solar radiation data, all points
representing tree crowns fell within a single pixel (Appendix A). Monthly rainfall, skin
temperature, and surface solar radiation values were extracted for each point representing
a tree species’ crown.

The relationships between the SOS and EOS with seasonal and pre-season cumulative
rainfall (mm), cumulative temperature (◦C), cumulative solar radiation (W/m2), and
cumulative photoperiod (h) for different species were quantified using a correlation analysis
and modeled using linear regression. The correlation coefficient was used to assess variable
importance and identify the dominant climatic drivers. The models were evaluated using
the adjusted R-squared (R2) metric and the Root Mean Squared Error (RMSE). The RMSE
was determined using Equation (2).

RMSE =
2

√
∑N

i=1(yi − ŷi)
2

N
(2)

where N is the number of observations, yi is the observed value for the i-th observation,
and ŷ is the predicted value for the i-th observation.

We used eight points to generate SOS and EOS observations for seven seasons (from
2017 to 2024) to validate the models. This resulted in 56 SOS and 56 EOS observations
for both B. spiciformis and J. globiflora, which were used to validate the SOS and EOS
models, respectively.

3. Results
3.1. Differences in the Phenological Metrics for the Dominant Tree Species Across Seasons

We found that the mean SOS for B. spiciformis was 90.091 (1 October), J. globiflora
was 90.026 (1 October), P. tinctorius was 90.392 (6 October), and other species were 89.814
(27 September). The mean EOS for B. spiciformis was 107.24 (19 June), J. globiflora was 108.075
(3 July), P. tinctorius was 108.32 (6 July), and for other species was 108.163 (4 July). The mean
peak time for B. spiciformis was 98.861 (12 February), J. globiflora was 98.493 (8 February), P.
tinctorius was 98.87 (13 February), and for other species was 98.186 (2 February) (Table 1).

The Analysis of Variance (ANOVA) results reveal a statistically significant two-way
interaction between species and seasons for all phenological metrics (Table 2). According
to the Bonferroni-adjusted p-value (Table 3), the mean SOS differed significantly between P.
tinctorius and the other species, while the mean EOS showed significant differences between
B. spiciformis and the rest—J. globiflora, P. tinctorius, and other species—contributing to the
mean LOS of B. spiciformis being significantly different from the rest. Additionally, the mean
base value for B. spiciformis differed significantly from the rest—J. globiflora, P. tinctorius, and
other species. The mean peak time showed significant differences between B. spiciformis
and other species and between P. tinctorius and other species. The mean peak value differed
significantly between B. spiciformis and the rest—J. globiflora, P. tinctorius, and other species—
as well as between J. globiflora and P. tinctorius, between J. globiflora and other species,
and between P. tinctorius and other species. Overall, B. spiciformis exhibited significant
differences in EOS, LOS, base value, and peak value compared to the rest—J. globiflora, P.
tinctorius, and other species.
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Table 1. Start of Season (SOS), End of Season (EOS), Length of Season (LOS), base value, peak time,
and peak value averaged over eight years (seven seasons) a.

Species

Start of Season
(SOS), DOY

End of Season
(EOS), DOY

Length of Season
(LOS), Days Base Value Peak Time Peak Value

Mean sd Mean sd Mean sd Mean sd Mean sd Mean sd

B. spiciformis 90.091 49.34 107.239 48.99 17.144 2.951 0.255 0.034 98.861 47.058 0.618 0.127
J. globiflora 90.026 48.232 108.075 49.099 18.05 2.405 0.226 0.019 98.493 47.445 0.567 0.136
P. tinctorius 90.392 48.328 108.32 48.851 17.926 2.418 0.227 0.022 98.87 47.359 0.587 0.131
Other 89.814 48.288 108.163 49.125 18.347 2.333 0.226 0.018 98.186 47.162 0.545 0.138

a DOY = day of the year, a specific day within a calendar year, sd = standard deviation.

Table 2. Analysis of Variance (ANOVA) results on the difference between phenological metrics across
species and seasons b.

