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Abstract
The recovery of biomass in secondary forests plays a vital role in global carbon sequestration
processes and carbon emission mitigation. However, accurately quantifying the accumulation rate
of aboveground biomass density in these forests is challenging owing to limited longitudinal field
data. An alternative monitoring strategy is characterizing the mean biomass at a single point in
time across stands with a range of known ages. This chronosequence approach can also be used
with remotely sensed data by combining biomass measured with platforms such as NASA’s Global
Ecosystem Dynamics Investigation (GEDI) mission with forest age strata provided by historic
Landsat imagery. However, focusing on the low-biomass conditions common in newly
regenerating forests will accentuate commonly observed over-prediction of low biomass values. We
propose a vicarious calibration approach that develops a correction for GEDI’s biomass models in
young forests, which may be mapped using Landsat time series, using an assumption that the
aboveground biomass of newly cleared forests is zero. We tested this approach, which requires no
additional local field data, in the U.S. Pacific Northwest, where extensive inventory data from the
USDA Forest Service are available. Our results show that the calibration did not significantly
improve the fit of predicted biomass as a function of age across 12 ecoregions (one-side t-test;
p= 0.20), but it did significantly reduce bias for the youngest age groups with respect to reference
data. Calibrated GEDI-based biomass estimates for< 20 year old forests were more accurate than
2006 IPCC defaults in most ecoregions (with respect to authoritative inventory estimates) and may
represent a basis for refining carbon storage expectations for secondary forests globally.

1. Introduction

Secondary forests play a significant role in climate
change mitigation due to their carbon sequestration
potential (Pugh et al 2019, Koch and Kaplan 2022).
Understanding aboveground biomass accumulation
rates in such forests is crucial for subnational-
to national-level reporting of forest carbon fluxes
(Dobor et al 2018). In this paper, we propose a
method for calibrating ecosystem-specific biomass
accumulation curves—that is, sets of biomass predic-
tions as a function of stand age—using lidar data from
NASA’s GEDI mission (Dubayah et al 2020). We test
that approach in 12 ecoregions in the northwestern
US for which comprehensive field data are available.

Practically, using global default carbon recov-
ery rates to estimate carbon storage after forest dis-
turbance instead of locally representative dynam-
ics can have significant implications on estim-
ates and their uncertainties in the context of the
REDD+ (Reducing Emissions from Deforestation
and Forest Degradation) framework (Jha et al 2020).
Reduction of potential estimation errors in this con-
textmay affect forestmanagement incentives through
requirements related to ‘uncertainty buffers’ (ART
Secretariat 2020, FCPF 2021).

Bias is a central consideration when using
remotely sensed data to infer a population parameter
such as mean forest biomass. The GEDI mission
employs model-based predictors that are presumed
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Figure 1. Conceptual representation of: (a) the commonly observed bias pattern in which models (blue line) over-predict low
levels and underpredict high levels of high biomass, relative to the 1:1 line (in red); (b) how this bias (difference between blue and
red line) is manifested when predictions are grouped according to mapped stand age; and (c) our proposed correction factor,
developed as a linear function of age, linking the presumed offset at age zero (zero minus the mean uncorrected biomass
prediction) and the age for which the mean uncorrected prediction is also the back-transformed mean of the model-building data
(from figure (b)). No correction beyond the blue dot is proposed because this application addresses only young secondary forests.

to be unbiased with respect to the lidar metrics GEDI
delivers (Patterson et al 2019). However, Ståhl et al
(2024) outline how such models may in practice lead
to predictions which exhibit systematic errors (often
over-prediction of low values and under-prediction
of high values) when compared against independ-
ent ‘truth’ data. Expressed formally, although the
predictions from GEDI models (and other similar
models) are approximately model-unbiased, they are
at the same time design-biased (ibid.). The design-
bias is most severe for small and large true values.
Depending upon the strength of the modeled rela-
tionship, this latter type of bias can have negative
consequences on applications such as inferring mean
biomass for a particular forest age group, as is the
challenge motivating our study. Ståhl et al (2024)
recommend application-specific calibration, as has
been developed across multiple fields (Shukla 1972,
Tellinghuisen 2000, Lindgren et al 2022).

