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Developing soil quality indices for predicting site classes in Pinus patula stands of 
Sao Hill and Shume Forest Plantations, Tanzania
J. Maguzua, S. M. Maliondoa, I. Ulrikb and J. Z. Katania

aCollege of Forestry, Wildlife and Tourism, Sokoine University of Agriculture, Morogoro, Tanzania; bDepartment of Forest Ecology and 
Management, Swedish University of Agricultural Sciences, Umeå, Sweden

ABSTRACT
Soil quality indices (SQIs) are comprehensive measures of soil function, integrating physical, 
chemical, and biological properties, which are used globally to predict suitable sites for agricultural 
and forest productivity. However, a lack of information on the SQIs in East Africa, particularly in 
Tanzania, impacts its implementation in the forest sector. Therefore, this study analyzed soil 
properties and developed SQIs for predicting site productivity of Pinus patula stands in Tanzania. 
Specifically, we aimed to (i) develop SQIs under different site classes across two forest plantations 
and (ii) test if SQIs can predict site classes across two forest plantations and which soil physio- 
chemical variables inherent in the SQI contributed most to the prediction. Principal component 
analysis with varimax rotation was used to develop SQIs. Orthogonal partial least squares were 
used to test whether SQIs and soil variables can predict the site classes. Our findings show that SQIs 
were SCII (0.68) > SC III (0.57) > SC IV (0.56) at SHFP. Similarly, for the SFP, the values were SC I (0.67) 
> SC III (0.59) > SC II (0.57). The highest SQI values indicate better quality of the site class. We found 
that the SQIs of studied plantations fall under the intermediate soil quality (0.55 < SQI < 0.70) class. 
Furthermore, SQIs and some soil variables, including available phosphorus and magnesium, were 
identified to be the most influential variables for predicting site productivity.
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1. Introduction

Understanding soil quality is crucial for managing soil 
and determining its production capacity (Andrews 
et al., 2002; Tian et al., 2023). It is a prerequisite for 
effective land resource planning and utilization (Amalu 
& Isong, 2017; Kalambukattu et al., 2018; Okon et al.,  
2019). Precision in forest and agriculture production is 
based on assessing soil quality to facilitate and optimize 
soil management and often require several soil variables 
to support decision-making (Mohamed et al., 2020; Roy 
& George, 2020). However, since some variables can 
also be redundant, the ability to identify critical vari-
ables can reduce both the time and costs of in situ and 
optimize procedures for soil assessment (Said et al.,  
2020). One of the most common quantitative 
approaches for assessing soil quality has been using the 
soil quality index (SQI) (Askari & Holden, 2024).

The soil quality index is commonly utilized for asses-
sing the effects of soil management systems, cover crops, 
and land uses (Chaves et al., 2017; Gura & Mnkeni,  
2019; Raiesi & Kabiri, 2016; Sofi et al., 2016; Yu et al.,  
2018). It integrates physical, chemical, and biological 
properties that represent the ability of soil to perform 

its functions such as sustaining plant and animal pro-
ductivity while maintaining and/or improving air and 
water quality in a given ecosystem (Chaudhry et al.,  
2024; Elbasiouny et al., 2017; Karlen et al., 1997; Paz- 
Kagan, Martinez-Garza, et al., 2014). In addition, 
Bastida et al. (2008) highlighted the importance of 
incorporating physical, chemical, and biological proper-
ties in SQI assessments to effectively evaluate soil quality 
and improve overall site productivity.

Studies have shown that soil nutrient levels, such as 
organic matter content, total nitrogen, available phos-
phorus, and exchangeable potassium, are often used as 
variables in SQI and can significantly impact site pro-
ductivity (Doe et al., 2010). Although there is no uni-
versally recognised approach for calculating SQI exists 
(Cherubin et al., 2016; Rinot et al., 2019), multiplelinear 
regression (Biswas et al., 2017), pedotransfer functions 
(Xu et al., 2017), experts’ opinion, farmers’ experience 
(Andrews et al., 2002, 2004; Lima et al., 2011; 
Tesfahunegn et al., 2011), and principal component 
analysis (PCA) (Armenise et al., 2013; Cherubin et al.,  
2016; Sánchez-Navarro et al., 2015) are especially useful 
for this purpose. PCA, for example, enables the 
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reduction of dimensional complexity in large datasets, 
making it easier to select specific indicators by categor-
izing correlated soil attributes into ‘principal compo-
nents’ (PC) groups.

