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A B S T R A C T

This study introduces an Entropy-based index: the Lorenz-entropy (LE) index, which we have developed by
integrating Light Detection And Ranging (LiDAR), econometrics, and forest ecology. The main goal of the LE is to
bridge the gap between theoretical entropy concepts and their practical applications in monitoring vertical
structural complexity of tropical forest ecosystems. The LE index quantifies entropy by analyzing Relative Height
(RH) metrics (representing a one-dimensional (1D) canopy structure metric) distributions from full-waveform
LiDAR across successional stages in a tropical dry forest (TDF) and a tropical rainforest. To validate the LE
trends derived from LiDAR, we extended the analysis using inventory-based two-dimensional (2D) and three-
dimensional (3D) metrics, specifically basal area and biomass. The consistency of trends between the 1D
LiDAR-derived LE and the inventory-based 2D and 3D metrics reinforces the LE’s ability to capture and monitor
structural complexity reliably across different measurement dimensions.

Our findings demonstrated that LE captures the changes in entropy as a function of successional stages,
reflecting how canopy structure evolves towards homogeneity and complexity. Our statistical analysis revealed
significant differences between successional stages (ANOVA, α = 0.05, p < 2e-16), with LE increasing sub-
stantially from early to late stages and plateauing at climax, where vertical structure (entropy) stabilizes. The
mean LE increased by 1.70×10− 2 between late and climax stages, with a small effect size (Cohen’s d = 0.25),
indicating minor differences in complexity. The LE index, calculated from biomass and basal area, confirming
that as forests mature, entropy and vertical structural complexity increase. Furthermore, the sensitivity analysis
showed that LE is most responsive to RHs variability during intermediate stages, suggesting that structural
development is most dynamic during this phase. These results demonstrate the potential of the LE index as a tool
for ecological analysis and monitoring forest dynamics.

1. Introduction

Describing forest ecological characteristics requires an approach that
takes into consideration the inter- and intra-relationships that exist be-
tween crucial ecosystem variables, such as species diversity, richness,
abundance, complexity, biomass, and productivity (Vranken et al.,
2015; Harte et al., 2022). Several studies have shown that estimating
ecosystem variables (e.q. nutrient cycling, energy flow, and species
abundance) requires consideration of interconnections among them (De
Boeck et al., 2020; Geary et al., 2020). On the other hand, the more
structurally complex the habitat, the greater the species diversity and
richness (Kohn and Leviten, 1976; St. Pierre and Kovalenko, 2014; Malhi
et al., 2022). Habitats with high structural complexity often have

multiple layers of vegetation, such as canopies, understories, and ground
cover and a greater diversity of microhabitats and niches, which can
support a wider range of species (Edeline et al., 2023). This layered
structure allows for more efficient capture and use of sunlight,
increasing overall photosynthetic productivity (Coverdale and Davies,
2023). Higher photosynthetic productivity means more energy is
available at the base of the food web (Cushman, 2023). This energy
supports a larger and more diverse array of herbivores, which supports
greater diversity (Ray et al., 2023). This suggests a strong link between
habitat complexity and photosynthetic productivity, that manifest
across different spatial and temporal scales (Malhi et al., 2015; Harte
et al., 2022; Cushman, 2023). The relationships between complexity,
biodiversity, and productivity provide valuable insights into the
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ecosystem (Cushman, 2015; Brun et al., 2019). Therefore, having a
reliable indicator that can reflect all these significant variables is
necessary.

1.1. Entropy in forest ecology

Scientists have been facing the challenge of finding a universal law
that can be applied to forest ecology and natural sciences (Lawton, 1999;
Duchesne et al., 2001; Li et al., 2004). To address this lack of under-
standing, since Vranken et al. (2015), significant advancements have
been made in this area, driven by new technologies and methodologies.
These include advanced remote sensing technologies, such as Light
Detection and Ranging (LiDAR) and hyperspectral imaging, have pro-
vided high-resolution data on forest structure (Gandharum et al., 2022;
Liesenberg, 2022). These tools have enabled detailed analyses of canopy
height, biomass, and spatial complexity, offering new insights into forest
dynamics (Liu et al., 2022). Moreover, research on functional diversity
has progressed significantly. New methods for quantifying functional
traits and linking them to ecosystem processes have improved our un-
derstanding of how biodiversity influences productivity, resilience, and
nutrient cycling (Huxley et al., 2023; Yan et al., 2023a). In addition,
advances in ecosystem modeling have enhanced our ability to predict
forest responses to environmental changes. These models incorporate
structural complexity, species interactions, and climatic variables,
providing more accurate predictions of forest dynamics and productivity
(Papastefanou et al., 2023).