The target of our research is a design-unbiased
representation ofmean biomass as it changes through
different age groups, essentially linking inferences for
a series of subpopulations identified by independent
age maps. Compiling median measurements across
age-based strata to understand ecosystem change, a
tactic frequently called chronosequencing, is a com-
mon alternative to longitudinal study in the field
of forest inventory (Rozendaal and Chazdon 2015,
Poorter et al 2016, Lozada Dávila et al 2020). This
prioritizes unbiasedness not in relation to remotely
sensed predictor data or with respect to known bio-
mass references (as described above), but instead con-
ditional on an ancillary variable–stand age.

Specifically, it would be insufficient to calib-
rate individual GEDI biomass predictions (Kellner
et al 2023), essentially making the blue line in
figure 1(a) look more like the red line, because the
relevant information is derived only when predic-
tions are stratified by ancillary age data (figure 1(b)).
Instead, we propose a calibration approach focusing
on eliminating bias as a function of age, using: (1)

the difference between uncorrected GEDI predictions
and zero biomass at locations where age is known to
be zero; and (2) an assumption that there is no bias at
the age associated with the biomass density reflecting
the mean of the training data (figure 1(c)). The res-
ulting age-dependent linear correction (figure 1(c))
may be applied to individual GEDI biomass pre-
dictions or directly to age group means if obser-
vations are given equal weight in calculation of
the mean.

Development of calibration offsets from retriev-
als with known ground properties (in this case, quan-
tifying overprediction of areas presumed to have age
zero) is an example of vicarious calibration, often
used to adjust radiometric, spectral, and geomet-
ric performance of Earth-observing sensors (Kabir
et al 2020, Pearlshtien et al 2023). Significantly,
this approach does not require field data beyond
the observations used to fit GEDI’s biomass model
(Duncanson et al 2022), an advantage because no
such observations are available for many parts of the
world (Chave et al 2019, Schepaschenko et al 2019).

The vicarious calibration we propose relies
upon an assumption that zero aboveground bio-
mass remains following stand-clearing disturbances,
which are readily detectable using Landsat time series
(Healey et al 2008). Landsat time series allow monit-
oring of disturbance history across 50 years (Wulder
et al 2022), capturing dynamics ranging from com-
plete forest clearance to subtle regrowth (Cohen et al
2010). The zero-age/zero-biomass locations we use
in vicarious calibration may be obtained throughout
GEDI’s observed latitudes.We evaluated effects of our
vicarious calibration on chronosequence accuracy
using data derived from the US Forest Service’s FIA
(Forest Inventory and Analysis) Program (Bechtold
and Patterson 2005). We likewise compared implied
carbon accumulation rates with default 2019 IPCC
values. This research aims to enhance the use of
empirical data in generating more locally represent-
ative default rates of carbon gain while recognizing
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practical limitations on available calibration data.
The performance of vicarious calibration in this con-
text across thoroughly inventoried ecosystems may
inform its use elsewhere.

2. Methods

2.1. Site selection and biomass data
The study area covers approximately 23 million hec-
tares in 12 ecoregions across portions of the US states
of Washington, Oregon, and California (figure 2).
The 12 ecoregions are based on the physiographic
and geographic provinces introduced by (Franklin
and Dyrness 1973) and later modified and adopted
by the Forest Ecosystem Management Team (1993).
Ecoregions included California Cascades (CaCAS),
California Coast Range (CaCOA), California
Klamath (CaKLA), Oregon Coast Range (OrCOA),
Oregon Eastern Cascades (OrECO), Oregon Klamath
(OrKLA), Oregon Western Cascades (OrWCO),
Oregon Willamette Valley (OrWIL), Washington
Eastern Cascades (WaECW), Washington Olympic
Peninsula (WaOLY), Washington Western Cascades
(WaWCW), Washington Western Lowlands
(WaWLO).

We used publicly available FIA plot-level bio-
mass data with stand age to validate our res-
ults (https://apps.fs.usda.gov/fia/datamart/datamart.
html). Attribution of each plot to an ecoregion
used publicly distributed ‘fuzzed’ (to within 1 km)
coordinates, a level of imprecision we considered
trivial for this analysis. We grouped plots accord-
ing to the age groups available from the Landsat
disturbance history maps (below). The total num-
ber of field plots used, along with the number of
GEDI samples in each age-group, is given in table 1.
We calculated the mean and standard error of the
mean aboveground live tree biomass in megagrams
per hectare (Mg ha−1) for each age group. The estim-
ates incorporated plotweights derived from inventory
expansion factors that account for the sample design
(Burrill et al 2021). Plots with multiple conditions
were included, weighted by the proportion of the plot
represented by each condition.