The SQIs are designed to assess soil quality and 
predict site productivity/site classes, particularly under 
varying slope positions (Navas et al., 2011; Paz-Kagan, 
Shachak, et al., 2014). The ability of SQIs to consider 
spatial variability across various slope positions 
enhances their effectiveness in assessing soil quality. 
For example, SQI evaluations can capture the different 
moisture retention capacities and nutrient profiles of 
soils at varying slope position (Mulat et al., 2021). 
According to Meitasari et al. (2024) in Indonesia 
found the highest SQI in forested areas on upper slopes, 
while lower slopes had medium to high SQIs for grass-
lands and paddy fields and low to medium for dry fields 
and mixed gardens. Key soil properties affecting SQI 
include sand content, total nitrogen, pH, and aggregate 
stability, which are influenced by organic matter man-
agement practices tailored to specific slopes. Mesfin 
et al. (2022) assessed soil properties across upper, mid-
dle, and lower slope positions. Their findings revealed 
significant variations in soil properties such as silt con-
tent, pH, and available phosphorus, with upper slopes 
having the highest silt content and lower slopes showing 
increased organic matter and nutrient availability. The 
relationship between soil quality indices and slope per-
centage is complex, influenced by various factors 
including land use, vegetation type, and management 
practices within a given site class, highlighting the 
importance of site-specific management practices for 
improving soil quality and forest productivity 
(Adegbite et al., 2019; Baskan et al., 2016). Site class/ 
site productivity in forest plantations measures the 
potential growth capacity of a forested area. It indicates 
the average height that dominant and co-dominant trees 
will reach a specific age in fully stocked, even-aged 
stands (Weiskittel et al., 2011).

Several studies have explored the relationship 
between SQI and site productivity (site classes) and 
have been widely used in crop and forest plantation 
studies (Fontes et al., 2003; Shen et al., 2022). Studies 
in China and Poland have found that SQIs can be 
used to predict site productivity and assess the soil 
fertility of forest plantations (Chodak et al., 2020; 
H. X. Zhang et al., 2021). Inadequate soil suitability 
assessment using SQIs in most developing countries 
has become a constraining factor in predicting sites 
for forest production. For example, Isong et al. (2022) 
in Nigeria reported that plantation lands were estab-
lished primarily without resorting to adequate land 
use planning, causing wider differences in productivity 

observed across sites and hence there is a need for 
a collective effort to gain a better understanding of soil 
quality in the area, with the main goal of responsible 
soil management. Thus, there is a need to develop 
suitable soil indices to predict the quality of forest 
sites (Arifin et al., 2012; Sharma et al., 2005).

Despite the importance of SQIs in the forest sector, 
Tanzania has no comprehensive SQIs to explore its 
capabilities for predicting site productivity in forest 
plantations. Therefore, SQIs for predicting site produc-
tivity would empower forest managers to make well- 
informed decisions about site categorization, tree spe-
cies selection, site preparation, and soil management 
methods. This would ultimately enhance the manage-
ment and planning of forest plantations (Chen et al.,  
2013; Fathizad et al., 2020; Guo et al., 2017). We, there-
fore, hypothesize that SQI can be used to predict site 
productivity for forest plantations in Tanzania, and the 
soil physical and chemical variables inherent in the SQIs 
will contribute significantly to the prediction. 
Specifically, the objectives of the study, aimed to (i) 
develop soil quality indices under different site classes 
across two forest plantations in Tanzania and (ii) test if 
SQI can predict site productivity (Site class) across two 
forest plantations in Tanzania and which soil physical 
and chemical variables inherent in the SQI contributed 
most to the prediction.

