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A B S T R A C T

Dietary risk assessment of food contaminants requires a well-established understanding of the exposure in a 
heterogeneous population. There are many methods for estimating human exposure to food contaminants, such 
as intake calculations and internal biomarkers of exposure measured in individuals. However, those methods are 
expensive, partly invasive, and often provide a momentary exposure snapshot. Physiologically Based Kinetic 
(PBK) modelling is increasingly used to overcome those challenges that traditional human exposure methods 
encounter. Still, PBK models are often restricted to certain life stages (e.g., children, adolescents, adults). This 
study outlines a strategy for implementing nonlinear organ growths in age-specific PBK models to enhance di-
etary risk assessment from lifetime exposure. To this end, lifetime physiological equations calculating organ 
growth for both sexes were inventoried from literature and a library was established for 24 organs. We then 
assessed total lifelong mercury exposure via foodstuff by combining two existing age-specific PBK models for 
methylmercury (MeHg) and inorganic mercury (iHg) that simulated internal exposure to total mercury, the 
speciation typically measured in hair and urine. We implemented a set of physiological equations in the PBK 
model that fitted best the total mercury measured in individuals’ organs, hair, and urine from heterogeneous 
populations. For refined dietary risk assessment, we ultimately estimated total mercury concentration in hair and 
urine based on i) maximum limits defined by the regulation for MeHg in seafood, ii) the health-based guidance 
values for MeHg and iHg, and iii) realistic intakes considering French demographic parameters and food con-
sumption data. These exposure scenarios demonstrated that total mercury concentrations in hair and urine 
estimated from realistic intakes are below critical effect level measures at all ages. The result of this study is the 
creation of easily accessible tools in Excel and R that facilitate the implementation of physiological equations in 
Next Generation PBK models.

1. Introduction

The general population is chronically exposed to various chemicals 

from foodstuffs throughout its lifetime, thereby increasing the risk of 
triggering adverse health effects (Doménech and Martorell, 2024; EFSA, 
2011). To assess the risk of chemicals in food, the chemical hazard is 
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characterized in conjunction with the exposure levels of the population 
throughout a lifespan (WHO and IPCS, 2021). Therefore, dietary expo-
sure is commonly estimated by a real-life intake based on the frequency 
and amount consumed and the chemical concentrations measured in 
food (ANSES, 2011; Beronius et al., 2020; EFSA, 2021; Gbadamosi et al., 
2021; Pruvost-Couvreur et al., 2020a). For food safety assessment, those 
estimated real-life intakes are then compared to health-based guidance 
values (HBGV), such as a tolerable daily intake (TDI) or a risk charac-
terization ratio. An HBGV represents a chemical’s maximum acceptable 
intake level to prevent its most critical adverse health effects (Doménech 
and Martorell, 2024; Pruvost-Couvreur et al., 2020a). However, this risk 
assessment procedure often overlooks the amount of a chemical that 
accumulates in different body parts over the course of chronic exposure.

Another method for assessing exposure to contaminants is to deter-
mine chemical concentrations in biological matrices (e.g., blood, urine, 
hair, or breast milk) sampled from individuals. Those exposure mea-
surements are biomarkers of internal exposure and are often collected in 
human biomonitoring (HBM) studies (Bizjak et al., 2022; Jeddi et al., 
2022; Santonen et al., 2023). Internal exposure results from 
chemical-specific toxicokinetic processes, i.e., the absorbed dose that 
reaches the circulating blood system and distributes to the organ-
s/tissues of interest, including eliminating organs (McCarty et al., 2011). 
Toxicokinetic processes in risk assessment are considered by comparing 
measured internal exposure to available human biomonitoring guidance 
value (HBM-GV), thereby improving the evaluation of potential health 
effects in a population (WHO & IPCS, 2021). Although HBM data pro-
vide substantial information on internal exposure, their collection can 
often be considered invasive and costly. In addition, a single sample is 
typically collected at one time point to monitor internal exposure 
aggregated from multiple sources and pathways in individuals (Arnold 
et al., 2013). Consequently, the origin of the chemical exposure is 
difficult to identify, and the sampling timing may strongly affect the 
concentrations measured in biological matrices (Dede et al., 2018). 
Furthermore, it is difficult to comprehensively collect other important 
co-variates that influence the occurrence of a health effect (e.g., the 
chemical toxicity in different subpopulations, the sensitivity of the 
exposed individual and of a subpopulation, the duration and route of 
exposure (Buist, 2010) as well as the dose magnitude).

Advanced methodologies to determine dietary intake include expo-
sure reconstruction using exposure biomarkers and computational 
models (Georgopoulos et al., 2009). These approaches support the 
application of computational New Approach Methodologies (NAMs) in 
the regulatory field (Deepika & Kumar, 2023). Computational tox-
icokinetic models were shown to complement human biomonitoring as a 
non-invasive and non-expensive tool, particularly when reliably cali-
brated. Indeed, physiologically based kinetic (PBK) models support the 
prediction of internal exposure in multiple organs, including target, 
storage, and elimination organs, for all simulated time points and across 
exposure doses (Zhang et al., 2024). PBK models thereby simulate the 
toxicokinetic processes of Absorption, Distribution, Metabolism, and 
Excretion (ADME) within the body by combining numerous compart-
ments (organs) connected by blood flows (WHO and IPCS, 2010). The 
structure of PBK models enables several exposure routes to be aggre-
gated, including ingestion, inhalation, and dermal exposure. The inter-
nal exposure is thereby estimated based on all external sources by 
simulating an established PBK model forward. Inversely, PBK models 
estimate the external exposures when considering the biomarker of 
exposure concentrations by applying reverse dosimetry (Dopart and 
Friesen, 2017; Georgopoulos et al., 2009; HBM4EU, 2018; Yoon et al., 
2022).

In most cases, PBK models are established for a certain life stage, 
such as childhood, adulthood, or pregnancy. Internal exposures across 
specific life stages can also be extrapolated (WHO and IPCS, 2021), but 
this application is challenging due to complex physiological changes. 
Current practice relies on using physiological parameters that are 
commonly defined as fractions of body weight and cardiac output to 

calculate organ volumes and blood flows to the organs, respectively. In 
contrast, several lifetime PBK models implemented various non-linear 
physiological equations for different organ growths to model lifetime 
exposure across life stages (Beaudouin et al., 2010; Deepika et al., 2021; 
Haddad et al., 2001, 2006; Mallick et al., 2020; Pendse et al., 2020; Price 
et al., 2003; Ring et al., 2017; Sarigiannis et al., 2020; Smith et al., 2014; 
Verner et al., 2008; Wu et al., 2015). Considering these nonlinear 
physiological changes enables a less uncertain estimation of the chem-
ical concentrations in biological matrices for different ages. To facilitate 
the establishment of lifetime PBK models for any chemical, existing 
non-linear physiological equations for organ growths, including refine-
ment for adipose tissues, muscles, and the brain (Schlender et al., 2016) 
need to be documented in a user-friendly and applicable manner.