2.1.1. Landsat disturbance data
We combined two historical disturbance maps
derived from Landsat MSS, TM, ETM+, and OLI
for the study area. From 1972 to 1984, we used
stand replacing disturbance by (Healey et al 2008).
For 1984–2021, we used disturbance, land use and
land cover products from the Landscape Change
Monitoring System Disturbance Maps (LCMS)
(USDA Forest Service 2022).

To accurately identify stand initiation dates, we
applied a series of filters to the maps, restricting ana-
lysis to areas with a high certainty of disturbance
at a known time. The 1972–84 map exclusively tar-
geted stand-initiating disturbance, while disturbed

pixels from 1984 to 2021 were included in the ana-
lysis if they were forested (according to correspond-
ing land use maps) in the pre-disturbance year, non-
tree covered immediately after disturbance, and ulti-
mately remained in a forested use condition for six to
eight years post-disturbance.

We explicitly avoided partial disturbances and
multiple cohorts stands. This was done via the applic-
ation of three additional filters, all of which oper-
ated only on the most recent disturbance mapped for
a given pixel. First, we excluded all pixels labeled in
the LCMS dataset as disturbed by any means other
than harvest. Second, we eliminated all pixels on the
boundary of harvest patches to avoidmixed pixels and
to minimize the effect of spatial uncertainty in both
the GEDI and Landsat data. Finally, we removed isol-
ated pixel clusters smaller than 1 ha.We also discarded
pixels that underwent more than one shift during
the entire study period. Before 1984, Landsat MSS-
derived disturbances were at a 60 m × 60 m spatial
resolution. To ensure consistent time series data for
merging, we aligned all post-1984 LCMSdisturbances
using the reference image from 1972 to 1977 derived
disturbances and aggregated each image to 60× 60m.
Finally, we assigned stand age as the time since the
mapped stand-clearing disturbance. This definition
of stand age roughly corresponds to the measures
used by FIA to assign an age to a surveyed forest
condition. Utilizing precise coordinates from certain
FIA plots that align with Landsat-derived age patches,
we observed that, on average, the Landsat-derived
stand age deviates by about 3–5 years compared to the
FIA mean age by ecoregions. To enhance comparab-
ility, we organized map age classes in 5 year intervals,
except 1977–1984 interval, which was chosen by the
producers of the original map (Healey et al 2008).

2.1.2. GEDI L4A data processing and evaluation
The GEDI instrument is on board the International
Space Station and equipped with two lasers in full-
power beams and one laser split in two coverage
beams in the near-infrared region (Dubayah et al
2020). For this study, we have used the footprint data
set of Level 4AAGBD, Version 2.1 (L4A) (Dubayah
et al 2022) containing a set of quality flags that
allow us to remove the footprints with low sensitivity
and potential atmospheric or ground-finding prob-
lems (Dubayah et al 2020). The aboveground biomass
density (AGBD) data for GEDI L4A was obtained by
utilizing a calibration dataset that compiled height
metrics derived fromGEDI Level 2A (L2A) simulated
waveforms and field estimates across diverse regions
and plant functional types (PFTs) (Duncanson et al
2022). The L4A data covering our study area from
2019 to 2021 were downloaded using the NASA-
Earth Data ORNL DAAC platform (https://search.
earthdata.nasa.gov, accessed 12 May 2022). We used
the ‘GEDI4R’ package (Vangi et al 2022) to process the
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Figure 2. (a) Location of the study area covering three states in the U.S. Pacific Northwest (b) and the 12 physiological provinces
that are treated as ecoregions (c) An example of the spatial overlap of GEDI L4A aboveground biomass density (Mg ha−1) and
Landsat-derived maps of the year of stand-initiating disturbance. In this study, stand age is used to stratify biomass predictions,
and median age-specific biomass numbers are used to understand post-disturbance AGBD accumulation rates.

Table 1. Summary of number of FIA field plots available for each age group with GEDI Samples provided in [].