Clausius, in 1850, established Entropy as a system state function,
rooting it in classical thermodynamics. Initially, its purpose was to
measure the extent of irreversibility in a thermodynamic transformation
within an isolated system (Li et al., 2004). Subsequently, entropy had
numerous interpretations and applications, notably paralleling de-
velopments in information theory. Claude Shannon (1948) developed an
alternative use for the term. This alternative approach contrasted with
the thermodynamic perspective, which focuses on systems operating
“far from equilibrium” (Nielsen et al., 2020). Shannon’s information
theory examines entropy in relation to the disorder present in nature. In
landscape ecology, researchers use entropy as a descriptor of patterns or
processes, referencing thermodynamics to varying extents (Vranken
et al., 2015).

Various indices examine species diversity in ecological communities
(Zaccarelli et al., 2013) (Supplementary Table 1). These indices aim to
estimate uncertainties in their relative abundance (Jost, 2006). As such,
it can be deduced that the maximum level of uncertainty (entropy) oc-
curs at the highest level (Zaccarelli et al., 2013; Cushman, 2021, 2023).
In a pioneering study using entropy-based indices in ecology, Macarthur
and Macarthur (1961) conducted a significant study using Shannon
entropy (Shannon, 1948) to examine species diversity in ecological
communities and in forests based on variations in tree size. This index is
known as Foliage Height Diversity (FHD) (Macarthur and Macarthur,
1961; Valbuena et al., 2012). The FHD assumes that the canopy vertical
structure is divided into different foliage layers within a canopy in which
the FHD is highly dependent on the number and size of these layers or
bins, although it is unusual for describing continuous variables, such as
canopy height (Valbuena et al., 2021). Moreover, entropy-based metrics
became tools for measuring diversities within ecosystems in ecological
research, encompassing both species diversity, such as the Shannon-
Weiner diversity index, and landscape diversity, exemplified by the
contagion index (Hill, 1973; Li and Reynolds, 1993; Vranken et al.,
2015).

Cushman (2018) has demonstrated that an irreversible increase in
entropy, resulting from interactions among forest components, reduces
free energy. As a result, Cushman’s (2018) theory provides the basis for
estimating biodiversity at different scales of structural (Alpha, Beta, and
Gamma) (Orlóci, 1991; Meffe et al., 2002) as well as functional diversity
(functional traits of species complexity (Cadotte, 2017; Mason et al.,
2005)).

1.2. Gini coefficient and Lorenz curve

The Gini coefficient (GC) is an econometric variable used to quantify
inequality, that is employed in several fields, including forest ecology
(Weiner and Solbrig, 1984; Weiner et al., 1990; Valbuena et al., 2016;
Valbuena et al., 2021). It was first established by Corrado Gini (Gini,
1912, 1921) and later derived from the Lorenz curve byMax Otto Lorenz
(Lorenz, 1905) (Fig. 1). Research conducted by Lexerød and Eid (2006)
proposing the GC indicator as a tool, contributed to the understanding of
structural diversity and complexity in forests. Moreover, Valbuena et al.
(2013a) utilized the GC due to its robustness and reliability in repre-
senting size distribution and heterogeneity within forest stands. Their
results were validated through high-accuracy airborne laser scanning
data, ensuring the precision of the derived forest structural metrics.
They also demonstrated that using the GC is particularly significant
when compared to other indicators like the coefficient of variation or
skewness, which may be influenced by sample size and distribution
shape. This indicator scrutinizes the interrelations of relative dominance
within forest assemblages and can be employed to compare the het-
erogeneity between distinct forest stands within a chronosequence
(Weiner and Solbrig, 1984; Weiner et al., 1990). Valbuena et al. (2016)
demonstrated the mathematical basis of the GC includes the assumption
that forest metrics, such as tree heights, are continuous variables, which
is essential for accurately calculating the statistical dispersion using the
GC. Furthermore, the input measurements must be positive to maintain
data integrity during the coefficient’s computation. The GC also neces-
sitates ordinal consistency, meaning the values must be ordinal and can
be meaningfully ranked. Additionally, the values must be summable,
summing to a finite number, allowing the GC to be normalized and
constrained between 0 and 1. To prevent estimation bias, each data
point must be independent. Lastly, the finite population size assumption
is a practical consideration for computing the GC, ensuring its applica-
bility and reliability in empirical research.