The present study aimed to establish a strategy for implementing 
physiological equations in PBK models to enhance the assessment of 
chemical risk in food from lifetime dietary exposure, illustrated by 
mercury contamination in food as a case study. To this end, we 1) 
established a library of physiological equations describing organ volume 
increases over a lifespan, 2) estimated internal exposure to total mercury 
by modeling chronic dietary exposure to methylmercury (MeHg) and 
inorganic mercury (iHg) in a virtual population considering different 
socio-economic and socio-demographic parameters as well as French 
food consumption data, and 3) compared total mercury concentrations 
in hair and urine estimated by three intake scenarios (i.e., real lifetime 
intakes, maximum MeHg levels in seafood, HBGVs for MeHg and iHg) 
with HBM-GV. This study produced a user-friendly Excel sheet and an R 
code for applying the inventory of physiological equations in the Next 
Generation PBK models needed for refined dietary risk assessment.

2. Materials and methods

Fig. 1 illustrates our general workflow, encompassing a literature 
review on lifetime PBK models, followed by their application in modi-
fying age-specific PBK models for chronic total mercury exposure.

2.1. Inventory of lifetime physiological equations

A library of lifetime physiological equations was assembled for 24 
organs/tissues that were extracted from lifetime PBK models. Seven 
lifetime PBK models published before April 2023 (Ratier et al., 2023) 
were directly identified (Deepika et al., 2021; Mallick et al., 2020; 
Pendse et al., 2020; Sarigiannis et al., 2020; Smith et al., 2014; Verner 
et al., 2008; Wu et al., 2015), that further highlighted five additional 
lifetime PBK models (Beaudouin et al., 2010; Haddad et al., 2001, 2006; 
Price et al., 2003; Ring et al., 2017). We synthesized a library of lifetime 
physiological equations based on the 12 reviewed lifetime PBK models. 
An overview of the reviewed lifetime PBK models is provided in Table 1, 
including their application of substance family and specific substances, 
number of compartments, and exposure routes. Table 2 lists the original 
publications that have been used to parametrize the physiological 
equations of organ growth as reported in the different lifetime PBK 
models. The inventory was synthesized in a user-friendly Excel calcu-
lator and R script (available in the supplement, at GitHub, and Zenodo). 
These applications aim to support the harmonization of physiological 
parameter values and their associated variability for both sexes used in 
age-specific and lifetime PBK models.

2.2. Modification of existing age-specific PBK model to estimate lifetime 
mercury exposure – a case study

2.2.1. Total mercury lifetime PBK model
We selected total mercury (Hg) exposure from diet as a case study 

because food is the primary source of chronic exposure (ANSES, 2011). 
To this end, the lifetime PBK model for total mercury was based on the 
structures and parameters from various published age-specific PBK 
models (Abass et al., 2018; Carrier et al., 2001; Gastellu et al., 2024; Ou 
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et al., 2018; Pope and Rand, 2021). Fig. 2 illustrates the structure of two 
combined PBK models for MeHg and iHg to model the total mercury 
body burden as a mixture. Briefly, the PBK model for MeHg was adapted 
from Ou et al. (2018) and included 11 compartments. The PBK model 

published by Carrier et al. (2001) modeled the distribution of iHg. In the 
lifetime PBK model established here, both iHg and MeHg were con-
nected by the demethylation of MeHg into iHg, enabling the calculation 
of total mercury. MeHg and iHg intakes were assumed to originate 

Fig. 1. The general workflow consisted of A) literature research of lifetime PBK models that originally applied physiological equations of organ growths and B) the 
modification of two age-specific PBK models of methylmercury and inorganic mercury to simulate total mercury over life. This workflow is suggested to improve 
dietary exposure assessment for chronic exposures.

Table 1 
Overview of the 12 lifetime PBK models included in our study from which physiological equations describing volume changes of organs were extracted.

Model sources Substance family Substances Compartments Routes of exposure

Beaudouin et al. (2010)
(accounting pregnancy)

Environmental contaminants 1,3-butadiene 
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)

22 Ingestion, Inhalation

Deepika et al. (2021) PFAS PFOS 10 Ingestion
Haddad et al. (2001) Non-specific family Non-specific substance 16 ​
Haddad et al. (2006) Volatile Organic Compounds 

Disinfection by-products
Trichloroethylene 
Trihalomethanes 
Chloroform 
Bromodichloromethane 
Dibromochloromethane 
Bromoform

6 Ingestion, inhalation, dermal

Mallick et al. (2020) Pesticides (pyrethroids) Deltamethrin 
Cis-permethrin 
Trans-permethrin 
Esfenvalerate 
Cyphenothrin 
Cyhalothrin 
Cyfluthrin 
Bifenthrin

7 Ingestion, Inhalation

Pendse et al. (2020) Non-specific family Trichloroethylene 
ATRA 
Coumarin

10 Ingestion, Inhalation, Dermal, Intravenous

Price et al. (2003) Volatile Organic Compounds Furan 17 Inhalation
Ring et al. (2017) Non-specific family Non-specific substance 17 Ingestion
Sarigiannis et al. (2020) Non-specific family Bisphenol A 

Bis(2-ethylhexyl) 
DEHO 
Cadmium

14 Ingestion, Inhalation, Dermal (pregnancy)

Smith et al. (2014) Pesticides (and metabolites) Chlorpyrifos 
Chlorpyrifos-oxon (metabolite) 
TCP (metabolite)

15 Ingestion

Verner et al. (2008)
(accounting pregnancy)

Persistent Organic Pollutants (POP) Hexachlorobenzene 
PCB-153 
PCB-180

10 Ingestion

Wu et al. (2015) PFAS PFOA, PFOS 5 Ingestion

T. Gastellu et al.                                                                                                                                                                                                                                Environmental Research 265 (2025) 120393 

3 



Table 2 
Summary of the original publications used to parameterize lifetime physiological equations for 24 tissues/organs extracted from the 12 lifetime PBK models. Body 
surface area is used as input in multiple physiological equations. All equations and original publications are documented in the Excel file (Supplement).

Fig. 2. Established PBK model of total mercury as combined methylmercury and inorganic mercury exposure. The left PBK model includes 11 compartments to 
simulate methylmercury (orange boxes) and the right PBK model consists of seven compartments to simulate inorganic mercury (green boxes) distribution 
throughout the body. The PBK model structures were adapted from Ou et al. (2018) for methylmercury and from Carrier et al. (2001) for inorganic mercury.
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exclusively from dietary exposures (Kim et al., 2016). Specifically, 
MeHg intakes were integrated into the gut lumen and absorbed iHg 
doses were integrated in the blood as proposed by Abass et al. (2018)
and Nuttall (2004), respectively. The diffusion of MeHg in the brain 
followed the model proposed by Pope and Rand (2021), who excluded 
the blood-brain barrier and thereby showed improved estimations 
compared with HBM data. In the PBK model for MeHg, the ‘slowly 
perfused organs’ compartment lumped skin, heart, diaphragm, muscles, 
bones, and marrow. The ‘rapidly perfused organs’ compartment lumped 
the thyroid, breast, lung, stomach, spleen, pancreas, adrenals, and go-
nads. Excretions of total mercury were simulated as the sum of iHg and 
MeHg concentrations in urine and hair, which are the main exposure 
biomarkers collected in HBM studies and usually measured as total 
mercury (Esteban-López et al., 2022). All mercury-specific model pa-
rameters are detailed in the Supplement (Section d).