Dependent
Variable Effect

Numerator
Degree of
Freedom
(DFn)

Denominator
Degree of
Freedom
(DFd)

F Value p-Value p < 0.05
Generalized
Eta-Squared
(ges)

Start of Season
(SOS), DOY Species 2.02 40.31 5.536 0.007 * 0.054

Season 3.54 70.72 46.682 <0.001 * 0.309
Species * × Season 5.76 115.16 15.501 <0.001 * 0.297

End of Season
(EOS), DOY Species 1.84 36.79 8.429 0.001 * 0.119

Season 3.34 66.74 247,077.8 <0.001 * 0.999
Species × Season 6.11 122.22 4.359 <0.001 * 0.092

Length of Season
(LOS), days Species 2.02 40.31 5.536 0.007 * 0.054

Season 3.54 70.72 46.682 <0.001 * 0.309
Species × Season 5.76 115.16 15.501 <0.001 * 0.297

Base value Species 3 60 24.528 <0.001 * 0.25
Season 3.15 62.95 7.427 <0.001 * 0.057
Species × Season 6.5 129.93 8.354 <0.001 * 0.157

Peak time Species 1.76 35.18 7.902 0.002 * 0.049
Season 3.35 66.93 166,374.9 <0.001 * 0.999
Species × Season 5.23 104.59 4.211 0.001 * 0.121

Peak value Species 2.02 40.46 35.103 <0.001 * 0.427
Season 2.35 46.97 2658.579 <0.001 * 0.945
Species × Season 5.43 108.64 17.92 <0.001 * 0.222

b DOY = day of the year, a specific day within a calendar year; and “*” indicates significant at p-value < 0.05.

Table 3. Pairwise comparison between species in Start of Season (SOS), End of Season (EOS), Length
of Season (LOS), base value, peak time, and peak value c.

Dependent
Variable Group1 Group2 n1 n2 Statistic df p p.adj p.adj.signif

Start of Season
(SOS), DOY B. spiciformis J. globiflora 147 147 0.251085 146 0.802 1 ns

Start of Season
(SOS), DOY B. spiciformis P. tinctorius 147 147 −1.25231 146 0.212 1 ns

Start of Season
(SOS), DOY B. spiciformis Other 147 147 1.114212 146 0.267 1 ns

Start of Season
(SOS), DOY J. globiflora P. tinctorius 147 147 −2.31359 146 0.022 0.133 ns

Start of Season
(SOS), DOY J. globiflora Other 147 147 1.532201 146 0.128 0.768 ns

Start of Season
(SOS), DOY P. tinctorius Other 147 147 3.934399 146 0.000129 0.000774 ***

End of Season
(EOS), DOY B. spiciformis J. globiflora 147 147 −5.0444 146 0.00000133 0.00000798 ****

End of Season
(EOS), DOY B. spiciformis P. tinctorius 147 147 −8.17748 146 1.29 × 10−13 7.74 × 10−13 ****
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Table 3. Cont.

Dependent
Variable Group1 Group2 n1 n2 Statistic df p p.adj p.adj.signif

End of Season
(EOS), DOY B. spiciformis Other 147 147 −6.75319 146 3.19 × 10−10 1.91 × 10−09 ****

End of Season
(EOS), DOY J. globiflora P. tinctorius 147 147 −1.41649 146 0.159 0.954 ns

End of Season
(EOS), DOY J. globiflora Other 147 147 −0.69654 146 0.487 1 ns

End of Season
(EOS), DOY P. tinctorius Other 147 147 1.184922 146 0.238 1 ns

Length of Season
(LOS), days B. spiciformis J. globiflora 147 147 −2.8078 146 0.006 0.034 *

Length of Season
(LOS), days B. spiciformis P. tinctorius 147 147 −2.68929 146 0.008 0.048 *

Length of Season
(LOS), days B. spiciformis Other 147 147 −3.86425 146 0.000167 0.001 **

Length of Season
(LOS), Days J. globiflora P. tinctorius 147 147 0.48655 146 0.627 1 ns

Length of Season
(LOS), days J. globiflora Other 147 147 −1.47262 146 0.143 0.858 ns

Length of Season
(LOS), days P. tinctorius Other 147 147 −1.8983 146 0.06 0.358 ns

