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Abstract: The increasing demand for large-scale, high-frequency environmental monitoring has
driven the adoption of satellite-based technologies for effective forest management, especially in
the context of climate change. This study explores the potential of SAR for estimating the mass
of harvesting residues, a significant component of forest ecosystems that impacts nutrient cycling,
fire risk, and bioenergy production. The research hypothesizes that while the spatial distribution
of residues remains stable, changes in moisture content—reflected in variations in the dielectric
properties of the woody material—can be detected by SAR techniques. Two models, the generalized
linear model (GLM) and random forest (RF) model, were used to predict the mass of residues using
interferometric variables (phase, amplitude, and coherence) as well as the backscatter signal from
several acquisition pairs. The models provided encouraging results (R2 of 0.48 for GLM and 0.13
for RF), with an acceptable bias and RMSE. It was concluded that it is possible to derive useful
indications about the mass of harvesting residues from SAR data and the findings could lead to
the improved monitoring and management of forest residues, contributing to sustainable forestry
practices and the enhanced utilization of bioenergy resources.
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1. Introduction

At the global level there has been an increasing demand for large-scale observations at
high temporal frequency to monitor environmental changes and manage natural resources,
such as forests, effectively [1]. The increasing use of satellite-based technology offers a
solution, by enabling frequent, wide-area monitoring of forests, their status, and biomass,
along with other ecological parameters [2,3]. Traditional methods of forest monitoring,
such as ground surveys and aerial photography, are labor-intensive and limited in their
spatial and temporal coverage [4]. Therefore, obtaining accurate and timely data is essential
for informed decision-making, especially under the particularly crucial context of climate
change and sustainable forest management.

One important aspect of forest management is the monitoring of residual harvest
biomass (i.e., harvesting or logging residues), which plays a critical role in both economic
and environmental contexts. Harvesting residues, mainly consisting of branches and
other non-commercial parts left on the ground after logging operations, are a significant
component of forest ecosystems [5]. The role, presence, and management of residues is
a key factor for several reasons: They actively contribute to nutrient cycling within the
forest [6], especially when it comes to the influence carbon and nitrogen [7,8]. More than
that, they also affect the soil’s physical structure [9], biodiversity [10–12], and the overall
ecosystem health [13]. On the other hand, to reduce the impact and frequency of wildfires,
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the management of residues has helped to reduce the fire risk, as accumulated biomass can
serve as fuel for wildfires [14]. At the same time, harvesting residues are a potential source
of biomass for bioenergy production, an increasingly important element of renewable
energy strategies [15,16].

Forest management procedures, such as clear-cutting, selective logging, and thinning,
can generate varying amounts of harvesting residues, which also depend on the machines
and harvesting systems adopted [17]. The type and intensity of management practices
influence the distribution and composition of residues, affecting subsequent decomposi-
tion rates and nutrient cycling. Therefore, monitoring harvesting residues is critical for
evaluating the sustainability of forestry operations and enhancing resource use efficiency
under global efforts to mitigate climate change.

Interferometric Synthetic Aperture Radar (InSAR) is a powerful remote sensing tech-
nique that generates high-resolution maps of surface deformation, topography, and other
characteristics by analyzing the phase difference between two or more SAR images of the
same area taken from slightly different positions or at different times [18]. Differential In-
terferometric SAR (DInSAR), an extension of InSAR, enhances this capability by comparing
multiple SAR images over time to detect changes in the Earth’s surface, providing detailed
information on ground deformation and other dynamic processes [19].

DInSAR has become a valuable tool in environmental and forestry research; particu-
larly since the BIOMASS mission, there is increasing interest in the use of this information
for forest monitoring [20] and biomass estimation [21]. By capturing subtle changes in the
forest canopy and ground structure, this technique can provide accurate measurements of
forest height and volume [22], which are crucial for biomass estimation. Researchers lever-
age the sensitivity of SAR to the physical and dielectric properties of the observed objects
to infer biomass from changes in the signal phase and amplitude [23]. This method has
shown to be effective in various forest types and conditions: the use of InSAR techniques
with TanDEM-X data provided a solid estimation for both tree height (R2 of 0.78–0.88) and
above-ground biomass (Pearson’s r = 0.98) compared to field values with coniferous trees
in the boreal forests of Norway [24] and Canada [25]. Similar results were obtained in
the Brazilian Amazon [26], by comparing the tree height estimated from TanDEM-X and
field values, with high values reached in the Pearson r correlation index (Pearson’s r =
0.93); encouraging results, but on a wider scale, in South America’s tropical forests, were
achieved by Qi et al. [27] when comparing the estimated height from InSAR and the values
derived from ALS/LVSI (R2 of 0.26–0.65).