We replaced the scaling factors of organ volumes used in the age- 
specific PBK models with physiological equations of organ growth (see 
section 2.2.1). As input for the physiological equations, body growth 
over a lifetime (body weight and height) was scaled on the French 
population (ANSES, 2017; Gastellu et al., 2024). Arithmetic means of 
body weight and height were computed separately for both sexes, using 
data from 5855 individuals aged from birth to 80 years.

2.2.2. Construction of a virtual population with lifetime exposure 
trajectories

Mercury dietary exposure was performed using the lifetime exposure 
trajectory methodology based on French survey data. This methodology 
has been developed to construct chemical exposure throughout the 
lifetime considering five socio-economic and socio-demographic pa-
rameters (i.e., sex, age, region of habitation, body mass index, socio- 
economical index) of individuals with a coherent evolution from birth 
to 80 years. Trajectories were constructed for a pool of 500 virtual in-
dividuals to simulate the dietary exposure for a French representative 
population (Pruvost-Couvreur et al., 2020b, 2021). Real-measured di-
etary exposures were imputed for each day of the virtual individuals, 
considering the socio-demographic and socio-economic characteristics 
to model daily mixture intakes of iHg and MeHg (Gastellu et al., 2024). 
Individual dietary exposures were estimated based on the exposure data 
from the last Total Diet Studies (TDS) performed in France: TDS2 for the 
population from 3 to 80 years (ANSES, 2011). A specific TDS for infants 
under 3 years evaluated non-breastfeed consumption during childhood 
(ANSES, 2016). The food contamination data were reported in the 
CALIPSO study, which focused on monitoring seafood items (AFSSA, 
2006). This data addition avoids underestimating the exposure to mer-
cury by seafood. To finally estimate the daily exposure to MeHg and iHg 
for each individual (μg/kg bw/day), MeHg and iHg contamination data 
in different food items (j in μg/g) were combined with daily food con-
sumption data (i in g/day) representative for the French population 
according to 

Exposure =

∑lil × jHg,l

Body weight
Equation 1 

where l represents the different food and individual body weight (in kg). 
However, only total mercury was quantified in the French TDS, and the 
speciation hypothesis was therefore applied to estimate the speciation 
proportions of mercury in food products. Sirot et al. (2008) showed that 
MeHg is the dominant mercury form in seafood, while iHg is the 
dominant mercury form in other food products. More details on this 
methodology are available in a previous study (Gastellu et al., 2024).

2.3. HBM data of total mercury exposure

PBK model simulations were compared with real-measured concen-
trations of total Hg in different biological matrices (i.e., brain, kidney, 
liver, hair, and urine) from French HBM data (Bellouard et al., 2022; 

Goullé et al., 2010; Oleko et al., 2024) to refine and evaluate the lifetime 
PBK model. An overview of the studies is provided in Table 3. We hy-
pothesized that exposure to mercury from food was constant over the 
past two decades, thereby allowing us to use the three HBM studies 
despite different sampling times of biological matrices.

2.3.1. HBM data set to select a set of physiological equations
The HBM data set published by Bellouard et al. (2022) was used with 

the purpose of selecting the best PBK model fit depending on the 
different sets of growth equations implemented for the modeled organs. 
Bellouard et al. (2022) reported concentrations of total mercury in 
several organs, including hair and urine, in addition to the ages of 20 
individuals (Table 4). Urinary concentrations were not used in this study 
due to a limited number of samples (n = 6). The simulations of the 
modified lifetime PBK model for the virtual population were performed 
on only four sets of volume growth equations published by Haddad et al. 
(2001), Beaudouin et al. (2010), Smith et al. (2014) and Ring et al. 
(2017) due to calculation limits. These four sets of growth curves were 
selected because they had sex-dependent growth equations for at least 
five compartments in the mercury age-specific PBK model. Other 
equations extracted from the library described the organ growth of the 
lacking PBK compartments.

We evaluated the goodness of fit by comparing measured and 
simulated mercury concentrations for all organs. To this end, the sim-
ulations of the annual internal mercury concentrations in several 
matrices (i.e., brain, liver, kidney, and hair) were compared to the in-
dividual measurements at the corresponding ages (Bellouard et al., 
2022). Between PBK model simulations, the physiological parameters 
were only modified according to the four sets of lifetime equations, 
while the chemical-specific parameters remained the same. For each 
tested PBK model, we determined a relative Root-mean-square error 

Table 3 
Description of HBM studies used to select or evaluate the lifetime mercury PBK 
model.

Study Number of 
individuals

Age of 
individuals

Analyzed 
matrices

Usage in this 
study

Bellouard 
et al. 
(2022)

20 18–96 Brain, Kidney, 
Liver, Hair

Selection

Goullé et al. 
(2010)

21 19–57 Brain, Kidney, 
Liver

Evaluation

Oleko et al. 
(2024)

3471 6–74 Urine Evaluation
1331 Hair Evaluation

Table 4 
Distributions and coefficient of variations were used from Beaudouin et al. 
(2010) and McNally et al. (2014), respectively, to simulate the variabilities of 
organ growths in this study.

Equations Distribution Coefficient of variation

Male Female

Bodyweight* Normal 0.15
Height* Normal 0.15
Brain Normal 0.05
Kidneys Normal 0.25
Liver Normal 0.24 0.25
Pancreas Normal 0.27 0.29
Stomach Normal 0.31
Intestine (small) Normal 0.12 0.13
Intestine (large) Normal 0.20 0.14
Heart Normal 0.19 0.25
Bone Normal 0.01
Gonads Normal 0.05
Lungs Log-normal 0.33
Spleen Log-normal 0.38
Muscles Log-normal 0.27
Adipose Log-normal 0.42
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(RMSE) for the respective organ (k) as a goodness-of-fit metric, with 
weights proportional to the magnitude of errors. Then, an average of all 
the RMSE values was calculated in the same unit as the target variable 
(Eq. (2)) according to 

RMSEk =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑
(

HgEstimated − HgHBM
HgHBM

)2

N

√
√
√
√
√

(Equation 2) 

with HgHBM representing the total mercury concentrations (μg/g) 
measured in organ k for each individual (Bellouard et al., 2022), HgEs-

timated is the average total mercury concentration (μg/g) in organ k 
estimated at each individual’s age (Bellouard et al., 2022), and N is the 
number of individuals for which measurements in the respective organ 
exist. The different sets of physiological growth equations were imple-
mented in the PBK model and RMSE was calculated for each simulation. 
The model associated with the lowest average RMSE was selected and 
further evaluated as the best lifetime PBK model for total mercury using 
two other HBM data sets as described below.

2.3.2. HBM data sets to evaluate the total mercury lifetime PBK model
The selected lifetime PBK model was thereafter evaluated by 

comparing the variability of modeled mercury concentrations with 
measured exposure biomarkers from two HBM data sets (Goullé et al., 
2010; Oleko et al., 2024). To this end, we ran the selected lifetime PBK 
model ten times by integrating population variability. Variability of 
organ volume was added to the established total mercury lifetime PBK 
model for each compartment as proposed by McNally et al. (2014). The 
variability of organ volume was computed by assuming either a normal 
distribution (Eq. (3)) or log-normal distribution (Eq. (4)) for the 
different organs, as listed in Table 4. 