2. Material and method

2.1. Description of the study areas

The research took place at Sao Hill Forest plantation 
(SHFP) in the SW highlands and Shume forest planta-
tion (SFP) in the NE highlands of Tanzania. SHFP is 
located between latitude 8°18‘–8° 33’ S and longitude 
35° 6‘–35° 20’ E in Iringa Region, Tanzania, and has an 
altitudinal range of 1400–2000 meters above sea level 
(m.a.s.l), averaging 1634 m.a.s.l. The area experiences an 
average yearly precipitation ranging from 750 to 
2010 mm, falling between November and April, and 
mean annual temperatures ranging from 15°C to 25°C 
(Ngaga, 2011). Soil is underlined at depth by acidic and 
well-drained and of various types, mainly dystric nitro-
sols in association with orthic acrisols. Most of the soil 
originates from deeply weathered granites characterized 
by a sandy clay loam-rich texture graded by reddish- 
brown color which, contributing to its unique proper-
ties (Ngaga, 2011). The SHFP covers a total area of 
135,903 ha, of which 86,003 ha are suitable for commer-
cial tree planting and 48,200 ha is reserved for the nat-
ural forest, river valley, and future expansion (MNRT,  
2018).
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SFP is located in the western part of the 
Usambara Mountains in the Lushoto district of the 
Tanga region. SFP is located at 04° 40’S and 38° 15’ 
E, an altitude range between 1650 and 2120 m.a.s.l 
(Lovett, 1996). The area receives two rain seasons, 
from September to November and from March to 
April, with an average annual precipitation that var-
ies between 800 mm and 2000 mm and an average 
annual temperature range between 16° and 22°C 
(Haruyama & Toko, 2005). A minor and unreliable 
rain occasionally occurs in August and September. 
The soils are well-drained and mostly composed of 
clay with different levels of sand. Generally, the soil 
is acidic (Lundgren, 1978). The area’s geology is 
characterized by a diverse series of ancient meta-
morphic rocks that belong to the Usambara system 
of the Precambrian. The total plantation covers 
about 4,863 ha.

2.2. Soil sampling

We selected the two largest administrative divisions 
according to production potentials in each planta-
tion. The divisions were then divided into four com-
partments representing site classes (I, II, III, and IV) 
based on official management records and area cov-
erage. Quadrat plots with an area of 20 m × 20 m 
were positioned in each site class along the soil 
catena based on slope position (i.e. summit, mid, 
and lower slopes). Soil sampling was carried out at 
three to four plots for each site class, resulting in 16 
and 12 sampling plots (Figure 1), with 96 and 72 soil 
samples for SHFP and SFP, respectively. Undisturbed 
soil samples for determination of soil bulk density 
were collected using a core cylinder of known 
volume, while loose soil samples for determining 
physical and chemical properties were collected 
using a soil auger at depths of 0–20 cm, 20–40 cm, 
40–60 cm, 60–80 cm, 80–100 cm, and 100–120 cm at 
five different points within each plot. The loose soil 
samples from each sampling depth were combined to 
make one composite sample. The analyzed labora-
tory composite samples from 0 to 40 cm topsoil 
layers were taken to calculate soil quality indices in 
the respective site classes. The topsoil, where the 
majority of root activity occurs, is crucial for overall 
plant growth. This layer typically contains the high-
est concentration of organic matter and nutrients 
that are essential to plants. Evaluating this layer is 
key to understanding how management practices 
affect soil quality and productivity (Mueller et al.,  
2007).