Previous research on harvesting residues has primarily focused on field-based meth-
ods and statistical models to estimate the quantity and distribution of residues. Studies
have explored various approaches at various scales and levels. Both Woo et al. [28] and
Li et al. [29] have explored the possibility of integrating direct measurement from forest
machinery during logging operations with allometric equations. Windrim et al. [30], on
the other hand, developed an automated mapping of woody debris over recently har-
vested areas using UAV-borne data, high-resolution imagery and machine learning, and
remote-sensing techniques. However, these methods often face challenges in terms of their
scalability and accuracy, particularly over large and diverse forest landscapes. At a regional
scale, the use of SAR data (either from backscatter- or interferometric-based techniques) is
well established in the literature, reporting good results when it comes to the estimation of
alive above-ground biomass (AGB) [31,32]. However, in the current state, there are no or
few studies reporting any efforts on estimating the biomass of harvesting residues from
space-borne sources.

The aim of this study is to understand the possibility of predicting the quantity of
harvesting residues over clear-felled areas using SAR data, in particular by adopting InSAR
and DInSAR techniques. The hypothesis is that throughout the observation period there
will be little or no change in the residues’ spatial distribution (i.e., the geometry of the
object), whereas most likely there will be changes in their properties, in particular the
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water content, that would be reflected by a variation in the dielectric constant of the woody
material. Therefore, only the change in moisture content will be investigated.

2. Materials and Methods
2.1. Study Area

The study area is part of an industrial forest plantation located in the KwaZulu-Natal
province in South Africa (Figure 1). The complex topography of the province grants a
varied and verdant climate: the area is characterized by a dry-winter humid subtropical
climate, with warm summers and frequent rainfall. Winters are dry with high diurnal
temperature variation, with possible light air frosts (South African Weather Service). The
site, with a total surface area of 17.54 ha, is divided into two parts, which were both felled
in the same period: the southern part has a surface area of 7.34 ha, whereas the northern
part is larger, with a surface area of 10.24 ha.
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Figure 1. Overview of the study; location of the sample plots—divided between field plots and
interpreted plots—and an example of the woody material distribution in (A) a field plot and (B) an
interpreted plot.

The species planted in the study area was Mexican weeping pine (Pinus patula Schiede
ex Schltdl. & Cham.), hereafter identified as pine. The harvesting operations were per-
formed during February 2023, when the timber was mechanically felled by a harvesting
machine and then extracted and transported by a forwarder to the depot. The felling
machine used was a Tigercat LH822D equipped with a Log Max 7000XT head using the
cut-to-length (CTL) technique, while the forwarder used was a Tigercat 1075C.

To better understand and inspect the area, the whole site was flown using a DJI Mavic
Air 2S at a fixed flying altitude of 73 m, with 80% forward and 70% lateral overlap. The
flight was performed in scattered-cloud-cover conditions, with the acquisition of 335 images
to cover the area, resulting in a ground resolution of 2 cm/pixel. The images were handled
by a Structure-from-Motion (SfM) technique using Agisoft Metashape® and combined to
reconstruct the point cloud of the area. This was filtered and used to derive an orthomosaic
of the study area at high resolution (2.5 cm/pixel).
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2.2. Residue Data: Sampling Design and Mass Estimation

The field measurements used to estimate the mass of the harvesting residues were first
carried out in March 2023 in the southern part of the site, after the majority of the forwarding
operations had been completed, and before the site was burnt, therefore disposing of the
residual woody material, and replanted at the end of October in the same year. Burning
residues is a common management strategy widely spread in productive contexts to clean
up the working area from woody debris and to create a substrate useful to establish the
next generation [5].

The sampling technique adopted was a line–intercept sampling (LIS) method [33–35]
used to estimate the volumes and weights of downed woody material over completely
clear-felled areas [36,37]. With this method, an element is sampled if a chosen line segment,
i.e., a transect, intersects the element: in this case, this technique is based on the assumptions
that the residues on-site are randomly spread, with a random orientation under the transect,
positioned horizontally, that they are circular in shape, and that their diameters follow a
normal distribution.