ΔVOrgan =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

N(1,CV)2
√

(Equation 3) 

ΔVOrgan = log(N(1,CV)) (Equation 4) 

The parameter ΔVOrgan represents the variability for the organ vol-
ume, (log) N is the (Log) Normal distribution, and CV means the coef-
ficient of variation. Please note that the normal distribution is the 
squared root of the squared distribution to avoid negative values. The 
coefficient of variation for each organ and for both sexes is detailed in 
Table 4.

Goullé et al. (2010) measured concentrations of total mercury in the 
brain, kidney, and liver from autopsied adult people but without 
reporting the ages of the individuals (Table 3). Therefore, those 
measured organ concentrations were used to evaluate the distributions 
in respective organs gained from the selected lifetime PBK model 
simulated for our virtual adult population.

The Esteban population cohort was additionally used to evaluate the 
selected lifetime PBK model for total mercury on measured urine and 
hair concentrations in 4802 individuals (6–74 years old) (Oleko et al., 
2024). Biomarkers were sampled in France between 2014 and 2016. The 
average and 95th percentile total mercury concentrations measured in 
hair and urine obtained for different age groups of the Esteban partici-
pants were compared to simulated population distributions of mercury 
in exposure biomarkers at different stages of life, including childhood.

2.4. Risk assessment of lifetime exposure to mercury

We aimed to illustrate how to refine risk characterizations and sup-
port regulatory decisions by using the established PBK model as a life-
time exposure trajectory methodology. Using a statistical approach, we 
first correlated annually averaged biomarker concentrations estimated 
by the lifetime PBK model with the real-life exposures to MeHg and iHg 
intakes combined for each year of life. Pearson’s correlation with sta-
tistical significance of p ≤ 0.05 was used to identify associations 

between intakes of the two mercury forms and exposure concentrations 
in hair, urine, and organs. This information is important for refined risk 
assessment.

We also translated maximum levels in seafood items, tolerable MeHg 
and iHg intakes defined for populations (HBGV), and real intakes to total 
mercury estimated in hair and urine using the selected lifetime PBK 
model. Hereby, maximum contamination levels for total mercury in salt, 
food supplements, and seafood products are regulated to limit the 
exposure and are currently set at 0.1 mg/kg wet body weight of salt and 
food supplements as well as 0.3, 0.5, and 1.0 mg/kg wet body weight of 
fishery products, muscle meat of fish, and crustaceans in accordance 
with European Commission Regulation (EU) 2023/915B. Please note 
that we only simulated the three highest maximum contamination limits 
with a focus on seafood consumption as a main source of MeHg intake 
(Sirot et al., 2008). In addition, we used weekly tolerable intakes for iHg 
and MeHg to estimate total mercury in urine and total mercury in hair, 
respectively, representing the most robust biomarker for each mercury 
form Oleko et al. (2024). To this end, 11.5 mg/kg of MeHg in maternal 
hair was associated with neurodevelopment effects identified in children 
and foetus as the critical effect based on epidemiology studies (EFSA, 
2012). This point of departure corresponds to the intake of 1.3 μg 
MeHg/kg body weight/week defined as HBGV. For iHg, the weekly 
intake of 4 μg iHg/kg body weight is defined as HBGV, considering a 
renal effect. Please note that the HBGV considers the critical effect to be 
triggered by the same concentration of only one chemical at all stages of 
life. At the same time, our lifetime PBK model simulates total mercury as 
a mixture of MeHg and iHg linked to different effects.

2.5. Software and codes

All calculations were made with the software R (v.4.2.3). The R 
package ‘mrgsolve’ (v.1.4.1) was used to code the models and to solve the 
differential equations of PBK models (Baron et al., 2022). To this end, we 
conducted forward simulations based on reported PBK parameter values 
and variability estimates of exposure intakes and organ volumes as 
described earlier. The code of the total mercury PBK model and all 
lifetime physiological models are available on a GitHub repository and 
Zenodo with an example of lifetime exposure trajectories to MeHg and 
iHg. An Excel file and an R code provide all the equations of lifetime 
physiological models calculating the volume of organs for all stages of 
life after birth (Supplement).

3. Results and discussion

3.1. Database of lifetime PBK models and their physiological equations

Twelve PBK models simulated internal exposure over a lifespan for 
various chemical classes, e.g., pesticides, persistent organic pollutants, 
or volatile organic compounds (Table 1). The PBK models contained 
between five (Wu et al., 2015) and 22 compartments (Beaudouin et al., 
2010). Information on compartments and corresponding lifetime equa-
tions from reviewed PBK models were extracted for both sexes to create 
a library of organ-specific lifetime equations. This inventory illustrated 
that multiple equations have been developed over the last decades to 
describe the growth of major organs (i.e., liver, kidney, brain) and other 
physiological parameters. In total, 24 physiological parameters were 
identified, covering the volume growth of major organs, cardiac output, 
hematocrit, and body surface area (Fig. 3). Different equations were 
extracted from the reviewed literature to simulate organ growths as a 
function of different body parameters (weight, height, or body surface 
area). The number of different lifetime equations per organ ranged from 
one equation for the thyroid, diaphragm, and adrenal glands to 12 
equations for the liver (Fig. 3). Moreover, two or three separate equa-
tions described some lifetime growth equations to model different dy-
namics of volume growth as a function of age. All equations have been 
compiled and are prepared for calculating age-specific organ volumes as 
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well as the lifetime growth of organ volumes (Excel and R files in Sup-
plement and GitHub repository/Zenodo).

No physiological equations existed for a few organs/tissues (e.g., 
intestine, fat, bone, marrow). Instead, constant rates were applied as 
reported by Brown et al. (1997) to model growth over a lifetime (Fig. 3). 

Interestingly, physiological equations describing the evolution of the 
blood flow to organs over a lifetime were applied in only a few lifetime 
PBK models, such as blood flow to the brain (Price et al., 2003) and other 
organs (Sarigiannis et al., 2020) (Excel file in the Supplement). Given 
the limited selection of lifetime equations, we applied constant rates 

Fig. 3. Total number of physiological equations per organ identified in the 12 different lifetime PBK models that were used to simulate volume growth (V). Equations 
for ‵rapidly perfused organs’ and ‘slowly perfused organs’ are found in the lifetime physiological equation library (Excel file in the Supplement). The number of 
equations identified per organ is detailed in the central column of the table. In addition, we assumed a constant rate throughout the lifetime to calculate the volume of 
organs for which no physiological equations existed (e.g., intestine, fat, bone, marrow) as reported by Brown et al. (1997).

Fig. 4. Graphical representation of the volume growth variability for major organs (e.g., blood, kidney, fat, brain, and liver, in L) over time (years) depending on the 
different lifetime physiological equations. The dashed curves represent the average volume growth based on all physiological equations. The colored areas represent 
the standard deviation values. The variability is indicated for both sexes. The growth curves of other organs are depicted in the Excel file (Supplement).
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relatively scaled to the growth of organ volumes for the blood flow to 
each organ as proposed by Beaudouin et al. (2010).