Base value B. spiciformis J. globiflora 147 147 8.718341 146 5.74 × 10−15 3.44 × 10−14 ****
Base value B. spiciformis P. tinctorius 147 147 9.427326 146 8.96 × 10−17 5.38 × 10−16 ****
Base value B. spiciformis Other 147 147 8.61576 146 1.04 × 10−14 6.24 × 10−14 ****
Base value J. globiflora P. tinctorius 147 147 −0.33097 146 0.741 1 ns
Base value J. globiflora Other 147 147 −0.11164 146 0.911 1 ns
Base value P. tinctorius Other 147 147 0.277761 146 0.782 1 ns
Peak time B. spiciformis J. globiflora 147 147 2.176455 146 0.031 0.187 ns
Peak time B. spiciformis P. tinctorius 147 147 −0.07046 146 0.944 1 ns
Peak time B. spiciformis Other 147 147 5.43606 146 0.000000223 0.00000134 ****
Peak time J. globiflora P. tinctorius 147 147 −2.07681 146 0.04 0.238 ns
Peak time J. globiflora Other 147 147 1.738827 146 0.084 0.505 ns
Peak time P. tinctorius Other 147 147 3.825538 146 0.000193 0.001 **
Peak value B. spiciformis J. globiflora 147 147 11.85848 146 3.84 × 10−23 2.3 × 10−22 ****
Peak value B. spiciformis P. tinctorius 147 147 9.24546 146 2.62 × 10−16 1.57 × 10−15 ****
Peak value B. spiciformis Other 147 147 15.60665 146 6.37 × 10−33 3.82 × 10−32 ****
Peak value J. globiflora P. tinctorius 147 147 −4.60072 146 0.00000906 0.0000544 ****
Peak value J. globiflora Other 147 147 5.515667 146 0.000000154 0.000000924 ****
Peak value P. tinctorius Other 147 147 8.785372 146 3.89 × 10−15 2.33 × 10−14 ****

c DOY = day of the year, a specific day within a calendar year; ns = non-significant (p-value ≥ 0.05); and “*”, “**”,
“***”, “****” indicate significant at p-value < 0.05, p-value < 0.01, p-value < 0.001 and p-value < 0.0001, respectively.

3.2. Modeling Between Phenological Metrics and Climatic Factors

To model phenological metrics with climate factors, the time-based metrics, SOS and
EOS, were selected. For species, B. spiciformis and J. globiflora were chosen, with J. globiflora
also representing P. tinctorius and other species.

3.2.1. Modeling Between SOS and Climatic Factors

The correlation analysis showed that skin temperature and solar radiation from the
preceding month (September) and the month of SOS (October), as well as rainfall during
the month of SOS (October), were highly correlated with the SOS of B. spiciformis (Figure 5).
The same factors were also highly correlated with the SOS of J. globiflora (Figure 6). Except
for skin temperature in October, which correlated positively with SOS, the other highly
correlated factors showed a negative correlation.

Modeling variables with a correlation coefficient above 0.50 with SOS revealed that
significant predictors for both B. spiciformis and J. globiflora were skin temperature and
solar radiation from the month preceding the SOS (September). When these variables were
combined in the models, their performance improved, as indicated by an increase in the
adjusted R-squared and a decrease in Root Mean Square Error (RMSE) (Tables 4 and 5).
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Figure 5. Correlation of seasonal and pre-season climatic factors with Start of Season (SOS) for
B. spiciformis. R7 = rainfall July, R08 = rainfall August, R09 = rainfall September, R10 = rainfall
October, SkinT07 = skin temperature July, SkinT08 = skin temperature August, SkinT09 = skin
temperature September, SkinT10 = skin temperature October, SSRDT07 = surface solar radiation
July, SSRDT08 = surface solar radiation August, SSRDT09 = surface solar radiation September,
SSRDT10 = surface solar radiation October, DayLen07 = day length July, DayLen08 = day length
August, DayLen09 = day length September, DayLen10 = day length October. Asterisks indicate
significance levels: “*” for p-value < 0.05, “**”for p-value < 0.01, and “***” for p-value < 0.001.

Table 4. The effect of climatic factors on modeling the Start of Season (SOS) of B. spiciformis d.