Following the guidelines from Rizzolo [38], under each transect the diameter of every
visible piece of woody debris was registered and classified in time lag classes (Table A1).
Each plot was composed of three transects of 20 m each and organized as a perfect triangle
with random orientation [39] (Figure 2); the number of triangles accounted for a total of
13 plots, hereafter referred to as “field plots”. For each field plot, the positions of vertices
were recorded using a GNSS system. The time-lag division of woody material refers to
the time required (in hours) for their moisture condition to fluctuate; large woody debris,
for example, will inherently take longer to dry out than finer material. According to this
division, material finer than 76 mm in diameter is classed as fine woody debris (FWD) and
larger material as coarse woody debris (CWD). For material falling in the 1000 h+ class, i.e.,
with a diameter larger than 203 mm, the length of the element was also registered.
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Figure 2. (A) Example of a transect organization with the boxes indicating the vertices of the triangle
and the transects between them. The localization of the plot is depicted with respect to a hypothetical
machine trail, but it could be applied generally. (B) Example of a residue’s distribution over a
plantation after a clear-cut; it is possible to notice the presence of material of different sizes.

Furthermore, 14 additional plots were added across the area (using visual inspection
and photointerpretation of the orthomosaic in QGIS) to increase the information available
for the training of the model. These are hereafter named the “interpreted plots”, of which 8
were positioned in the northern part of the compartment. For each interpreted plot, the
sampling design was similar to that performed for the field plots: the plot corresponded
to a perfect triangle with sides of 20 m and residues were sampled and digitized over the
transects. The diameter for each piece was recorded and sorted into classes according to



Earth 2024, 5 949

Table A1. In particular, considering the resolution of the orthomosaic (2.5 cm/pixel), it was
possible to record residues with a diameter of that dimension or higher.

The residue quantity estimation (Mg·ha−1) was performed for all categories of residue:
for the 1 h, 10 h, 100 h, and 1000 h classes, Brown’s formula was used [36,37], as described
in Equation (1). Whereas for bigger elements, i.e., those falling in the 1000 h+ class, the
estimator was computed using the Woodall formula [37], expressed in Equation (3),

Ŷ =

(
1.234 ·n·d2·SG ·c·a

∑ L

)
·kdecay·10,000 (1)

c =

√
1 +

(
Slope%

100

)2
(2)

Ŷ1000 h+ =
π

2L
·SG·∑n

i=1 (
yi
/

li )·kdecay·10,000 (3)

where: 1.234 is a computational constant to convert the volume to m3/ha; n is the number
of elements for each class; d is the average diameter for the class; c is the corrected slope
(Equation (2)); a is the correction coefficient for the position of the elements, equal to 1.13 for
FWD and equal to 1 for CWD; SG is the specific gravity of the wood, in this case an average
value of 0.575 was adopted (575 kg m−3) [40]; L is the length of the sampling line(s); kdecay
is the decay coefficient, as described in [37]–in this case kdecay = 1, since the material was
freshly cut; 10,000 is the number of square meters in 1 ha; yi is the volume for a single CWD
piece; and li is the length of the piece.

2.3. Satellite Data and Interferometric Processing

The Sentinel-1 mission included a constellation of two synchronous satellites (currently
only one is still operating properly), equipped with a C-band synthetic aperture radar
(SAR), enabling it to obtain acquisitions regardless of the weather. For this study, 4 dual-
polarization Sentinel-1 SAR C-band acquisitions were downloaded from the Alaska Satellite
Facility (Copernicus Sentinel data 2023, processed by ESA). The images were acquired in
the interferometric wide swath mode, provided as single-look complex (SLC) data with a
250 km swath at a 5 m by 20 m spatial resolution, and captured in three sub-swaths using
Terrain Observation with Progressive Scans SAR (TOPSAR).

In order to measure the changes in the surface, images were acquired not only from
slightly different positions (i.e., separated by a spatial baseline), but also at different times
(i.e., using a temporal baseline), a technique denoted as Differential SAR Interferometry
(DInSAR). In this case, a reference image (“master”) was selected (in our case, 12 April
2023) to compare all the following changes, with the others defined as the “slave” images
(6 May 2023, 17 July 2023, and 9 October 2023) (Figure 3).
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2.4. Pre-Processing of the Satellite Images

The SAR images were first processed using the Sentinel Application Platform (SNAP)
from ESA (ESA Copernicus Hub). First of all, the images were inspected, and the first
sub-swath was selected, as it alone contained the study area. Moreover, among the two
polarizations (VH and VV), the proposed methodology relied only on the VV-polarization,
since it has been proven to be more sensitive to surface moisture [41,42], whereas the cross-
polarization signal is more sensitive to changes in the geometry and physical properties,
such as the roughness [43,44].