3.2. Variability in organ growths

The shapes of the growth curves for the same organs were similar 
between the different physiological equations (Fig. 4). Commonly, 
organ volumes increased over approximately 18 years of age until 
reaching a plateau. Some modeled organ volumes fluctuated after 18 
years of age due to body weight and height variations (Excel file and R 
code in Supplement). The coefficient of variations (CV) resulting from 
the different physiological models ranged between ~10% and <90%, 
with <30% variability usually estimated for the organs most frequently 
used in age-specific PBK models, including blood, liver, kidney, muscles, 
and lungs (Excel sheet in supplement). The variation in organ volumes 
aligned well with the CV values reported by McNally et al. (2014)
(Table 3). It is important to note that variation differs between life 
stages, with generally higher variation observed during infancy, 
toddlerhood, and in adults over 60 years of age. The higher variation 
may be attributed to the limited data available for calibrating physio-
logical lifetime equations at early and late life stages.

Multiple factors might contribute to variability in organ growth over 
a lifetime. Firstly, differences in growth curves between identified life-
time physiological models likely reflect population variability, including 
differences in race and ethnicity (Ring et al., 2017). Secondly, lifetime 
physiological equations were derived from different body parameters 
such as age, body weight, or height. Thirdly, polynomial equations 
might differ, resulting in different estimated parameters from the 
regression to a similar or even identical data set of organ volume mea-
surements. For example, the PBK models established by Beaudouin et al. 
(2010) and Sarigiannis et al. (2020) used ICRP (2002) data to fit growth 
curves differently. Fourthly, the authors might not have considered the 
same tissues for a common biological term. Fat, for instance, can also be 
designed as adipose tissue. These terms may consider overall adipose 
tissues or only the non-essential adipose tissues (Price et al., 2003). This 
issue needs better descriptions of the physiological parameters with a 
common language between PBK models (Ruebenacker et al., 2007). Due 
to the strong need within the scientific community for a PBK ontology, 
efforts should be made to develop and standardize such a framework. 
Lastly, some equations were calibrated for a limited age range, and 
additional uncertainty was introduced when volume growth was 
extrapolated to other age groups. For instance, Haddad et al. (2001)
developed growth curves for multiple organs based on a data set pub-
lished by Altman and Dittmer (1962), who reported organ weights 
gained from birth to 18 years of age.

3.3. Sex-dependent organ growths

The dynamics of organ growth as a function of sex have been 
described differently. One lifetime PBK model analyzed male individuals 
only (Price et al., 2003) and two PBK models females (Verner et al., 
2008; Wu et al., 2015). Nine out of 12 PBK lifetime models reported 
physiological lifetime equations for both sexes, highlighting the 
importance of considering sex-specific physiological growth curves in 
lifetime PBK models. Five of these models considered the same co-
efficients of the polynomial equations, thus introducing differences in 
organ growth through sex-specific body parameter dynamics as input to 
the growth equations (Haddad et al., 2006; Mallick et al., 2020; Pendse 
et al., 2020; Sarigiannis et al., 2020; Smith et al., 2014). The other four 
PBK models applied sex-specific physiological equations and sex-specific 
body parameters for most organs (Beaudouin et al., 2010; Deepika et al., 
2021; Haddad et al., 2001; Ring et al., 2017). Fig. 4 illustrates the vol-
ume curves of major organs for both sexes. Naturally, sex-specific 
physiological equations might reflect better physiological differences 
between sexes to consider the variability as a potential source for 
chemical body burden differences. However, it should be noted that 

variability may be more accurately estimated in organs where a greater 
number of physiological equations exist compared to those organs that 
are underrepresented in PBK models due to limited data (Fig. 3).

3.4. Modification of an age-specific PBK model to lifetime mercury 
exposure

Daily exposures to MeHg and iHg were estimated based on French 
consumption and food contamination levels (Eq. (1)). These individual 
lifetime exposure trajectories were input in the lifetime PBK models. 
Simulation results on populational lifetime dietary exposure to MeHg 
and iHg are provided in supplementary material (Figs. S2 and S3). Three 
different HBM data sets were used to compare the PBK simulations for 
total mercury with concentrations measured in French individuals 
(Table 4). Hence, the following PBK simulations were solely based on 
the French population, including body growth parameters, dietary 
exposure trajectories, and measured internal mercury concentrations.

3.4.1. Selection of physiological lifetime equations implemented in the 
mercury PBK model

The HBM data set from Bellouard et al. (2022) was used to select the 
best-fitting physiological lifetime equations implemented in the mercury 
PBK model, based on total mercury measurements in autopsied organs of 
20 individuals. As shown in Fig. 5, the highest mercury concentrations 
were measured in hair, followed by kidney and liver, regardless of age, 
which aligns with our simulations. Measured mercury concentrations 
increased over age in all sampled organs, specifically after age 60. Lower 
mercury concentrations in younger generations might reflect successful 
risk management strategies to decrease mercury exposure, such as rec-
ommendations for seafood consumption (i.e., seafood type and fre-
quency), which have been communicated to the general population to 
increase overall awareness and prevent mercury-associated risks. In 
addition, encapsulated amalgams have been replaced by composite 
resins (Basu et al., 2018). However, this trend needs to be interpreted 
cautiously as fewer total mercury measurements were retrieved from 
autopsy samples before the age of 60 and the limited number of in-
dividuals might have reduced the robustness of the variability.

Four sets of volume growth equations were implemented in the 
mercury PBK model and the average RMSE was calculated for hair, 
kidney, liver, and brain. The average calculated RMSE values ranged 
between 0.81 with the equation set extracted from Beaudouin et al. 
(2010) as the best fit and 0.89 with the equation set extracted from 
Haddad et al. (2001) as the worst fit. Thus, the physiological equations 
extracted from Beaudouin et al. (2010) were selected and implemented 
in the lifetime PBK model, which was further complemented with vol-
ume equations for adipose tissue (Deepika et al., 2021), bones (Ring 
et al., 2017), and hematocrit (Mallick et al., 2020), considering the 
lowest RMSE.

The lifetime PBK model simulated an increase in average mercury 
concentrations in hair, kidney, brain, and liver during childhood due to 
the onset of early consumption of seafood and fatty fish, and remained 
stable after 25 years of age (Fig. 5). Basu et al. (2018) reported that 
adults had blood mercury concentration around twice those found in 
children according to their meta-study, which also reflects the increase 
in mercury body burden between childhood and adulthood (ATSDR, 
2022). The discrepancy between individual mercury measurements and 
simulated average concentrations became more pronounced after the 
age of 60, with liver and hair concentrations underestimated in the 
elderly. This underestimation of total mercury in the elderly could be 
due to higher seafood consumption or the presence of dental amalgams. 
Both factors were not considered in this lifetime PBK model.