Linkages between the Lorenz curve and forest structure have also
been studied; for instance, Damgaard and Weiner (2000) found that the
Lorenz curve can be effectively utilized to interpret the composition of
vertical strata in a forest. Later, Adnan et al. (2021) as well as Valbuena
et al. (2021) found that the maximum entropy in a Lorenz curve
(henceforth referred to as MAXENT(GC)) can be determined according

Fig. 1. Theoretical calculation of the Gini coefficient from airborne LiDAR
data. The solid line is the Lorenz curve, while the area between the Lorenz
curve and the red diagonal dashed line (also known as the line of perfect
equality) is the Gini coefficient. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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to the dimensionality of the variable used to assess the ecosystem,
whether using height (GCH; unidimensional = 0.33), basal area (GCBA;
bidimensional = 0.50), or Above Ground Biomass (AGB) (GCAGB; tridi-
mensional = 0.60) (Valbuena et al., 2021). From this research it arises
that an entropy-focused index that substitutes FHD (section 1.1) is still
needed, and possible to be constructed from the GC as discussed in
Valbuena et al. (2021) early work.

In quantifying forest structure, measuring complexity allows for
evaluating the integrity and resilience of complex environmental sys-
tems (Ehbrecht et al., 2021). The complexity and variety of structural
components in an ecosystem usually directly relate to the level of
biodiversity (Gamfeldt and Roger, 2017; Heidrich et al., 2020). Struc-
tural complexity involves the interaction between various attributes and
variables, challenging quantitative comparisons between stands (Spies
and Franklin, 1991). Hence, several indices have been created to address
this issue and express structural complexity as a singular number
(Newsome and Catling, 1979; Koop et al., 1995). These indices serve as
concise representations of various structural attributes and can be used
to rank forest stands based on their potential impact on biodiversity
(Van et al., 2000; Parkes et al., 2003). For example, Zenner (2000)
derived a Structural Complexity Index (SCI) from a three-dimensional
forest structure model that was linked to the standard deviation of
Diameter at Breast Height (DBH). Additionally, Neumann and Starlinger
(2001) determined that the standard deviation of DBH was significantly
correlated with the seven structural complexity indices (Pielou index,
Cox index, Clark-Evans index, Gadow index, Vertical evenness index,
Holdridge complexity index, and Stand Diversity index) examined.

Among forest biomes, tropical forest ecosystems are known for their
remarkable structural complexity and high biodiversity, which Ehbrecht
et al. (2021) attributed these characteristics primarily to environmental
factors such as climate and soils. The structural complexity of tropical
forests arises from the interplay between the various functional traits of
plant species (Faccion et al., 2021; Coverdale and Davies, 2023; Mitchell
et al., 2023). These traits include tree height, crown architecture, leaf
size and shape, root systems, and reproductive strategies. Different
species possess distinct combinations of these traits, contributing to
forest structure’s vertical and horizontal heterogeneity.

To date, several studies have demonstrated methods for calculating
entropy, diversity, and complexity (Bertram, 2014; Wang and Zhao,
2018; Cushman, 2021; Pos et al., 2023). A common limitation of these
studies is the lack of use of emerging technologies, such as airborne or
spaceborne Light Detection and Ranging (LiDAR) data, to describe the
structural diversity and complexity of forest ecosystems in the context of
entropy. Recently, Liu et al. (2022) proposed an entropy-based canopy
structural complexity index using Terrestrial Laser Scanning (TLS),
backpack laser scanning, and Unmanned Aerial Vehicle Laser Scanning
(ULS). While these methodologies have proven effective, they have
limitations regarding, data fusion challenges, and generalizability is-
sues. Although traditional diversity indices, such as species counts and
the Shannon and Simpson indices (Hill, 1973; Magurran, 2004; Morris
et al., 2014; Konopiński, 2020), have been used to represent species
diversity and complexity, measuring these indices in the field is often
impractical. Moreover, some important structural aspects such as the
vertical arrangement of trees, the distribution of gaps in the canopy, and
canopy layering are harder to assess in the field. As the level of detail in
the field inventory increases, the area that can be covered by the in-
ventory decreases (Atkins et al., 2023). This highlights the need for a
method to measure the vertical structural complexity using remote
sensing technology such as airborne LiDAR, across different scales.