Variable Adjusted R
Squared p-Value Equations RMSE Significance

Skin temperature September
(SkinT09) 0.8051 0.003841 SOS = 34835.2 − 117.3

SkinT09 20.68 ***

Surface solar radiation September
(SSRDT09) 0.6452 0.01821 SOS = 288.7 −

0.0000103SSRDT09 27.05 ***

Surface solar radiation October
(SSRDT10) 0.4131 0.07104 ns

Rainfall October (R10) 0.3293 0.1037 ns
Skin temperature October (SkinT10) 0.3028 0.116 ns
Surface solar radiation July
(SSRDT07) 0.1712 0.1948 ns

Skin temperature September
(SkinT09) + surface solar radiation
September (SSRDT09)

0.8958 0.004827 SOS = 24500 − 82.1SkinT09
−0.00000504SSRDT09 13.47 ***

d RMSE = Root Mean Square Error, SOS = Start of Season in day of the year, ns = non-significant (p-value ≥ 0.05);
and “***” indicate significant p-value < 0.001.
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Modeling variables with a correlation coefficient above 0.50 with SOS revealed that 
significant predictors for both B. spiciformis and J. globiflora were skin temperature and 
solar radiation from the month preceding the SOS (September). When these variables 
were combined in the models, their performance improved, as indicated by an increase in 
the adjusted R-squared and a decrease in Root Mean Square Error (RMSE) (Tables 4 and 
5).

Figure 6. Correlation of seasonal and pre-season climatic factors with Start of Season (SOS) for
J. globiflora. R7 = rainfall July, R08 = rainfall August, R09 = rainfall September, R10 = rainfall
October, SkinT07 = skin temperature July, SkinT08 = skin temperature August, SkinT09 = skin
temperature September, SkinT10 = skin temperature October, SSRDT07 = surface solar radiation
July, SSRDT08 = surface solar radiation August, SSRDT09 = surface solar radiation September,
SSRDT10 = surface solar radiation October, DayLen07 = day length July, DayLen08 = day length
August, DayLen09 = day length September, DayLen10 = day length October. Asterisks indicate
significance levels: “*” for p-value < 0.05, “**” for p-value < 0.01, and “***” for p-value < 0.001.

Table 5. The effect of climatic factors on modeling the Start of Season (SOS) of J. globiflora e.

Variable Adjusted R
Squared p-Value Equations RMSE Significance

Skin temperature September
(SkinT09) 0.7971 0.004262 SOS = 33922.79 − 114.24

SkinT09 19.99 ***

Surface solar radiation September
(SSRDT09) 0.6401 0.01891 SOS = 283.6 −

0.00001SSRDT09 26.52 ***

Surface solar radiation October
(SSRDT10) 0.4214 0.06828 ns

Rainfall October (R10) 0.3288 0.1039 ns
Skin temperature October (SkinT10) 0.3173 0.1092 ns
Surface solar radiation July
(SSRDT07) 0.1871 0.1835 ns

Skin temperature September
(SkinT09) + surface solar radiation
September (SSRDT09)

0.8856 0.005813 SOS =23820 − 79.80SkinT09 −
0.000004925SSRDT09 13.57 ***

e RMSE = Root Mean Square Error, SOS = Start of Season in day of the year; ns = non-significant (p-value ≥ 0.05);
and “***” indicate significant at p-value < 0.001.
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3.2.2. Modeling Between End of Season (EOS) and Climatic Factors

The correlation analysis revealed that factors highly correlated with the EOS of B.
spiciformis (19 June) were surface solar radiation in May and June, skin temperature in May
and June, and rainfall in June. These factors were negatively correlated with the EOS of
B. spiciformis (Figure 7). In contrast, factors highly associated with the EOS of J. globiflora
(3 July) included surface solar radiation in May, June, and July (the month of EOS), day
length in July, skin temperature in May, June, and July, and rainfall in July. These factors
also correlated negatively with the EOS of J. globiflora (Figure 8).
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Figure 7. Correlation of seasonal and pre-season climatic factors with End of Season (EOS) for
B. spiciformis R3 = rainfall March, R04 = rainfall April, R05= rainfall May, R6 = rainfall June,
SkinT03 = skin temperature March, SkinT04 = skin temperature April, SkinT05 = skin temperature
May, SkinT06 = skin temperature June, SSRDT03 = surface solar radiation March, SSRDT04 = surface
solar radiation April, SSRDT05 = surface solar radiation May, SSRDT06 = surface solar radiation
June, DayLen03 = day length March, DayLen04 = day length April, DayLen05 = day length May,
DayLen06 = day length June. Asterisks indicate significance levels: “*” for p-value < 0.05, “**” for
p-value < 0.01, and “***” for p-value < 0.001.