The main steps of the following methodology are summarized in Figure 4. To better
fulfill the aims of this research, the images were coupled in short- (April–May), medium-
(April–July) and long-term (April–October) periods. For each pair of SLC-IW single-
polarization images, three explanatory variables were derived: the phase, the amplitude,
and the coherence using the interferometric approach, and the intensity of the signal
expressing the backscatter. The coherence provides a measure of the similarity for each
pixel ranging from 0 to 1, where 0 indicates that change did happen and 1 that no change
has happened. First, the images were co-registered using the S-1 TOPS co-registration
process to ensure the images were aligned; their orbits were then corrected to obtain a
higher location accuracy and stacked. Then, the complex interferogram was computed as a
Hermitian product and the topographic phase was removed to obtain values representative
for ground changes. The interferogram was multi-looked (number of looks = 3) and
Goldstein phase-filtered (coherence threshold = 0.4) to enhance the coherence estimation
and reduce the phase noise. After this, the DInSAR phase (∆φ), amplitude, and coherence
images were geocoded and exported.
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To compute the backscatter, the VV-polarized images were handled individually.
After orbit and radiometric correction (using the ‘Apply Precise Orbit’ and ‘Radiometric
Calibration’ commands), the images underwent multi-looking (number of looks = 3) and
speckle filtering (sigma = 0.9). The images were terrain-corrected and exported as γ0 images
describing the backscatter coefficient normalized by the illuminated area projected into the
look direction.

2.5. Feature Extraction and the Prediction Model for Residue Mass Estimation

The following steps in the elaboration were performed using R [45] and the RStudio
environment (R version 4.4.1; RStudio 2024.04.2+764 “Chocolate Cosmos”). After the
pre-processing, the ∆φ, amplitude, coherence, and γ0 images were stacked together and
handled as a raster, using the terra package [46]. The plots were paired with the mean
quantity value obtained by averaging the estimations from their sample lines. The shapefile
containing this information was used to extract the mean value from the stacked backscatter
and then converted to a data frame.

The data frame was used to feed two models: a generalized linear model (GLM)
and a Random Forest model (RF). These models were selected because of the underlying
assumptions upon which they work, GLM being a parametric model and RF being a non-
parametric model. The main distinction between the chosen categories is that parametric
models are faster to use, but they imply stronger assumptions about the data distribution,
whereas non-parametric models are more flexible but are computationally intractable
for larger datasets [47]. In the first case, the application of a linear model also had the
intention to find possible correlations between the variables and to underline possibly
significant variables available in the data frame. Specifically, in the case of GLM, all
variables were used to feed the model. The RF model used is a machine learning algorithm
built from the R package randomForest [48], with a forest size of 500 trees (ntree = 500); all
variables were used to initially feed the model, and the split decision parameter (mtry) was
adequately set. For both models the training and testing was performed using a leave-one-
out cross-validation (LOOCV) procedure. The RF model was then iteratively adjusted by
progressively excluding the variables that reported a negative importance score.

2.6. Coherence Difference Analysis

To better gain insights into the results, a separate analysis was performed to consider
the coherence values, comparing each image pair and computing the differences between
the pairings. The coherence (Υ) values are calculated at pixel level and range from 0
to 1; a value of 1 indicates no alteration in the scattering properties between images [49].
However, when the observed surface changes, the complex backscatter is impacted, causing
a decrease in coherence, which is known as decorrelation. This approach moves on from
previously established coherence difference analysis (CDA) methods [50] but still follows
the same purpose, i.e., to define and to investigate the source of decorrelation. Consistent
with [51], interferometric coherence is affected by three main factors of decorrelation: radar
thermal noise decorrelation (ΥN), geometric decorrelation (ΥG), and temporal decorrelation
(ΥT). Considering that all the images were acquired by the same antenna, it is reasonable
to assume that the variation in thermal noise between the images will not influence the
coherence decorrelation [49]. The geometric decorrelation, on the other hand, is highly
influenced by the perpendicular baseline; if this parameter is greater than the critical
value, then ΥG becomes 0, causing the maximum decorrelation [52]. Finally, the temporal
decorrelation is the one that would contribute the most, since the loss in coherence is
mainly due to changes in the object’s properties (i.e., the geometric structure and dielectric
properties). In this case, the coherence difference analysis assumed that the presence of
harvesting residues in clear-felled areas would be less stable over time than the surrounding
solid soil (due to decomposition processes, residue pile volumes gradually collapsing to
a solid ground layer, etc.). Hence, the residues would decorrelate more (measured as a
decreasing coherence) as time passes. The variation in the dielectric constant was assumed
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to be lower for the surrounding clear-cut plantation, and hence present only smaller changes
in the backscatter between the SAR images.