Prov/
Age-group 0–5 10–15 15–20 15–20 20–25 25–30 30–35 36–43 43–48

CaCAS 14[415] 7[2433] 5[3982] 5[2106] 10[1515] 9[5435] 6[2591] 7[349] 5[235]
CaCOA 14[97] 9[677] 11[759] 14[878] 11[1347] 20[917] 21[5337] 49[4838] 31[864]
CaKLA 61[2423] 20[3903] 12[6336] 13[4677] 16[2069] 24[2116] 15[7545] 38[943] 30[4782]
OrCOA 124[3245] 56[17 242] 62[24 562] 69[26 473] 96[22 282] 108[25 421] 88[32 484] 139[97 822] 72[33 422]
OrECO 46[496] 7[1596] 13[2400] 21[6411] 28[2245] 43[2228] 27[5120] 28[15 930] 21[5501]
OrKLA 53[879] 32[4271] 50[5429] 37[12 158] 44[3487] 35[4153] 40[9627] 55[33 626] 41[8886]
OrWCO 98[1977] 34[10 419] 56[13 531] 71[13 253] 125[9117] 122[9010] 124[26 966] 180[96 573] 89[37 606]
OrWIL 11[169] 5[1097] 7[1705] 10[2101] 10[1914] 6[1650] 2[1436] 5[1570] 6[400]
WaECW 133[1117] 22[4751] 35[8938] 30[11 127] 40[7526] 38[5052] 34[6748] 66[20 239] 21[9270]
WaOLY 32[856] 18[5911] 19[8088] 28[9760] 34[7990] 45[8985] 57[12 899] 49[50 924] 32[22 713]
WaWCW 70[1849] 25[9652] 31[10 567] 42[12 050] 75[11 618] 101[13 196] 123[25 544] 125[89 094] 73[61 462]
WaWLO 95[2457] 39[15 944] 66[24 599] 93[29 938] 97[27 171] 78[30 609] 68[38 031] 58[133 236] 22[43 350]

downloadedHDF5GEDI data under the 4.0.3 version
of the R statistical software (R Core Team 2022).

We applied quality control measures to filter the
GEDI data. We excluded footprints with a l4 quality
flag = 0, indicating issues like low sensitivity, leaf-off
conditions for deciduous trees, or shots over water
or urban areas. We only retained shots within sec-
ondary forest pixels identified in the Landsat dis-
turbance map, discarding boundary samples. After
filtering, 1490 720 shots were used in the analysis.
(table 1).

To initially assess the suitability of GEDI’s L4A
biomass model in our chosen ecoregions, we linked
FIA plot data from 2015 to 2019 with GEDI samples
within 200meters of each plot center.We used confid-
ential FIA plot coordinates for this analysis in a secure
environment, acknowledging imperfect spatial align-
ment with the GEDI shots.

Approximately 2% of the region’s land area
falls in one of the analysis’ age strata following
the filters described above. Approximately 51% of
mapped stand-clearing harvests happened before
1984. Approximately 64% of disturbance patches had
no GEDI sample shots. Out of 1.5 million selected
GEDI shots, 36%were retrieved in 2020, 30% in 2021,
23% in 2019 and 11% in 2022. The mean of all the
selected GEDI AGBD predictions at the 25 m foot-
print scale was 160 Mg ha−1 (±139 Mg ha−1), with a
range of 0–4394 Mg ha−1.

2.2. GEDI biomass recovery and vicarious
calibration
We produced uncalibrated chronosequences by cal-
culating both the median and interquartile range for
GEDI L4A AGBD predictions (2019–2021) in each
mapped age group within each ecological province.
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Medians were used in this analysis instead ofmeans to
minimize outliers resulting from Landsat map error
and/or GEDI geolocation error that resulted in GEDI
shots from mature forests being assigned to classes
representing young forests.