3.4.2. Evaluation of the established lifetime mercury PBK model
HBM data reported by Goullé et al. (2010) and by Oleko et al. (2024)

were further used to evaluate the fits by the established lifetime PBK 
model.
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3.4.2.1. HBM data from Goullé et al. (2010). Firstly, the lifetime PBK 
model was evaluated using total mercury measurements in the brain, 
kidney, and liver from 21 autopsied individuals of unknown ages 
(Goullé et al., 2010). Here, the same exposure scenarios were simulated 
as before, but organ volume variability was added to simulate popula-
tion variability (Table 4). The average simulated brain and kidney 
concentrations agreed well with the average total mercury measure-
ments in the respective organs (Table 5). However, the average liver 
concentration was underestimated by 7.4 times compared to the 
measured mean concentration, likely because the liver does not accu-
mulate mercury in the same way as the kidney accumulates iHg. 
Moreover, the imputation methodology likely underestimated the 
exposure to MeHg among low seafood consumers (Gastellu et al., 2024), 
which may be an additional factor contributing to the overall underes-
timation. Advanced methodologies could be used, such as the method 
developed by the National Cancer Institute (NCI) or the Multiple Source 
Method (MSM) to integrate consumption data frequency and refine 
mercury exposure assessment (Harttig et al., 2011; Tooze et al., 2006). A 
drawback of these imputation methodologies is, however, that they 
extrapolate only one chemical and not the mixture of iHg and MeHg. 
New developments are therefore necessary to estimate the distribution 
of the internal exposures more accurately, particularly in the context of 

chemical mixtures.

3.4.2.2. HBM data from Oleko et al. (2024). Secondly, total mercury 
was measured as concentrations in hair and urine samples in the Esteban 
cohort (Oleko et al., 2024) (Table 6, Fig. 6). Importantly, exposures to 
MeHg and iHg reflect total mercury concentration measured in hair and 
urine, respectively (Oleko et al., 2024). Those concentrations might be 
influenced over life due to age-related factors such as body growth, di-
etary changes, and behavior changes (Gastellu et al., 2024).

3.4.3. Urine concentrations - Esteban study (Oleko et al., 2024)
The average total mercury concentrations measured in urine are 

almost constant over the age groups (Oleko et al., 2024). In contrast, 
simulated total mercury increased slightly in urine between childhood 
and adulthood and underestimated the average concentration by a 
factor of 2–3, but also could not reach the variability observed in the 
HBM data (Fig. 6). Even the estimations of the 95th percentile were 
underestimated by a factor of 5–7 regardless of the age group (Table 6). 
This result contrasts our findings that simulated total mercury in the 
kidney agreed well with measurements (Goullé et al., 2010), assuming 
that a high positive correlation (R2 = 1) between estimated kidney and 
urine concentration exists (Fig. 7). This high correlation was also found 
by Esteban-López et al. (2022). A consequent hypothesis would be that 
mercury in urine might have originated from iHg exposures by ingestion 
and inhalation, which we would have underestimated due to the lack of 
information on individual exposures from smoking, environmental 
pollution (natural or industrial for those living close to an industry 
releasing iHg in the atmosphere), and dental amalgams (Oleko et al., 
2024). Moreover, the lifetime PBK modeling estimates an average daily 
concentration in urine, while total mercury concentration measure-
ments represent concentrated mercury from first-morning urine. Alto-
gether, total mercury measurements in urine were associated with high 
uncertainties in our estimates, which was also reflected in the data 
discussed by Esteban-López et al. (2022). Notably, the contribution of 
iHg to total mercury estimated in urine accounted for around 90, ac-
cording to the PBK model results (Fig. S4).

Fig. 5. Simulated total mercury concentration over life in different human matrices (hair, kidney, brain, and liver) using the selected lifetime PBK model with the set 
of physiological equations extracted from Beaudouin et al. (2010). The bold line represents the average modeled concentration, and the blue bands represent the 
population distribution between the 5th and 95th percentile. The red dots show the measured total mercury concentrations published by Bellouard et al. (2022).

Table 5 
Comparison of the measured and simulated total mercury concentrations (in μg/ 
g) in brain, kidney, and liver for adults. Total mercury concentrations reported 
by Goullé et al. (2010) are presented as average and 10th and 90th percentile 
ranges, while the simulated concentration is given as average in adults.

Brain Kidney Liver

Average concentration 
[10th percentile – 90th 
percentile] (Goullé 
et al., 2010)

11.12 
[4.14–20.41]

119.97 
[20.87–441.44]

66.91 
[12.39–170.36]

Average simulated 
concentration in 
adulthood

6.2 115.1 9.0
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3.4.4. Hair concentrations - Esteban study (Oleko et al., 2024)
The total mercury concentration in hair is considered a robust 

biomarker of exposure to MeHg, originating mainly from seafood (Sirot 
et al., 2008). The distributions of total mercury concentration measured 
in hair from the Esteban study were compared to the simulated hair 
exposures for different age groups (Table 6, Fig. 6). Total mercury 
concentrations measured in hair from the Esteban participants slightly 
decreased during childhood, likely caused by dilution effects due to the 
body growth. Afterward, mercury concentrations in hair increased 
during adulthood, likely due to higher consumption of seafood, partic-
ularly fatty fish and crustaceans (Oleko et al., 2024). In addition, the 

variability became larger with the increasing ages of the Esteban par-
ticipants. The lifetime PBK model also simulated the dynamic of the 
HBM data in dependence on age. Specifically, improved fits of mercury 
concentration distributions in hair during childhood for the age groups 
6–10 years and 11–14 years were performed (Gastellu et al., 2024). 
Considering the comparisons between the mean and the 95th percentile 
of HBM data and the simulated data, results are within the confidence 
interval of HBM data for some age groups of age (15–17, 18–29, 30–44, 
and 45–59 years of age). Moreover, differences between the estimated 
internal exposures and the HBM data were below a factor of 2, which is 
considered a well-established PBK model (WHO and IPCS, 2021). In 

Table 6 
Comparison of total mercury concentrations in urine (μg/L) and hair (μg/g) measured in Esteban (Oleko et al., 2024) and the mean and 95th percentile interval 
(standard deviation) estimated by the lifetime PBK model. (Urine: LOD = 0.012 μg L− 1, LOQ = 0.04 μg L− 1; Hair: LOD = 0.005 μg/g, LOQ = 0.012 μg/g).

6–10 years 11–14 years 15–17 years 18–29 years 30–44 years 45–59 years 60–74 years

Urine (μg/ 
L)

Nr of HBM samples 477 389 186 161 609 893 756

Mean HBM data 0.92 [0.82; 
1.02]

0.85 [0.77; 
0.94]

0.96 [0.82; 
1.13]

0.63 [0.48; 
0.84]

0.96 [0.85; 
1.09]

0.74 [0.65; 
0.84]

0.62 [0.55; 
0.70]

PBK 
model

0.3 0.3 0.3 0.4 0.4 0.4 0.4

95th 

percentile
HBM data 3.07 [2.41; 

4.77]
2.84 [2.26; 
3.23]

2.96 [2.58; 
3.17]

3.28 [2.59; 
4.69]

4.15 [3.57; 
4.65]

3.07 [2.62; 
3.66]

2.57 [2.29; 
2.85]

PBK 
Model

0.5 0.5 0.5 0.6 0.7 0.7 0.6

Hair (μg/ 
g)

Nr of HBM samples 239 223 108 47 190 268 256

Mean HBM data 0.37 [0.31; 
0.44]

0.27 [0.22; 
0.34]

0.29 [0.21; 
0.42]

0.49 [0.35; 
0.68]

0.50 [0.41; 
0.61]

0.69 [0.60; 
0.79]

0.69 [0.60; 
0.81]

PBK 
model

0.5 0.4 0.3 0.4 0.5 0.5 0.5

95th 

percentile
HBM data 1.33 [0.99; 

1.80]
0.97 [0.76; 
1.21]

1.00 [0.70; 
1.31]

2.50 [1.33; 
5.15]

1.92 [1.54; 
3.20]

2.21 [1.77; 
2.40]

2.36 [1.82; 
3.59]

PBK 
Model

1.9 1.4 1.0 1.7 1.9 1.8 1.6

Fig. 6. Simulated concentration of total mercury in (A) urine and (B) hair using the selected lifetime PBK model with the set of physiological equations extracted 
from Beaudouin et al. (2010) (in blue) compared to the Esteban data (in orange) reported by Oleko et al. (2024). The bars represent population distributions, 
illustrating the median, 25th-75th percentiles, and 10th-90th percentiles.