2.7. Validation Assessment

Both models were validated by using the field plots as a reference and comparing the
predicted values against the estimates obtained through volume calculation. In this case,
two indicators were considered: the squared Pearson index (R2) to evaluate the correlation
between the field values and the predicted values, and the Root Mean Squared Error
(RMSE) to assess the model’ performance. At the end, the model was used to predict the
residues’ mass distribution throughout the study site.

To further evaluate the goodness of the estimations and mapping produced for the
residues, the field plots were also visually inspected, and the diameter of the material was
registered, with the residue’s mass computed. After this, the bias and RMSE were computed.

3. Results
3.1. SAR-Derived Variables

The processing of the S-1 SAR acquisitions provided a set of three images for each pair
(∆φ, amplitude, and coherence) and one backscatter, γ0, for each acquisition. Of all the
reported outputs, the ∆φ is the one revealing the most information related to the possible
displacement and changes occurring within the area [53]. The phase image interpretation
(Figure 5) reveals significant information patterns occurring in the short period after the
operations (Figure 5A), whereas Figure 5B,C did not display significant patterns of values,
but rather expressed smaller variations, which posed complications in the interpretation
process. The amplitude did not report a large variation between the resulting images
(April–May 24.42 ± 0.09; April–July 24.34 ± 0.09; April–October 24.40 ± 0.09), whereas
the γ0 reported a smaller decreasing trend towards the end of the monitored period (April
−8.56 ± 1.76; May −8.22 ± 1.67; July −8.55 ± 1.76; October −7.60 ± 1.68).
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3.2. Coherence Difference Analysis

The coherence differences were computed for each image pair and between the pairs
(Figure 6). For the first pair (April–May), the coherence values were estimated to be between
0.036 and 0.793 (mean = 0.302; standard deviation = 0.13), whereas for the second pair
(April–July), the values ranged from a minimum of 0.031 to 0.779 (mean = 0.258; standard
deviation = 0.102). The last pair, April–October, showed coherence values between 0.037
and 0.679 (mean = 0.249; standard deviation = 0.097). The observed difference in the statisti-
cal results over time (short, medium, and long periods) denote an important decorrelation
process between the acquisitions. The coherence difference maps showed values between
−0.531 and 0.555 (mean = −0.044; standard deviation = 0.152) for the Figure 6C map, while
the values reported in Figure 6E ranged from −0.651 to 0.482 (mean = −0.053; standard
deviation = 0.156).
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3.3. Prediction Models and Validation Assessment

The results for the GLM and RF models are shown in Figure 7, with the distinction
between the field plots and the interpreted plots. In this case, the GLM model used all the
variables (Table A5), with only one showing significant contributions at the end (p < 0.1), i.e.,
the phase from the April–May interferogram. The variables feeding the RF model, on the
other hand, were filtered based on their importance score through an iterative process that
excluded variables with a negative score until only positive scores remained (Figure A1): in
this case, the variables reaching the highest scores are the amplitude in the April-October
interferogram and the phase from April–May, with contributions also from the coherence
in April–May and the γ0 in July. The rest of the variables show the same importance score.
Overall, the GLM model performed better, in terms of both R2 and RMSE, compared to
the RF model. In the validation process, i.e., by considering only the field plots, the GLM
model outperformed the RF model again (Figure 8).

The estimated quantities per hectare and per plot surface are reported in Table A2 for
the field plots and Table A3 for the interpreted plots. Considering the average values, it
can be shown that the interpreted plots have higher values in both quantities, per hectare
and per plot surface (+51% compared to the field measurements). Where only the common
classes of material were considered (i.e., 100 h, 1000 h, and 1000 h+), the distribution of the
values did not show any major differences (~5%).

For the bias assessment, the field plots were inspected and interpreted, with the
resulting volumes reported in Table A4 and the error indices per single plot values (Mg) in
Table 1. In this case, the errors computed underline how the residues estimated using the
visual interpretation method are biased, by an average of −0.05 Mg when considering just
the CWD components (1000 h and 1000 h+ classes), and by 0.14 Mg when considering all
the classes of material. The RMSE is lower than that provided by both the GLM and the
RF models.
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Table 1. Error assessment based on the field survey-derived residue mass and the residue mass
derived from visual assessment of the field plots.