1.3. Objective

In this paper, we aim to develop a new entropy-based indicator
called the Lorenz-entropy (LE) index, which is built upon the Gini Co-
efficient (GC) measurements of variability in the Lorenz curve
(Valbuena et al., 2016). The GC quantifies the inequality in the

distribution of a variable, such as canopy height, by providing a single
value that represents this inequality. In contrast, the LE index expands
on this concept by incorporating entropy, which measures the
complexity and disorder within the distribution. This integration allows
the LE index to capture the forest ecosystem’s inequality and vertical
structural complexity. The LE is based on a mathematical framework
developed by Valbuena et al. (2021) for assessing LiDAR-based entropy
in tropical forest ecosystems. The LE index can be considered an
ecological analog that integrates thermodynamics, information theory,
remote sensing, and econometrics. We employed theMAXENT(GC) from
the study by Adnan et al. (2021) to develop the LE index at the footprint
level using unidimensional airborne LiDAR metrics, Relative Heights
(RHs, GCH; unidimensional = 0.33). Additionally, we employed two-
dimensional (Basal Area) and three-dimensional (Above Ground
Biomass - AGB) tree metrics to validate the outcomes derived from this
index. The focus of our study is to ascertain the applicability of the LE
index in quantifying entropy across two distinct types of tropical forest
ecosystems, a tropical dry forest under different stages of ecological
succession, and a tropical rainforest on the climax stage.

2. Methods

2.1. Conceptual foundation for the development of a Lorenz-entropy
index

The conceptual model, developed for this study representing in
Fig. 2. In this figure, the LE metric is located along the vertical axis. In
contrast, the horizontal axis displays the range of the GC values, indi-
cating the level of inequality in the ecosystem. The LE trajectory can rise
from left to right (trajectory a) or right to left (trajectory b) based on
Janzen’s (1988) tropical generation theory, reaching a maximum value
of one at the highest point of maturity and entropy (trajectory c, Adnan
et al., 2021).

Trajectory a : GC ϵ]0,0.33[.

Trajectory b : GC ϵ]0.33, 1[.

Trajectory c : GC = 0.33.

On the left side of this diagram, LE increases from a GC of zero to
0.33. This point (GC = 0) indicates a tropical ecosystem that originates
from complete uniformity, for instance, pastureland. The example
waveform shows a vertical structure representing each chronosequence
stage (detailed information is explained in section 2.4). From the
waveform in the early stage of the left side, the uniformity of the dis-
tribution of trees is visible. A different scenario is presented on the right
side of the diagram. Starting from a GC = 1, this scenario of forest
regeneration begins with a single tree species, known as a nuclear tree;
as it is represented in its early stage waveform, it can be interpreted that
there is a rise in amplitude before the ground level (Elevation=0). Then,
the ecosystem gradually expands to the next ecological succession stage
(Janzen, 1988). After the ecosystem expanded, canopy height became
relatively homogenous, with no significant variation in tree height.
Moreover, on this side (left side of the diagram), the ecosystem transi-
tions from a state of low structural diversity to a state of high uniformity,
and it experiences a significant reduction in the GC, which reaches a
final equilibrium value of 0.33. The same scenario is adhered to by
employing basal area and tree volume as bi-dimensional and three-
dimensional forest metrics. These metrics represent different aspects
of forest structure, and the complexity captured by them varies with
their dimensionality, necessitating adjustments to the MAXENTGC to
account for these differences. This approach allows for meaningful
comparisons between different types of forest structural measurements
and ensures that entropy values are accurately scaled and comparable
across various types of measurements, enhancing the robustness and
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accuracy of the Lorenz-entropy (LE) index.
Nonetheless, it is important to note that Adnan et al. (2021), derived

the maximum entropy of the GC (MAXENTGC) for two-dimensional as
and the three-dimensional tree measurements, as e 0.50, and 0.60,
respectively.