However, the linear model of highly correlated factors—with a correlation coefficient
above 0.5—with the EOS of B. spiciformis and J. globiflora were modeled linearly, revealed
that these factors were non-significant predictors (Tables 6 and 7). This non-significance
was possibly due to a non-linear relationship between the factors and EOS, despite the high
correlation. However, EOS was significantly modeled linearly from SOS, with an adjusted
R-squared of 1 for both B. spiciformis and J. globiflora and a Root Mean Square Error (RMSE)
of 3 and 2 for B. spiciformis and J. globiflora, respectively (Figure 9, Table 8).
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However, the linear model of highly correlated factors—with a correlation coefficient 
above 0.5 —with the EOS of B. spiciformis and J. globiflora were modeled linearly, revealed 
that these factors were non-significant predictors (Tables 6 and 7). This non-significance 
was possibly due to a non-linear relationship between the factors and EOS, despite the 
high correlation. However, EOS was significantly modeled linearly from SOS, with an 
adjusted R-squared of 1 for both B. spiciformis and J. globiflora and a Root Mean Square 
Error (RMSE) of 3 and 2 for B. spiciformis and J. globiflora, respectively (Figure 9, Table 8).

Table 6. The effect of climatic factors on modeling the End of Season (EOS) of B. spiciformis f.

Variable Adjusted R Squared p-Value Significance
Surface solar radiation June 0.3489 0.1275 ns
Surface solar radiation May 0.2444 0.181 ns
Skin temperature May 0.332 0.1353 ns
Skin temperature June -0.05424 0.4374 ns
Rainfall June -0.1758 0.6419 ns
Rainfall April 0.3674 0.1194 ns
f ns = non-significant (p-value ≥ 0.05).

Figure 8. Correlation of seasonal and pre-season climatic factors with End of Season (EOS) for J.
globiflora. R04= rainfall April, R05 = rainfall May, R6 = rainfall June, R7 = rainfall July, SkinT04 = skin
temperature April, SkinT05 = skin temperature May, SkinT06 = skin temperature June, SkinT07 = skin
temperature July, SSRDT04 = surface solar radiation April, SSRDT05 = surface solar radiation May,
SSRDT06 = surface solar radiation June, SSRDT07 = surface solar radiation July, DayLen04 = day
length April, DayLen05 = day length May, DayLen06 = day length June, DayLen07 = day length July.
Asterisks indicate significance levels: “*” for p-value < 0.05, “**” for p-value < 0.01, and “***” for
p-value < 0.001.

Table 6. The effect of climatic factors on modeling the End of Season (EOS) of B. spiciformis f.

Variable Adjusted R Squared p-Value Significance

Surface solar radiation June 0.3489 0.1275 ns
Surface solar radiation May 0.2444 0.181 ns
Skin temperature May 0.332 0.1353 ns
Skin temperature June −0.05424 0.4374 ns
Rainfall June −0.1758 0.6419 ns
Rainfall April 0.3674 0.1194 ns

f ns = non-significant (p-value ≥ 0.05).

Table 7. The effect of climatic factors on modeling the End of Season (EOS) of J. globiflora g.

Variable Adjusted R Squared p-Value Significance

Surface solar radiation June 0.3407 0.1313 ns
Surface solar radiation May 0.2414 0.1827 ns
Surface solar radiation July 0.2197 0.1957 ns
Day length July −0.2354 0.8387 ns
Skin temperature July −0.2493 0.9644 ns
Skin temperature June −0.06411 0.4502 ns
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Table 7. Cont.

Variable Adjusted R Squared p-Value Significance

Rainfall July −0.244 0.8966 ns
Skin temperature May 0.3127 0.1446 ns
Rainfall June −0.1653 0.6184 ns
Rainfall April 0.3734 0.1168 ns

g ns = non-significant (p-value ≥ 0.05).
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Figure 9. Correlation between Start of Season and End of Season for B. spiciformis and J. globiflora
across seasons.

Table 8. The effect of Start of Season (SOS) on modeling the End of Season (EOS) of B. spiciformis and
J. globiflora h.

Variable r Adjusted R
Squared p-Value Equations RMSE Significance Species

SOS 0.999 0.9978 <0.001 EOS = 17.85 + 0.99SOS 3.01 *** B. spiciformis
SOS 0.9997 0.9994 <0.001 EOS = 16.45 + 1.02SOS 2.30 *** J. globiflora

h RMSE = Root Mean Square Error, SOS = Start of Season, EOS = End of Season. An asterisk “***” indicates a
significance level of p < 0.001.