Error Index Unit Value

Average bias
CWD Mg −0.05

RMSE 0.20

Average bias
FWD+CWD Mg 0.14

RMSE 0.20

The representation of the residue distribution over the study area is then reported in
Figure 9, with respect to the quantity of single plots. In this case, the heat map built with
the GLM model tends to represent the entire spectrum of values, whereas the RF model
tends to represent the values converging towards the means of the distribution. Regardless
of the accuracy of the model used to depict such spatial representation, this tendency can
be seen by using the plots’ values as references.
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4. Discussion

This paper aimed to evaluate the possibility of using SAR data techniques (InSAR and
DInSAR) to quantify the mass of harvesting residues left in clear-felled areas. To achieve
such an aim, an innovative approach was offered by comparing two prediction models
(GLM and RF) and evaluating their goodness-of-fit (R2), RMSE, and bias.

Considering the coherence difference analysis, the assumptions implied a higher
decorrelation for the residues compared to the surrounding solid soil, where the variation
in the dielectric constant values would present only smaller changes in the backscatter
between the SAR images. In this case, where the main source of decorrelation is tributed
at both the temporal and spatial baselines, the difference in the perpendicular baselines
ranged from 54 to 117 m, which is a bit large for the sensitivity that was aimed for, since the
objective was to observe small differences within fractions of the wavelength considered
(i.e., ~4 cm for the C-band). Nevertheless, the range of values found is well below the
critical baseline reported in the literature (e.g., [53,54]). Nevertheless, the loss of coherence
was useful in our predictions.

In the short term, the coherence exhibits higher values inside the harvesting area, with
more variations outside the perimeter, where the trees are still standing, as also reported by
Akbari et al. [55], whereas the coherence gradually decreases with time, resulting in values
close to zero. Variations in the coherence throughout the time of observation might also
be due to precipitation events before the acquisition of each satellite image (Figure A2),
and, more importantly, before acquisition of the master image. Therefore, the fluctuation
in coherence values in the short term are likely due to changes in the dielectric constant
happening in the days right before the image acquisition (although in between images there
were periods of relatively stable weather patches), rather than due to changes in volume
scattering. Changes in the surrounding trees are more likely related to fluctuations in the
crown water content, due to the SAR operating at C-band [56]. These assumptions are also
supported by the ∆φ images (Figure 5), where greater differences are shown from the first
interferogram and the coherence differences, where lower changes are noticed outside the
logged area (Figure 6C,E). Some of these findings were also noted when developing the
linear prediction models, where the relation and contribution of the various variables were
studied. For example, in the GLM model, the variables with the highest significance came
from the short-period interferogram (i.e., the April–May interferogram), which also exhibits



Earth 2024, 5 956

a higher variation in the coherence values. On the other hand, the RF model prefers the
phase difference between April and May, but also the amplitude from April-October (long
term) and the γ0 from July.

The magnitude of the residue masses estimated from the field survey are comparable
with the values available in the literature for the species considered [39,57]. The higher
residue mass values of the interpreted plots (+51% compared to the field plots) can be
due to the influence of several factors. First of all, due to the interpretation and visual
inspection of the logging area by means of aerial photogrammetry: although available
with a fairly high resolution (2.5 cm/pixel), the orthomosaic used for the visual assessment
of the residues still did not allow for the inspection and registration of smaller woody
material with diameters less than 3 cm (i.e., the 1 h and 10 h classes). This could be reflected
in the average quantities per plot, which are higher in the interpreted plots compared
to the field ones. Moreover, whereas the field survey also considered stumps, the visual
inspections did not, therefore further reducing the estimated amount of the CWD material.
A similar issue can be found also in [30], although using a different system for manual
annotation. Secondly, the presence of residue piles in the area does not allow for an optimal
visual annotation of the material from QGIS, since it would be possible to register only
the diameter of the elements on the very top of the pile, whereas with the field survey
some material from the deeper layer can also be registered. Therefore, the volumes or
masses considered result in different values, also for the same plots, as exposed by the bias
evaluation (−0.05 Mg and 0.14 Mg, for the CWD and FWD+CWD material considered).

Nevertheless, there are different factors and limitations to consider for this study and
the proposed methodology. The main principle of the DInSAR technique adopted is that it
allows for the retrieval of any changes on the surface of the area investigated, through the
scatter of the beam signal; the rougher the object, the more scatter it should produce.