Our calibration is designed to correct over-
prediction of low levels of biomass in the GEDI
L4A product, specifically in the space where GEDI
L4A predictions are grouped by mapped age (refer
figure 1(b)). Here we elaborate upon our vicarious
calibration method and its underlying assumptions.
In figure 1(b) we expect that the bias originates from
the original GEDI L4A prediction space as depic-
ted in figure 1(a). We made two assumptions that
allowed vicarious calibration of GEDI’s biomass pre-
dictions in the context of young forest carbon accu-
mulation. First, we assumed that new clearcuts (age-
group 0–5) have no AGBD, and the appropriate off-
set (AGBDOffset) for this age group (yellow dot in
figure 1(c)) is determined by subtracting the median
GEDI L4A AGBD prediction in that age-group from
zero. Although not all clearcuts lead to total bio-
mass removal (e.g. Oregon Revised Statute (ORS)
(2023), § 527.676 mandates the retention of specific
elements), we presume such restricted biomass reten-
tion in clearcut scenarios is deemed relatively insig-
nificant. Second, we assume that there is no con-
sistent bias in L4A predictions associated with the
mean of the training dataset.We further identified the
age (AGEmean in equation (1) associated with mean
of the L4A reference dataset (135 Mg ha−1, after
backtransformation; see figure 1(a)), and declared
the needed offset at that age to be zero (blue dot,
figure 1(c)). An age-specific offset was then added
to all L4A biomass predictions, using an offset func-
tion linearly interpolated between the yellow and blue
points (equation (2)). No offset was added to points
above the age associated with the mid-point of the
modeling dataset (equation (3)) because of a lack of
information on high-biomass shots and a recogni-
tion thatmost secondary forests contain relatively few
high-biomass conditions. In some regions, it might
be necessary to perform this calibration separately for
every PFT (different functional types have different
L4A models: Duncanson et al 2022), but we treated
the entire study area as ‘evergreen needleleaf trees’,
the dominant model used by the GEDImission in the
study area (60%–99%, depending upon ecoregion),

GediCalibrated = Gedipredicted +AGBDoffset (1)

AGBDOffset = a+ b× age, when age< AGEmean

(2)

AGBDOffset = 0, when for age⩾ AGEmean (3)

where a and b are calibration parameters fit by ecore-
gion and a is a negative coefficient.

We conducted a comparison between the chro-
nosequence derived from uncalibrated GEDI L4A
and calibrated GEDI L4A against the chronosequence

derived from FIA’s estimates of age-specific means
(with standard errors) for each province. The com-
parison involved assessing the overall fit using a one-
sided paired t-test to evaluate if the proposed calib-
ration process improved the correspondence of GEDI
and FIA (i.e. reference) chronosequences. Specifically,
the RMSE (equation (4)) of calibrated and uncalib-
rated chronosequenceswere evaluated in pairs by eco-
region,

RMSE=

√√√√√ N∑
i=1

(FIA−Gedi)2

N
. (4)

Furthermore, we performed age-group specific t-
tests to evaluate the difference in absolute bias across
our 12 ecoregions between the uncalibrated and calib-
rated L4A estimates. Finally, we performed one-sided
t-tests on the mean differences between FIA and cal-
ibrated GEDI values, and between FIA and default
2019 Refinement to the 2006 IPCC rates for aggreg-
ated <20 and 20–48 year age groups, using IPCC
default values for Temperate Secondary Forest (table
4.7, volume 4: Agriculture, Forestry and Other Land
Use, Buendia et al 2019, Shukla et al 2019). The IPCC
value used in comparison with our 20–48 year class
is from the class: secondary forest, 20+ years. Note
that the FIA data we use as a reference at the ecore-
gion level (in addition to Canadian data) for IPCC
regional-scale reference levels.

3. Results

3.1. Preliminary evaluation of GEDI AGBD
The preliminary comparison between FIA and uncal-
ibrated GEDI L4A AGBD values in each ecoregion,
presented here for context, demonstrated varying
levels of agreement (figure 3). It must be noted that
the spatial overlay of FIA plots and GEDI shots was
only approximate (<200 m between plot and shot
center points), which likely contributed to R2 below
0.5 in most ecoregions. As expected, high biomass
values tended to be under-predicted in the uncal-
ibrated set of GEDI predictions, while low-values
tended to be over-predicted ranging from 58.06 to
177.78 Mg ha−1 demonstrating the issue of occur-
rence of non-uniform bias as shown in the conceptual
representation in figure 1(a).