4. Discussion

There were no significant differences in the Start of Season (SOS) among the dominant
tree species in early October. This finding on the timing of SOS for the dominant miombo
tree species aligns with those of [32], who found that the SOS of woody savannas and
savanna mosaics in Eastern Africa occurs from late August to early November.
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The SOS of these tree species in early October is significantly correlated with skin tem-
perature and surface solar radiation from September, the preceding month (Figures 5 and 6).
Higher values of surface solar radiation and skin temperature are associated with an earlier
SOS, while lower values correspond to a later SOS. Surface solar radiation refers to the
amount of solar energy reaching the Earth’s surface, while skin temperature indicates the
temperature of the Earth’s surface.

Surface solar radiation and skin temperature are positively related. In September,
surface solar radiation and skin temperature reach their highest values (Figure 8), implying
that increased solar energy leads to warmer temperatures. These conditions trigger growth
in miombo tree species. Warmer temperature cues plant development, while sunlight is
crucial for initiating photosynthetic activities. This period is particularly favorable for
photosynthesis, as it also marks the onset of the wet season (Figure 10B).
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Moreover, the skin temperature and surface solar radiation in September were the
most significant predictors for modeling the SOS of miombo tree species, specifically B.
spiciformis and J. globiflora. Skin temperature and surface solar radiation individually
explained 81% and 65% of the variance in the SOS of B. spiciformis, respectively. When both
variables were included in the model, they collectively explained 90% of the variance in
the SOS of B. spiciformis. For J. globiflora, skin temperature and surface solar radiation in
September individually explained 80% and 64% of the variance in the SOS. When both
variables were included, they explained 89% of the variance in the SOS of J. globiflora.

However, there were significant differences in the day of year for the end of season
(EOS) among the dominant tree species, contributing to variations in the length of season
(LOS) between B. spiciformis and the other species. The EOS for B. spiciformis occurred on
June 19, while those for J. globiflora, P. tinctorius, and others ranged from July 3 to 6. These
EOS dates for the tree species are earlier than the EOS for woody savanna/savanna mosaic,
which [32] found to occur from mid-July to late August in Eastern Africa. These differences
may be due to spatial factors, as we studied phenology metrics at the tree species level
for a representative site in western Tanzania, while [32] examined phenology metrics for
woody savanna/savanna mosaics across Eastern Africa. The high variation in vegetation
cover and species within woody savanna/savanna mosaics, along with diverse climate
conditions across Eastern Africa, likely influences EOS timing.

The End of Season (EOS) for B. spiciformis on 19 June 19 is significantly correlated
with surface solar radiation in June (Figure 7). Similarly, the EOS for J. globiflora on 3 July
is significantly correlated with surface solar radiation in June (Figure 8). Surface solar
radiation is negatively correlated with EOS, indicating that higher surface solar radiation
values are associated with an earlier EOS, while lower values correspond to a later EOS.
During the EOS period in June and early July, surface solar radiation at the site begins to
increase (Figure 11A), contributing to a rise in skin temperature (Figure 11B). Additionally,
this period marks the onset of the dry season (Figure 10B). Although surface solar radiation
influences the EOS, it demonstrated a non-linear relationship when used in models to
estimate EOS.

SOS was the most significant linear predictor for EOS, explaining 100% of the variance
in EOS. SOS and EOS were positively related, indicating that a delay in SOS results in a
later EOS, while an earlier SOS leads to an earlier EOS. This relationship between SOS and
EOS reflects a shift in the growth cycle due to seasonal variability, which may contribute to
significant differences in phenology metrics between seasons.

Thus, surface solar radiation is the most significant factor explaining variation in
the phenology of dominant miombo tree species. However, this contrasts with [19], who
reported that the Start of Season (SOS) in woodlands is controlled by the photoperiod.
This difference may also be due to spatial scale, as [19] analyzed the relationship between
climatic drivers and the phenology of woodlands, combining woody savanna, savanna
mosaic, and mixed forest across the African continent from the MCD12Q1 data. MCD12Q1
is an annual global land cover data product with a 500-meter spatial resolution, produced
by NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS) on the Terra and
Aqua satellites. In contrast, this study focused on tree species phenology at the crown
level at a representative site in western Tanzania. Therefore, studying phenology at a finer
scale—specifically at sites with similar climates and focused on individual tree species—is
essential for obtaining clear insights that could help assess the impact of climate variability
and change on African ecosystems.