Overall, this study investigated only the use of VV-polarization acquisitions, based on
the previous literature, considering any major detectable changes due to moisture variation
in the residues and piles rather than in their geometry and structural properties. Consid-
ering the object of the investigation, the harvesting residues, although not individually
detectable using the SAR pixel size (10 m × 10 m), can be addressed in piles, offering
a large (on average, 5 m wide and 1.5 m tall at maximum), complex, and rough target
when performing this kind of research. However, obtaining precise information on the
pile masses and volumes is still challenging, both with field measurements and remote
sensing-based techniques [57–59].

Regarding the study area, the site presented homogeneous characteristics, being a
pine plantation with a moderate slope where forest machines could work [60] and with the
residual material distributed in an ordered scheme, following the work system. Still, some
of the features of the area could have helped to overestimate or underestimate the actual
biomass left.

The use of C-band is preferred in scenarios where low volumes of biomass need to be
estimated (e.g., in clear cuttings) [61] but they are still subject to a relatively small saturation
threshold, of 60–70 Mg/ha [32,62]. Specific to the methodology proposed, the analysis
of coherence provided insightful information about the signal scattering and its changes
throughout the monitored period. Although minimized, different sources of decorrelation
might have still played a role in the obtained results, especially the geometric decorrelation.
Moreover, to properly address the volume scattering, the proposed methodology featured
also the backscatter signals, γ0, but saw limited contribution from the majority of them
(Figure A1). In this case, the possible addition of VH-polarization backscatter could add
complexity to the response, delivering a more comprehensive output.

An issue more related to the prediction models is the number of available plots used
to feed the model and its design: a higher number of observations would have probably
increased the R2 of the results and their robustness, for both the GLM and RF models. In fact,
both models can be easily exposed to a dataset with a limited number of observations, in
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particular the RF model [63]. Nevertheless, the models’ outcomes are inherently constrained
by the aforementioned limitations, as they represent the final stage of the analysis.

5. Conclusions

This study evaluated the possibility for SAR data to predict the quantity of harvesting
residues over clear-felled areas, performed over a study area of a pine plantation in South
Africa. The models’ predictions provided results with an R2 index of 0.47 and 0.13 for GLM
and RF, respectively, when using all the plots, and 0.23 and 0.006 when using only the
field plots. The RMSE stabilized between 0.20–0.28 Mg. Overall, the bias regarding the
interpretation of the woody material ranged between −0.05 and 0.14 Mg. Nevertheless,
we can positively affirm that, even at this stage and with the limitations listed above, it is
possible to derive useful indications about the mass of harvesting residues from SAR data
handled with InSAR and DInSAR techniques.

This information could be suitable for forest owners and managers interested in the
possible retrieval of material to convoy to bioenergy-producing plants, or to provide an
indirect estimation of possible C-stock in woody material to help industrial companies
account for carbon or reduce their impact on biogeochemical cycles and nutrient fluxes in
the re-establishment of timber plantations and the use of fertilizers.

Future research should investigate alternative SAR techniques and the potential in-
tegration of other remote sensing technologies, such as LiDAR, and the application of
models to different forest types. Moreover, it could be interesting to explore the possibility
of conducting different observations at different sites at the same time to address local
variability between sites and/or species.
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Appendix A

Table A1. Time-lag class distribution, with diameter (D) thresholds, and the category for forest
residues (FWD—fine woody debris, CWD—coarse woody debris) [36,38].

Class D min (mm) D max (mm) Category

1 h 0 6
FWD10 h 6 25

100 h 25 76

1000 h 76 203
CWD1000 h+ >203
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Table A2. Average mass value (Mg ha−1) of residues (FWD—fine woody debris, CWD—coarse
woody debris) for the field plots, divided according to the class. Standard deviation is also reported
in brackets.

Plot
FWD CWD Average

Mass
Mass per

Plot1 h 10 h 100 h 1000 h 1000 h+

1 0.63 9.48 21.20 11.54 48.73 18.32 0.37
2 0.51 8.52 19.37 46.68 63.51 27.72 0.55
3 0.45 7.23 22.45 16.19 40.93 17.45 0.35
4 0.52 7.72 14.40 34.69 23.63 16.19 0.32
5 0.49 7.02 9.62 9.34 26.78 10.65 0.21
6 0.52 9.56 15.55 11.61 32.84 14.02 0.28
7 0.52 8.80 18.51 27.83 85.14 28.16 0.56
8 0.57 8.43 19.54 23.23 4.27 11.21 0.22
9 0.61 10.98 21.28 20.88 25.58 15.87 0.32
10 0.47 6.29 14.76 48.61 34.15 20.86 0.42
11 0.60 11.68 25.37 32.42 48.54 23.72 0.47
12 0.53 5.74 15.76 20.81 56.34 19.84 0.40
13 0.59 9.18 22.29 18.56 31.36 16.39 0.33