3.2. GEDI biomass recovery and vicarious
calibration
The ecoregions represented a range of productivity,
with some reaching only 50 Mg ha−1 (by median)
in 48 years or 1.04 Mg ha−1 yr−1 (e.g. California
Cascades), and others reaching 250 Mg ha−1 or
5.2 Mg ha−1 yr−1 (Washington’s Olympic Peninsula
and Oregon’s Coast Range). In several ecoregions,
carbon accumulation slowed down or reversed from
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Figure 3. Plot showing the comparison between the FIA AGBD from 2015 to 2019 and the GEDI L4A samples from 2019 to 2021
that fall within a 200 m distance between the FIA plot center and the GEDI shot center. The linear equation and associated R2 for
each regression are presented within each panel, with the red line representing the 1:1 line and the blue line representing the linear
model line.

43 to 48 years of age, according to both FIA and GEDI
(figure 4).

We evaluated the overall agreement between
uncalibrated and calibrated GEDI-based chrono-
sequences with reference FIA-based chronosequences
using the root mean square error (RMSE) metric
(table 2). A one-sided paired t-test comparing the
mean RMSE (evaluated at each age group against
the plot-based FIA estimate) between the two groups
(t = 0.85, p-value = 0.20) revealed no significant
enhancement in the overall fit following calibration.
Uncalibrated GEDI-based chronosequence displayed
a pattern similar to the conceptual representation in
figure 1(b).

However, age group-specific one-sided t-tests
on the absolute value of GEDI differences from
FIA suggested that calibration significantly reduced
model bias in the 0–5 and 15–20 year age groups
(figure 5). While vicarious calibration did not signi-
ficantly improve the agreement between GEDI- and
FIA-based biomass estimates across all age groups,
this result shows significant reduction in prediction
bias in the youngest age classes.

3.3. Comparison with 2019 refined IPCC default
AGBD accumulation rates
Using FIA chronosequences as ‘truth’, we conducted
a comparison of AGBD accumulation rates, derived
from both uncalibrated and calibrated GEDI L4A
estimates as well as default values provided by the

2019 Refinement to the 2006 IPCC (Shukla et al 2019)
(figure 6). Following IPCC precedent, estimates were
aggregated to 0–19 years old and 20–48 years old
(IPCC groups all secondary forests over 20 year old).
All of the ecoregions tested here fall into the same
IPCC domain and are therefore compared against
the same default value. For the AGBD gained in
the first 20 years, that IPCC value was greater than
the aggregate FIA value in each of the 12 ecore-
gions (figure 6). Calibration significantly reduced
the difference between the FIA and GEDI estimates
(t = 6.23, p < 0.0001). However, calibration had
no significant benefit in the older age group com-
pared to uncalibrated Gedi estimates (t = 1.7579,
p-value = 0.10). For the 20–48 year age group, the
default 2019 IPCC recovery rate of 129 Mg ha−1 was
lower than the FIA estimate for the most productive
ecoregions.

Paired t-tests indicated that the differences
between 2019 IPCC and reference FIA values were
consistently significantly higher (p < 0.05) for both
age groups than the differences between FIA and cal-
ibrated GEDI values.

4. Discussion

In much of the world, forest inventories do not sup-
port the kind of observation-based chronosequences
provided here by FIA. In this study, we proposed and
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Figure 4. Gain in the forest biomass (Mg ha−1) using the GEDI L4A model and the forest recovery age by about 5 year age class
derived from the Landsat time series data. The blue dots are the median of uncalibrated GEDI L4A AGBD estimates. Red dots
with the error bars represent the mean of FIA field derived AGBD for each stand age class and the 95% of confidence interval.
Boxplots shows median values (dark lines) and quartile ranges of AGBD in Mg ha−1 after calibration of the GEDI L4A.

Table 2. Root means square error of AGBD estimates derived from
both uncalibrated and calibrated GEDI-based methods, across age
groups as assessed against FIA estimates.