T. Gastellu et al.                                                                                                                                                                                                                                Environmental Research 265 (2025) 120393 

10 



addition, the individuals with the highest mercury concentrations in 
hair were well estimated, even if the population distributions were 
underestimated. Therefore, the PBK model can be considered robust in 
estimating mercury concentration in hair over a lifetime. Thus, this 
methodology could be used in the risk characterization of a mixture (i.e., 
MeHg and iHg), which is considered an improvement compared with 
our previous PBK model without integrating lifetime physiological 
equations (Gastellu et al., 2024). Finally, only MeHg contributed to total 
mercury estimated in hair according to the PBK model results (Fig. S4).

3.5. Implications for mercury risk assessment

3.5.1. Associations between exposures to both mercury forms and exposure 
biomarkers

The HBM data used provided various pieces of information to esti-
mate real-life intake exposures to total mercury using organ doses or 
surrogate doses measured in urine and hair. However, the risk assess-
ment for mercury is challenging because mercury forms can be differ-
ently abundant in hair and urine matrices, which is not well reflected by 
the total mercury measurements. We therefore sought to facilitate 
translation between external intakes and internal exposures of both 
mercury forms in our lifetime PBK model application by correlating 
MeHg and iHg intakes with total mercury concentrations in hair, urine, 
and target organs (Fig. 7). Total mercury concentration in hair was 
strongly correlated with concentrations in liver and brain, primarily 
reflecting exposure to MeHg (Oleko et al., 2024). These results support 
that the total mercury concentration in hair is a robust biomarker of 
exposure to characterize the risk of neurodevelopmental effects associ-
ated with MeHg exposure. In contrast, total mercury concentration in 

urine was highly correlated with concentrations in the kidney, illus-
trating iHg accumulation in this organ and its excretion via urine (Oleko 
et al., 2024). The total mercury concentration in urine is a better 
biomarker to characterize the risk of nephrotoxic effects associated with 
iHg exposure. To conclude, the PBK model provides a powerful tool for 
improving understanding of HBM data and refining dietary risk assess-
ment by evaluating various biomarker measures.

3.5.2. Estimation of mercury in hair and urine based on various intake 
scenarios

We further translated various regulative-relevant reference values 
for risk management to total mercury concentrations in hair and urine, 
the robust biomarkers for mercury often used in HBM studies. Fig. 8
shows the simulated mercury concentrations in hair and urine over a 
lifetime based on three intake scenarios: maximum mercury limits in 
seafood (considering only MeHg contamination in seafood), the HBGVs 
for MeHg and iHg, and realistic mercury intakes based on the French 
consumption data. In these simulations, we also accounted for popula-
tion variability of consumption and physiological parameters to esti-
mate likely concentrations between the median and the 95th percentile 
in hair and urine. Our simulations illustrated that extrapolated hair and 
urine concentrations fluctuate over time due to different seafood con-
sumption patterns and body growth.

3.5.2.1. Methylmercury. As MeHg is the mercury form mainly contrib-
uting to hair exposure, we only simulated total mercury concentration in 
hair based on seafood consumption and compared estimated hair con-
centrations with the MeHg HBGV for refined risk assessment (Fig. 7). 

Fig. 7. Correlations of the average concentrations estimated by the lifetime PBK model for each year of life between different mercury biomarkers including MeHg 
and iHg intakes, concentrations in hair, urine, and in organs (liver, kidneys and brain), and age. The score of the Pearson correlation is shown on the right with p- 
value ("***”: <0.001, ”**”: <0.01, "*": <0.05, ".”: <0.1).
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Intake of 1 mg MeHg/kg contamination of seafood resulted in median 
mercury concentrations over 10 μg/g across nearly all ages, often 
reaching concentrations of 11.5 μg/g mercury in hair and higher for high 
seafood consumers, which would indicate an increased risk probability 
for neurodevelopmental effects (ATSDR, 2022). The 95th percentile of 
total mercury concentrations in hair on the basis of lower maximum 
mercury limits in seafood items as well as HBGV of MeHg was simulated 
to be mostly below its corresponding Point of Departure across all ages.

3.5.2.2. Inorganic mercury. As iHg is the mercury form mainly 
contributing to urine exposure, we only simulated total mercury con-
centration in urine based on seafood consumption and compared total 
mercury concentration in urine with the iHg HBGV for refined risk 
assessment (Fig. 8). Simulated total mercury concentrations in urine are 
close between intakes of 1 mg MeHg/kg contamination of seafood and 
realistic mercury intakes. It has to be noted that a fraction of iHg in urine 
results from demethylation of MeHg in the body according to the PBK 
model. Urine mercury concentrations estimated based on maximum 
levels of seafood contamination and realistic mercury intakes were 
around five times lower than the translated urine concentration based 
on iHg HBGV. However, the validation simulations described earlier 
showed that total mercury in urine were less well predicted as total 
mercury in hair (Fig. 6). Therefore, this refined risk estimation for iHg in 
urine has to be carefully interpreted considering high uncertainties like 
other exposure sources (i.e., inhalation, dental amalgam), which were 
not considered in the here performed intake calculations together with 
iHg formation in the body due to MeHg demethylation.

3.5.3. Childhood exposure
Early childhood exposure was found to be a critical exposure window 

due to the onset of seafood consumption combined with smaller body 
sizes, resulting in peak concentrations of mercury in hair before five 
years of age. Even 0.5 mg/kg mercury in seafood items could reach 
levels in hair close to the Point of Departure during early childhood. 
Nevertheless, mercury hair concentrations based on the simulated 
realistic lifetime trajectories to total mercury calculated from the Total 
Diet Studies were lower than the extrapolated hair concentrations based 
on maximum levels and MeHg HBGV. However, it has to be noted that 

our simulations were not validated with total mercury measurements in 
hair from children younger than six years of age (Table 6) and reported 
HBM data are rare for this subpopulation. McDowell et al. (2004) re-
ported 0.22 μg/g as mean hair concentration in one to five years old 
children from USA. One-year-old children from the Faroe islands had on 
average 1.12 μg/g total mercury in their hair (Grandjean et al., 1997), 
and 4-years-old preschool children from Spain had 0.94 μg/g (Díez et al., 
2009). Total mercury hair concentration in children correlates with fish 
consumption frequency and differs between populations from different 
regions. Thus, this risk characterization could be further enhanced by 
addressing the limited availability of HBM data, specifically for children 
below age of five years from different regions.