Average 0.54 (0.13) 8.51 (3.63) 18.47 (6.55) 24.80 (19.29) 35.67 (47.70) 18.49 (5.30) 0.37 (0.11)

Table A3. Average mass value (Mg ha−1) of residues (FWD—fine woody debris, CWD—coarse
woody debris) for the interpreted plots, divided according to the class. Standard deviation is also
reported in brackets.

Plot
FWD CWD Average

Mass
Mass per

Plot1 h 10 h 100 h 1000 h 1000 h+

14 - - 17.49 98.67 6.25 40.81 0.82
15 - - 14.06 130.97 7.39 50.81 1.02
16 - - 21.95 102.26 51.65 58.62 1.17
17 - - 12.01 93.29 0.00 35.10 0.7
18 - - 19.55 91.50 0.00 37.02 0.74
19 - - 6.86 80.73 0.00 29.20 0.58
20 - - 7.89 93.29 41.01 47.40 0.95
21 - - 1.03 8.20 28.73 12.65 0.25
22 - - 11.32 123.79 16.24 50.45 1.01
23 - - 11.32 104.06 20.21 45.19 0.9
24 - - 3.09 138.14 12.02 51.09 1.02
25 - - 3.43 48.44 20.49 24.12 0.48
26 - - 2.74 89.70 7.39 33.28 0.67
27 - - 4.80 96.88 3.83 35.17 0.7

Average - - 9.82 (6.43) 92.85 (31.65) 15.37 (15.27) 39.95 (11.92) 0.79 (0.24)

Table A4. Average interpreted mass value (Mg ha−1) of residues (FWD—fine woody debris, CWD—
coarse woody debris) for the field plots, divided according to the class. Standard deviation is also
reported in brackets.

Plot
FWD CWD Average

Mass1 h 10 h 100 h 1000 h 1000 h+

1 - - 28.09 5.37 5.21 13.81
2 - - 20.63 32.38 5.21 19.41
3 - - 24.49 5.41 49.12 26.34
4 - - 26.01 50.12 14.48 30.20
5 - - 14.75 19.73 6.81 13.76
6 - - 29.59 30.60 17.32 26.98
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Table A4. Cont.

Plot
FWD CWD Average

Mass1 h 10 h 100 h 1000 h 1000 h+

7 - - 23.04 44.96 3.83 23.94
8 - - 21.58 46.58 0.00 22.72
9 - - 28.12 35.88 28.10 30.70

10 - - 13.71 71.72 3.83 29.75
11 - - 19.50 62.64 4.27 30.17
12 - - 14.37 71.58 14.81 33.59
13 - - 23.67 52.03 0.00 25.23

Average - - 22.91 (5.80) 40.69
(21.11)

11.77
(13.24) 25.13 (6.06)

Table A5. Summary of the GLM model, with the variables used and the significance based on the
computed t value.

Estimate Std. Error t Value Pr(>|t|)

(Intercept) 43.93124 48.15602 0.912 0.3771
Coherence_AprMay 0.04598 0.74621 0.062 0.9517
Coherence_AprJul −0.02640 0.72589 −0.036 0.9715
Coherence_AprOct −0.09081 0.88356 −0.103 0.9196

Gamma0_Apr −0.08089 −0.10316 −0.7840 0.4460
Gamma0_May 0.08588 0.07806 1.100 0.2898
Gamma0_Jul NA NA NA NA
Gamma0_Oct 0.08323 0.09982 0.834 0.4184
Amp_AprMay −2.56988 1.49622 −1.718 0.1079
Amp_AprJul −0.08817 1.20188 −0.073 0.9426
Amp_AprOct 0.87675 1.14049 0.769 0.4548

Phase_AprMay * −0.47721 0.24671 −1.934 0.0735
Phase_AprJul 0.02123 0.04168 0.509 0.6185
Phase_AprOct −0.02152 0.05746 −0.375 0.7136

Residual standard error: 0.2751 on 14 degrees of freedom,
multiple R-squared: 0.4666, adjusted R-squared: 0.009482,

F-statistic: 1.021 on 12 and 14 degrees of freedom, p-value: 0.4798.
Signif. codes: ‘*’ 0.05.
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