2.3. Physical and chemical properties 
measurement

Particle size distribution test was determined by hydro-
meter method as described by (Gee & Bauder, 1986), the 
bulk density was determined by the core method (Blake 
& Hartge, 1986) and the porosity was determined by 
assuming the soil particle density of 2.65 g/cm3. The pH 
(1 M CaCl2) in the soil at a solution ratio of 1:2.5 was 
measured by the glass electrode method following spe-
cific procedures outlined in the ASTM standards 
(ASTM, 1995). Soil Organic Carbon (SOC) was deter-
mined using Walkley-Black chemical oxidation proce-
dures (Nelson & Sommers, 1996). Total nitrogen was 
determined by micro-Kjeldahl digestion distillation 
methods (Bremner & Mulvaney, 1982), while available 
phosphorus (P) was extracted by the Bray 1 method 
(Bray & Kurtz, 1945). The cation exchange capacity 
(CEC) was determined using the 1 mol/L NH4OAc 
(pH 7.0) exchange technique, followed by the leaching 
of ammonia (NH3) with KCl and measured using 
a flame-photometer device.

The concentration of soil exchangeable bases (Ca and 
Mg) was determined by atomic absorption spectropho-
tometry (S) (Thermo Scientific, ICE Series 3500), while 
Potassium (K) was measured by flame emission 
spectrophotometer.

2.4. Estimation of site classes and soil quality 
assessment

The site classes for each plot were determined using the 
Mean Dominant Height (Hdom) of the five tallest trees 
of good form in each plot, as described by Vatandaşlar 
et al. (2023), as it changes along the soil catena within 
the previously assigned site classes based on slope posi-
tions (i.e. summit, mid and lower slopes). A statistics- 
based model was used to estimate SQIs in each plot 
using PCA (Mukherjee et al., 2014). The PCA model 
included all the original observations of soil parameters 
from each site class and was used as a factor extraction 
method in the respective site class to group the mea-
sured soil properties into principal components (PC1, 
PC2, and PC3) after varimax rotation (Teferi et al.,  
2016). Only the variables with absolute factor loadings 
corresponding to each of the principal components 
(PCs) in each site class were considered to develop 
a minimum data set (MDS) (Mukherjee et al., 2014). 
However, the PCA approach was appropriate because 
a multivariate correlation matrix was used to calculate 
the correlation coefficients between the parameters 
when retaining more than one variable under 
a specific PC.
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If the parameters were significantly correlated (r > 0.70), 
then the one with the highest loading factor was retained in 
the MDS, and all others were eliminated from the MDS to 
avoid redundancy (Andrews et al., 2002; Huang et al.,  
2021). Each PC explained a certain amount of variation 
in the dataset, divided by the maximum total variation of 
all the PCs selected for the MDS to get a specific weightage 
value under a particular PC (Mukherjee et al., 2014). Next, 
the variables chosen in each site class were transformed 
into indicator score coefficients from 0 to 1. Finally, the 

SQI was calculated using the Cude (2001) and Masto et al. 
(2015) equations.

Calculation of Soil quality index for each site class
The SQI was computed using Equation (1) as out-

lined by Cude (2001).

SQI ¼
XN

i¼1
Wi � Si (1) 

Wi represents the component score coefficient (CSC) 
derived from the PCA findings. Due to the diverse scales 

Figure 1. Locations of soil sampling plots at Sao Hill and Shume forest plantations in Tanzania.
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and units of the soil indicators, the Si values are normal-
ized using a specific equation. 

z ¼
x � �x

σ
(2) 

where z represents the standardized value, x is the 
value of a soil indicator, �X is the average of a soil 
indicator, and σ is the standard deviation of a soil 
indicator.

Therefore, the SQI equation based on PCs can be 
expressed in the following equation (3): 

SQI � PC ¼
XN

i¼1
CSC � z (3) 

Thus, the comprehensive soil quality index (CSQI) is 
computed using Equation (4): 

CSQI ¼
XN

i¼1
VariabilityofeachPC � SQI � PC (4) 

The CSQI, which is determined using z-scores, has 
been transformed into a standard normal distribu-
tion with a standard deviation of one and a mean of 
zero.