Despite the valuable insights obtained, this study was limited to eight years—seven
miombo seasons—offering a snapshot of tree species’ responses to climate variables and
their variability. Additionally, while the results aligned with field observations, there was
insufficient ground phenology data for thorough comparison. This study also focused on
a small, representative site of miombo woodland in western Tanzania, which does not
capture the full range of environmental conditions across miombo woodlands in Tanzania
and Southern Africa. Nevertheless, the findings suggest that the phenology of miombo tree
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species can be effectively monitored through remote sensing. Furthermore, the association
of miombo woodland species with surface solar radiation and skin temperature highlights
their potential vulnerability to shifts in climate patterns.
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5. Conclusions

The EOS, LOS, base value, and peak value of B. spiciformis differ from those of other
species. Additionally, surface solar radiation and skin temperature are significant predictors
of the SOS for miombo tree species, while SOS itself serves as an important predictor of
EOS. These findings enhance our understanding of how miombo tree species respond to
climatic factors, with solar radiation and skin temperature playing key roles in influencing
their phenology. This information can be valuable for predicting shifts in tree species
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phenology under the current climate change trends and could inform further research on
monitoring the phenology of miombo species. Future studies should expand the dataset to
include more seasons to better understand the effects of climate change on the phenology
of miombo tree species. Moreover, future research should cover a broader area of miombo
woodlands, incorporating diverse elevations and soil conditions, for more comprehensive
modeling of tree species’ phenological responses to climate. Additionally, establishing
networks for ground phenology monitoring will be essential to validate Land Surface
Phenology (LSP).
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Appendix B

Table A1. Dates and cloud cover (%) of acquired PlanetScope images.

Years 2017 2018 2019 2020 2021 2022 2023 2024

Month Date
Cloud
Cover

(%)
Date

Cloud
Cover

(%)
Date

Cloud
Cover

(%)
Date

Cloud
Cover

(%)
Date

Cloud
Cover

(%)
Date

Cloud
Cover

(%)
Date

Cloud
Cover

(%)
Date

Cloud
Cover

(%)

January 05 100 03 15 04 0 11 90 01 77 02 100 03 0 07 0
January 24 3 27 0 26 0 17 0 24 33 31 0 23 0 18 0

February 13 0 13 0 12 0 13 34 03 9 08 100 01 6 07 33
February 14 1 18 0 25 52 22 11 14 31 25 40 17 0 20 0

March 14 85 05 23 04 37 08 100 02 0 01 0 09 100 07 0
March 31 0 22 0 22 0 29 17 19 28 19 0 28 0 16 12
April 04 4 16 0 08 0 06 47 12 49 04 12 03 25 09 0
April 30 0 30 9 19 0 15 0 20 89 10 0 19 0 18 16
May 04 0 10 13 05 2 04 14 12 60 04 0 07 14 02 0
May 21 0 24 0 18 71 26 0 26 0 18 0 19 0 19 0
June 09 0 04 0 05 0 04 0 01 0 02 0 07 0 01 0
June 19 0 24 0 18 0 25 0 23 0 19 0 19 0 21 0
July 02 0 03 0 02 0 02 0 10 0 01 0 03 0 01 0
July 21 1 20 0 19 0 26 0 24 0 23 0 17 0 18 0

August 04 0 05 0 04 0 01 0 02 0 06 0 06 0 06 0
August 21 0 16 0 20 0 23 0 21 0 24 0 17 0 17 0

September 09 0 02 0 05 0 03 0 05 0 02 0 02 0 02 0
September 22 0 24 0 23 0 21 0 19 0 24 0 15 0 15 0

October 06 0 06 0 05 0 03 0 09 0 05 0 02 0 02 0
October 22 0 22 0 27 0 23 0 21 0 24 0 20 0 20 0

November 01 0 05 0 07 0 02 0 5 62 05 0 01 0 01 0
November 18 5 27 0 16 0 17 100 24 0 21 100 21 100 21 100
December 07 15 06 100 12 75 05 46 07 0 07 0 02 0 02 0
December 21 2 25 10 24 0 22 99 27 0 16 0 29 100 29 100
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