3.6. Study limitations

Several limitations and future implications need to be considered 
when applying our established PBK model for long-term exposure 
modeling in dietary risk assessment. Firstly, the established PBK model 
was only evaluated using body, consumption, and exposure biomarker 
data from the French population. However, those data vary from one 
population to another and are highly interlinked. Generally, the French 
population older than 18 years has slightly higher mercury hair con-
centrations than the median level of 0.3 μg/g reported for European 
populations (Basu et al., 2018), most likely due to a higher seafood 
consumption. Therefore, future studies are needed to evaluate the 
established PBK model across various populations with different seafood 
consumptions and mercury concentrations in seafood, specifically for 
children younger than five years of age.

Secondly, the established PBK model was evaluated using organ 
concentrations from autopsied individuals, which may influence tox-
icokinetic processes. Postmortem organ concentrations might have been 
changed by several factors like redistribution, diffusion, bacterial ac-
tivity, and biotransformation alterations (Stephenson et al., 2024). For 
instance, chemical diffusion can be affected due to the absence of oxygen 
and the loss of maintaining energy-dependent concentration gradients 
due to the cessation of ATP production. Anaerobic metabolism, loss of 
membrane integrity associated with autolysis, and pH decrease are also 
factors that might have influenced postmortem organ concentrations. 

Fig. 8. Estimated total mercury concentration in hair (left) and urine (right) of a heterogenous population across all ages considering three intake scenarios: A) 
methylmercury contamination of 0.3 mg/kg (light blue), 0.5 mg/kg (blue), and 1 mg/kg (dark blue) wet bodyweight of all seafood items, B) a realistic simulated 
lifetime dietary exposure to total mercury according to the established lifetime PBK model (green) and C) the 95th percentile of constant exposures to MeHg HBGV 
(intake of 1.3 μg MeHg/kg body weight/week) and to iHg HBGV (intake of 4 μg iHg/kg body weight/week) (orange dotted lines). The variability of total mercury 
concentrations for each intake scenario ranges between median and 95th percentile estimates. The Point of Departure for neurodevelopmental effects associated with 
11.5 mg/kg of total mercury in maternal hair (EFSA, 2012) is added as a red line.
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Even though there is a clear need to understand better the effect of the 
complex postmortem processes on organ concentration changes, our 
established mercury PBK model estimated mercury concentrations in 
hair sampled from the Esteban participants well, but less so the total 
mercury concentrations in urine.

Thirdly, the toxicokinetic processes might differ between lower real 
lifetime intakes and higher regulatory-relevant intakes like maximum 
levels in seafood and HBGV. However, those dose-dependent processes 
have not been considered in the simulations, which could be a potential 
source of bias in estimating mercury hair and urine concentrations based 
on high-intake seafood consumption scenarios in our risk assessment 
approach. Toxicokinetic processes might also change with age, which 
needs to be considered when applying different toxicokinetic parameter 
values.

A fourth limitation is that pre- and postnatal exposure was not 
considered as an event in this lifetime PBK model, despite being an 
important exposure window (Crépet et al., 2022; Ou et al., 2018). 
Including foetal exposure during pregnancy and breastfeeding as an 
additional exposure source might alter the estimated dynamics of mer-
cury concentrations in hair. In the case of prenatal mercury exposure, 
average hair concentrations of 1.68 μg/g in Spanish newborns were 
higher than in preschool children with 0.94 μg/g of total mercury in hair 
(Díez et al., 2008). Physiological equations for pregnancy were reviewed 
in a previous study, which may be added to this library to estimate the 
internal dose from conception (Thépaut et al., 2023).

This study has also not considered the evolution of important enzyme 
and transporter kinetics. Therefore, we suggest implementing a coherent 
evolution of enzymes and transporters in lifetime PBK models that 
reflect the dynamics of enzyme abundances and metabolization capa-
bilities across life stages (El-Masri et al., 2016). Even though the evo-
lution of chemical-specific enzymes and transporters over life has been 
previously considered (Beaudouin et al., 2010), the challenge relies on 
creating equations for the different enzymes and transporters potentially 
useable for any chemical (Gonnabathula et al., 2024).

Lastly, our refined risk assessment approach indicated that the cur-
rent consumption of food at any time point in life is suggested to be 
regarded without health concerns for neurodevelopmental effects and 
renal effects in the regarded French population, even at the upper un-
certainty intervals that stochastically accounted for population vari-
ability of dietary intakes and body parameters. However, this 
assessment needs to be validated for other populations with a broad 
range of dietary exposure scenarios, including high seafood consumers 
and additional iHg exposure sources than just food. A Bayesian frame-
work (e.g., MCMC) could be of interest in future work to consider un-
certainties and variability across different populations, including 
estimations of daily intakes. It has to be also noted that this risk char-
acterization did not consider potential additive/independent mixture 
effects. In addition, our health is positively affected by food highly 
packed with nutrients and minerals, such as consuming seafood as a 
resource for essential omega-3 fatty acids, vitamin A, and vitamin B. 
Therefore, a balance between food consumption’s benefits and risks for 
various potential effects needs to be considered as well.

3.7. Established tools for future lifetime risk assessment applications

Two tools were produced for future PBK model applications based on 
the inventory of physiological equations. An Excel spreadsheet was 
created to facilitate a user-friendly and efficient application (Supple-
ment). The user can choose to calculate organ volumes for both sexes 
based on either default age-dependent body weight and height or spe-
cific body parameters. Individual calculations were provided based on 
each physiological equation and statistics on age-specific organ volumes 
and fractions of organ volumes. The statistical summary included mean, 
standard deviation, and coefficient of variances and can be implemented 
in future age-specific PBK models for a more harmonized application of 
the Next Generation PBK models.

A code was created in R illustrating the applicability of lifetime 
physiological equations for an age-specific PBK model. To this end, an 
age-specific PBK model was modified to model chronic exposure from 
dietary total mercury intake as a case study. We applied several sets of 
physiology equations extracted from various lifetime PBK models and 
compared the simulated output with HBM data. We provide R files used 
to simulate organ volume growths based on the physiological equations 
extracted from the different lifetime PBK models. Organ volume growths 
in the PBK model for total mercury can be simulated using a variety of 
inventoried physiological equations.

4. Conclusion

Our study proposes applicable tools that improve lifetime exposure 
estimates using PBK models. We have built a library of physiological 
equations describing organ volume growth that can be added to lifetime 
PBK models. Using our Excel calculator and R tool (Supplement, GitHub, 
Zenodo), these equations can now be easily applied in Next Generation 
PBK models. Then, we successfully demonstrated how to implement and 
evaluate long-term exposure in an age-specific PBK model using total 
mercury (as mixture of iHg and MeHg) as a case study. This novel 
approach improved internal exposure estimates over a lifetime, 
considering real-life total mercury exposure from modeled dietary 
intake and population variabilities. We further demonstrated how to use 
the established lifetime PBK model for a refined risk assessment of di-
etary exposure to total mercury. Specifically, we assessed (i) the corre-
lation of measured and estimated mercury concentrations in several 
biological matrices across life stages and (ii) the estimation of mercury 
concentrations in hair and urine from lifelong consumption of maximum 
limits defined by regulation in seafood items and HBGV intakes. To 
conclude, this study demonstrates the applicability of a lifetime PBK 
model in the risk assessment of a chemical mixture that accounted for 
exposure dynamics due to body growth and changes in food consump-
tion from imputed MeHg and iHg intakes over life.
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