2.5. Statistical analysis

Orthogonal partial least squares (OPLS) analysis was 
used to test whether SQI and soil variables can predict 
site classes. In this analysis, site classes were assumed to 
be a continuous variable from 1 to 5. This is clearly not 
the case, but such an approximation results in better 
predictions than a PLS discriminant analysis of unor-
dered classes. All statistical analyses, tables, and figures 
were performed using SIMCA Ⓡ software.

3. Results

3.1. Soil quality indices development for the site 
classes at SHFP and SFP

The PCA analysis identified three principal components 
for each observed site class in both plantations. These 
components explained (75%, 73%, 60%, 84%) and (84%, 
87%, 92%, and 71%) of the variation in each PC for the 
total data set within the observed site classes at SHFP 
and SFP, respectively, this percentage provided the 
weight for variables chosen under a given PC 
(Appendix 1). Appendices 2 and 3 display the loading 
factors in the first three PCs in each observed site class. 
These loading factors summarize the initial 13 soil prop-
erties and accurately reflect the soil quality in the two 
plantations. The results indicated high loading values 
with high positive correlations for PCs in observed site 
class II correspond to Ca, CEC, OC, silt, BD, and TN, 
while PCs in observed site class III correspond to Clay 
and Ca, and PCs in observed site class IV correspond to 
AvailP, Ca, and (silt and CEC negatively correlated) at 
SHFP. Similarly, high loading values with high positive 
correlations for PCs in observed site class I correspond 
to pH, AvailP, silt, and K, PCs in observed site class II 
correspond to pH, clay, OC, and K, and PCs in observed 
site class III correspond to BD, K, sand, TN, and Clay at 
SFP. Appendices 4 and 5 show the Component Score 
Coefficient Matrix.

3.2. Soil quality index under different observed site 
classes at SHFP and SFP

We found that the SQI values for the topsoil (0–40 cm 
depth) were highest for SC II (0.68), followed by SC III 
(0.57) and SC IV (0.56) at SHFP (Figure 2). Similarly, 

Figure 2. Soil quality index for the different observed site classes at Sao Hill Forest Plantation (SHFP) and Shume Forest Plantation 
(SFP) in Tanzania. The vertical line outside the box represents the minimum and maximum values. I = site class I, II = site class II, III = 
site class III, and IV = site class IV.
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for the SFP, the SQI values were highest for SC I (0.67), 
followed by SC III (0.59) and SC II (0.57) (Figure 2).

3.3. Predicting site classes using SQI and soil 
variables at SHFP and SFP

The partial least square (PLS) resulted in the generation 
of one predictive component and one orthogonal com-
ponent based on the cross-validation rules. The model 
could explain 63% (R2Y) and predict 47% by cross- 
validation (Q2Y) of variation in site class (Table 1).

The variable importance analysis (VIP) of the 18 
variables used in predicting Site class revealed that 
magnesium (Mg), available phosphorus (AvailP), and 
SQI were the top three most influential variables in 
predicting site classes (Figure 3).

Additionally, the results of the OPLS model were sig-
nificant, with confidence bars that do not overlap zero. 
This indicates the importance of the variables and their 
impact on the site class. AvailP and Mg are the most 
influential variables, with site and slope also affecting the 
site classes. Mg is negatively correlated with SQI (Figure 4) 

Table 1. Cross-validation using 19 variables, 18 are X variables, and 1 is 
Y variable OPLS model

Components R2X(cum) R2Y(cum) Q2Y(cum)

Model 0.652 0.635 0.466
Predictive 0.152 0.635 0.466
Orthogonal in X (OPLS) 0.5 0

(R2X), the goodness of fit for the built model, (R2Y) proportion of the response variance 
explained by the model and predictive performance of the model (Q2Y).

Figure 3. Variable importance projection (VIP) values for the OPLS model predicting site class from soil and site variables in P. patula 
stands at Sao Hill Forest Plantation (SHFP) and Shume Forest Plantation (SFP) in Tanzania. The VIP values shown are for the complete 
OPLS model containing both the predictive and orthogonal components and are sorted according to the predictors’ importance in the 
model.