S. No Province

RMSE GEDI
L4A uncalibrated

(Mg ha−1)

RMSE GEDI
L4A calibrated
(Mg ha−1)

1 CaCAS 36.9 23.6
2 CaCOA 44.7 46.4
3 CaKLA 17.7 31.7
4 OrCOA 18.7 15.4
5 OrECO 10.7 9.7
6 OrKLA 23.2 19.7
7 OrWCO 25.4 23.4
8 OrWIL 38.6 37.2
9 WaECW 22.6 19
10 WaOLY 26.2 26
11 WaWCW 34.2 31.4
12 WaWLO 16.5 14.1

evaluated a vicarious calibration method specifically
designed to better use GEDI-derived AGBD predic-
tions to understand carbon dynamics in young, sec-
ondary forests.While calibration does not always lead
to significantly improved agreement with FIA across

50 years of recovery, we found that vicarious calibra-
tion is effective in eliminating bias in early age groups
(<20 years).

The context of calibrating a chronosequence, and
not simply biomass stock, introduces the unique
requirement that we minimize bias conditional on
mapped stand age. With adequate field data, we
might be able to adapt for this purpose conven-
tional calibration methods such as histogram match-
ing (Gilichinsky et al 2012), restricted imputation
(Barth et al 2012) or classical calibration (Shukla
1972, Tellinghuisen 2000, Lindgren et al 2022). Our
vicarious approach, which does not require locally
collected field data, achieved significant improve-
ments in mean AGBD estimates for two of the three
youngest age groups tested. Below, we consider prac-
tical mapping concerns, limitations to our approach,
and potential applications.

4.1. Chronosequence site selection
We created an age map by merging the stand replace-
ment disturbance time-series from Landsat disturb-
ance maps of 1972–1977, 1977–1984, and annual
LCMS maps from 1984 to 2021. The utilization of
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Figure 5. Errors in relation to FIA for uncalibrated and calibrated L4A estimates. Each circle point represents the difference for a
specific ecoregion between the estimated FIA mean and the median of GEDI predictions with red points for uncalibrated and
blue points for calibrated GEDI circle. The p-values displayed for each age group refer to a one-sided t-test comparing calibrated
and uncalibrated absolute differences from FIA of median AGBD estimates across all 12 ecoregions. The vertical blue shading
indicates the age-groups in which calibration significantly improved agreement with FIA.

Figure 6. The biomass accumulation for the under 20 and 20–48 year age groups are depicted. The red dots, along with error bars,
represent the mean values of FIA field derived AGBD with standard error and a 95% confidence interval. The blue triangle and
green dots represent the median AGBD accumulation values of uncalibrated L4A estimates and the default AGBD accumulation
value from 2019 IPCC, respectively. The boxplot illustrates the median values (indicated by dark lines) and quartile ranges of
AGBD in Mg ha−1 after calibration of the GEDI L4A.
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the historical MSS-derived product presents numer-
ous challenges, including its lower resolution, incon-
sistencies in spatial, geometrical, and radiometric
sensors, as well as a limited number of bands com-
pared to more recent Landsat products (Banskota
et al 2014). Despite these challenges, MSS contrib-
uted valuable insights into carbon gain during the
earliest stages of stand development. A strength of the
methodwe propose is that it only depends upon being
able to identify stand-clearing disturbances, a feasible
goal even with earlier MSS imagery (Renó et al 2011).

Our results are subject to limitations that apply to
all chronosequences, as well as some factors that are
specific to remotely sensed carbon recovery curves.
Chronosequences depend upon simplified stand his-
tories, and we explicitly omitted stands affected by
non-stand replacing disturbances, which may in fact
be common in countries attempting to account for
carbon dynamics in secondary forests. Also, this kind
of chronosequence approach may be ineffective in
ecosystems with high tree mortality heterogeneity,
leading to amulti-modal pattern of biomass accumu-
lation (Harmon and Pabst 2015). Global change and
large-scale species conversions may also affect how
representative regional chronosequences might be of
future forest carbondynamics. Specific to our reliance
upon GEDI, it is important to highlight that the cor-
respondence of calibrated GEDI biomass estimates
with reference data in theU.S.may not be representat-
ive of accuracy in regionswhere theGEDI L4Amodel-
building data do not represent the forest population
well. Our study area benefits from relatively well-fit
L4A model across various ecoregions (figure 3). In
areas where the GEDI L4 models may not represent
local conditions, Bullock et al (2023) propose using
available plot data opportunistically with on-orbit
GEDI data to fit customized local models. Such mod-
els may require further calibration, as proposed here,
when used for constructing chronosequences.