Figure 4. Correlation coefficients among the different soil indicators and SQI with site classes at Sao Hill (SHFP) and Shume Forest 
Plantation (SFP) in Tanzania.
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and site productivity, indicating significant implications 
for soil quality assessment.

Furthermore, our results clearly separated plot site 
classes based on SQI and soil variables in the first two 
components, indicating high predictability and accuracy 
(Figure 5).

4. Discussion

The study found that SQI was higher in site class I at SFP 
and II at SHFP vs. II at SFP and IV at SHFP, indicating that 
high SQIs contribute to better quality of the site classes. The 
results showed that the soils of SC II at SHFP and SC I at 
SFP are better off in terms of soil functioning and soil 
health. Better quality of the site classes improves tree 
growth at faster rates (Raison et al., 2001) and site classes 
with high SQI have the potential to produce biomass 
rapidly (Burger, 2004). On the other hand, the other site 
classes scored intermediate but with relatively lower SQI 
values, which indicates the need for judicious control of soil 
quality in the respective land use types (Nakajima et al.,  
2015). The SQI obtained comprises a set of indicators that 
reflect the balance between different physical and chemical 
soil properties in the site classes of the plantations (Sione 
et al., 2017). Thus, SQI can be used as a relative measure of 
site classification, ultimately enhancing forest management 
and planning. A high SQI value indicates fertile and healthy 
soil, while a low SQI value indicates less fertile soil and may 
require improvement (Chaudhry et al., 2024). Marzaiol 
et al. (2010) classified SQI into three grades: SQI < 0.55 as 
low soil quality, 0.55 < SQI < 0.70 as intermediate, and SQI  

> 0.70 as high soil quality. Supriyadi et al. (2014) proposed 
soil quality classes from 0.80–1 as very good, 0.60–0.79 as 
good, 0.35–0.59 as moderate, 0.20–0.34 as low, and 0–0.19 
as very low. Comparing these grades with the soil quality 
classes obtained from our results, we found a good to 
moderate level of quality class of SQI as classified by 
Supriyadi et al. (2014) or intermediate soil quality as classi-
fied by Marzaiol et al. (2010). Andrews et al. (2002) and 
Turan et al. (2019) also observed a similar trend that a high 
SQI indicates better site class quality, and this is due to 
different soil properties that have significant effects on soil 
quality. A better SQI at a given site is attributed to the 
highly interrelated variables of high content of soil organic 
matter (Chandel et al., 2018), good aggregate stability, low 
bulk density, high cation exchange capacity, available phos-
phorus (Mulat et al., 2021), and associated with soil nutri-
ent mineralization, availability, and cycling (Duval et al.,  
2018). The lowest SQI score was possibly due to faulty 
management practices, as reported by Chakraborty et al. 
(2019).

The SQIs have important implications in detecting the 
status of essential nutrients such as nitrogen and phos-
phorus, which are often limited in forest soils (Hatten & 
Liles, 2019; Obalum et al., 2017). The SQIs can help 
evaluate changes in the quality of forest soil and set initial 
levels for various soil and forest categories (Amacher 
et al., 2007). A study by Morugán-Coronado et al. 
(2013) shown that the SQI has been used in various 
aspects of soil quality assessment, such as the impact of 
land-use modification, forest management, and ecologi-
cal restoration. Singh et al. (1992) found that SQIs were 

Figure 5. Loading scatter plot of the ordinary partial least squares regression (OPLS) analyses indicate a clear separation between SQI, 
soil variables, and topographical factors. The graphs represent the correlation between the x-variables (for SQI, soil variables, and 
topographical factors) and y-variables (observed site classes). The y-variable (observed site classes) is shown in blue; the explanatory 
variables are shown in green.
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significantly and positively correlated with site produc-
tivity, and thus, they meet the criteria of a good indicator 
for enhancing forest productivity. Careful management 
through silvicultural site treatments that mitigate natu-
rally compacted soils, conserving organic matter, and 
harvesting debris to all site classes will regulate the avail-
ability of nutrients and ensure sustainable forest produc-
tivity and health for the production of products.