4.2. AGBD recovery trajectory
The CaCAS, CaCOA, CaKLA, OrWIL, and WaWLO
ecoregions showed a drop in AGBD in the 43–50 age
group, suggesting possible density-dependent mor-
tality or a temporary age-related decline (Xu et al
2012, Johnson et al 2016, Hancock et al 2022).
Density-dependent mortality occurs when competi-
tion near canopy closure leads to a reduction in forest
biomass, primarily due to decrease in non-dominant
trees (Binkley 2004). FIA-derived chronosequence
corroborated this temporary decline in biomass.

In terms of uncertainty assessment, it is worth
noting that we do not provide formal inference for
the uncertainty of GEDI estimates, instead relying
upon quantile-based box plots as informal measures
of uncertainty (figures 4 and 6). Unlike the hybrid
estimators proposed by Patterson et al (2019), we use
the median as a measure of central tendency. This

decision was intended to reduce the leverage of pre-
dictions of high biomass in young stands; such pre-
dictions may be traced to both spatial errors in GEDI
coordinates and imperfections in the Landsat-based
age strata, which sometime include seed-tree har-
vests that leave large trees in otherwise cleared areas.
Formal modes of model-based inference based upon
the median would need to be developed for applica-
tions such as ours.

4.3. Applications
Mechanisms like REDD+ have opened the door for
avoided emissions and removals to be recognized
for their contributions to climate change mitiga-
tion undermultiple schemes (e.g. performance-based
payments, voluntary carbonmarkets). However, pro-
ducing data needed to support initiatives such as
Verified Carbon Standard (VCS-VERRA), Forest
Carbon Partnership Facility (FCPF), and BioCarbon
Fund Initiative for Sustainable Forest Landscapes
requires a level of effort beyond what can be
deemed affordable or viable to countries and program
developers. The ideal network of permanent plots,
strategically designed to track carbon sequestration in
recovering forests age would not only be extremely
expensive but also take time we cannot afford as
the climate crisis unfolds. The methods presented
here represent a viable opportunity to elaborate and
deliver data that enables their use towards carbon
accounting and the issuance of verifiable emissions
removals estimates. Estimates will not only benefit
ex-post but also ex-ante estimates (e.g. West et al
2023) that will help with intervention design and
management.

Disturbances can result in significant net carbon
losses to the atmosphere that may take centuries to
offset (Houghton et al 2009, Krankina et al 2014).Our
reference data showed that the default AGBD accu-
mulation rate for the <20 age-group, as refined in
the 2019 IPCC guidelines (Shukla et al 2019) were
consistent overestimates (figure 6). Vicarious cor-
rection of GEDI estimates was particularly effect-
ive in this youngest age range (figures 5 and 6),
yielding consistently more accurate AGBD estimates
than IPCC defaults and uncalibrated GEDI estimates.
Furthermore, the large number of GEDI measure-
ments allowed sample-based AGBD estimates at finer
5 year time increments, another potential refinement
of currently available defaults.

On the other hand, results cannot be disaggreg-
ated by factors often deemed important in secondary
forest carbon analysis, such as: harvested vs. burned
stand history (McDowell et al 2020); natural vs. arti-
ficial regeneration (Paquette et al 2009) and spe-
cific accounting of carbon in afforestation projects
(Fradette et al 2021). Our use of GEDI’s sample is
appropriate for empirically determining the central
tendency of carbon gain in a given area, but explorat-
ory comparisons are limited to variables (such as age
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grouphere) that can bemapped for purposes of estab-
lishing subsamples.

5. Conclusions

Our study demonstrates the effectiveness of com-
bining readily available remote sensing resources,
comprehensive Landsat disturbance maps and GEDI
footprint-level biomass data, to create chrono-
sequences representing carbon recovery rates in sec-
ondary forests. While GEDI’s L4A biomass predic-
tions appeared relatively unbiased when matched to
inventory plots measured within 200 m of shot cen-
ter, substantial design bias occurred when predicted
biomass was compared to field biomass as a function
of mapped stand age. Our simple vicarious calibra-
tion process significantly improved GEDI agreement
with inventory results in the youngest age groups,
critical to understanding secondary forest regrowth
and the carbon benefits that secondary forests con-
vey. Replicating this methodology elsewhere is likely
to enhance the uniformity and representativeness of
greenhouse gas reporting and management.
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