On the other hand, the quality of the model was 
evaluated based on a goodness of fit of 65%, the pro-
portion of the response variance explained by the 
model of 63%, and the model’s predictive performance 
of 47%. These three metrics have values between 0 and 
1, and the higher they are, the better the performance 
of the model (Dinis et al., 2022). We found that site 
classes differ from each other, of which SQIs and some 
soil variables (Mg and AvailP) contributed to site clas-
sification/prediction (Gagné, 2014). Also, with regard 
to VIP, Mg, and AvailP, explained variation in site 
classes for these two plantation sites, so these variables 
alone might potentially be used instead of the SQI 
(Recena et al., 2019). Interestingly, Mg was negatively 
correlated with SQI and site productivity. This finding 
could have significant implications for soil quality 
assessment in sites with highly eroded and water- 
logged situations, which are probably influenced by 
slope positions. Using PLS Regression, Fox et al. 
(2007); Haywood et al. (1997); and Subedi et al. 
(2015) reported that Mg was a significant predictor 
variable for the loblolly pine (P. taeda) site index in 
the SE USA. Contrary to our study findings, Kayahara 
et al. (1995) explored the relationship between site and 
various soil nutrients and pointed out that there was no 
positive correlation between site productivity and soil 
nutrient availability, including Mg and K. Similarly to 
Farrelly et al. (2011a; 2011b), who developed a site 
index model and indicated that available K, Mg, and 
availP did not explain variations in the site index. 
Exchangeable magnesium is a vital macronutrient 
that can influence soil fertility and, in turn, impact 
forest productivity. It is a crucial element of the chlor-
ophyll molecule, which plays a key role in photosynth-
esis (Bagherzadeh et al., 2018; Chaudhry et al., 2024; 
Rance et al., 2024).

AvailP is a very important macronutrient for plant 
growth (Bai et al., 2020; Zeng et al., 2019). Previously, 
several studies have shown that availP is the main limit-
ing factor for tree growth in strongly acidic soils, which 
negatively affects root growth and soil microorganisms, 
thus, increasing the application of P fertilizer can effec-
tively promote stand growth and improve soil quality in 
a given site class (Ma et al., 2015; Shang et al., 2020).

The model developed can essentially measure soil qual-
ity in a given site class, yet we know that soil quality will 
change over time as the plantation matures. Thus, the soil 
indices measured at stand establishment may reflect soil 
quality in the future. Our study successfully demonstrated 
that the model of SQI and soil variables can be used to 
predict site classes. It helps assess the overall health and 
productivity of forest soils. Forest managers can make 
informed decisions regarding land use, reforestation, and 
soil conservation practices by using the SQI (Díaz-Raviña 
& Acea, 2006). This excerpt underscores the significance 
of making well-informed decisions to identify the impact 
of management techniques on soil productivity. It also 
emphasizes the importance of formulating sustainable 
strategies for long-term forest management practices.

5. Conclusion

The present study developed soil quality indices and 
explored the capabilities of SQIs for predicting site classes 
at P. patula stands in SHFP and SFP, Tanzania. Our 
findings indicate that both the SHFP and SFP soil quality 
indices fall within the intermediate soil quality (0.55 <  
SQI < 0.70) class. SQIs and some soil variables, including 
magnesium and available phosphorus, were identified to 
be the most influential variables for predicting site pro-
ductivity in the forest plantations. We concluded that the 
developed SQIs can be used to empower decision-makers 
to make informed choices for better forest soil manage-
ment and planning to improve site productivity. 
Therefore, predicting site classes using SQIs are crucial 
due to limited resources for assessing a large set of soil 
properties. Making soil quality assessment requirements 
in policies simple and affordable are important, primarily 
as most developing countries aim to expand the forest 
sector, ultimately paving the way to sustainably meet the 
growing demand for wood products.
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