2.2. Calculation of Lorenz-entropy (LE) index

The theoretical foundation of our method is rooted in the second
principle of thermodynamics, whereby “entropy manifests as a perpetually
positive and ascending entity” (Nielsen et al., 2020). As such our index is
derived from the difference between the GC and its maximum entropy
value (MAXENT) (Eq. (1)). This method considers canopy height
extracted from the waveform airborne LiDAR to generate Lorenz curves
and to quantify the GC. Consequently, the absolute value of the GC
deviation from MAXENT(GC) is considered to maintain a positive
attribute invariably (Eq. (1)).

LE = 1 − (|MAXENT(GC) − GC |) (1)

Where the GC for continuous variables is calculated based on the
area under the Lorenz curve derived using an airborne LiDAR system
such as the Land Vegetation and Ice Sensor (LVIS) waveform data (Eq.
(2), Fig. 1). After the pre-processing of LiDAR data obtained from LVIS as
described in (Blair et al., 1999; Gu et al., 2018), the computation of the
GC was performed.

The Lorenz curve was plotted by normalizing the cumulative canopy
height against normalized cumulative energy returns. The GC was then
calculated using the method proposed by Adnan et al. (2021), which
involved calculating the Cumulative Distribution Function (CDF) of
canopy height data using the trapezoidal rule for each footprint (Eq.

(2)). During this process, the constant 1/2 and the trapezoidal rule with
0.05 interval widths were utilized (Eq. (3)). Moreover, it is important to
note that the GC is a measure of inequality (Gini, 1921), and is usually
sensitive to the shape of the distribution and can be influenced by the
choice of bin widths (Lexerød and Eid, 2006), which can affect the visual
representation of the data and the interpretation of the distribution. For
this reason, the accuracy of the GC can be affected by underestimation/
bias and the variance in the data. In LVIS waveform data RH0 and
RH100 represent the heights at which 0 % and 100 % of the total
waveform energy occurred, respectively. To create Lorenz curve and
then calculate the GC the RH value between 0 and 100 was divided into
the bins with range of 5 % energy interval (RH0, RH5, RH10, …, RH95,
RH100). To account for a sample bias due to the binning in the esti-
mation process, a correction factor (n/(n-1)) based on the research by
Valbuena & Nabuurs (2013b), and Sitthiyot and Holasut (2021) was
applied to Eq. (3), resulting a new equation (Eq. (4)). Here we consid-
ered a 5 % interval in accordance with Relative Height (RH) metrics
intervals from the LVIS (Anderson et al., 2006), therefore the resulting
number of bins between 0 and 100 % was 20. Thus, the correction factor
used was n/(n-1) = 20/19.

The area under the F(y) =
∑k− 1

i=1

(
F(yi) + F(yi+1)

2
×0.05

)

(2)

GC = ½ −

(
∑k− 1

i=1

(
F(yi) + F(yi+1)

2
×0.05

))

(3)

GC = (n/n − 1)*

[

1

/

2 −

(
∑k− 1

i=1

(
F(yi) + F(yi+1)

2
× 0.05

))]

(4)

Fig. 2. The Gini coefficient vs. Lorenz-entropy (LE). The red dashed line is the maximum entropy of the Gini coefficient (GC = 0.33 for one-dimensional variable).
The arrows representing the trajectory direction of the LE from the left side (yellow colour) a:]0,0.33[, and right side (blue colour) b:]0.33,1[towards the maximum
value. The waveform represents the sample waveform for early, intermediate, and late successional stages for each different trajectories towards the climax stage
with their corresponding GC. Differences between each side of the trend in the forest ecosystems are represented by the successional stages as defined by Arroyo Mora
et al. (2005). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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The y values are a set of individual canopy heights from airborne
LiDAR footprint data. F(y) is a function of the Normalized Cumulative
Height vs. the Normalized Cumulative Return of energy counts (Fig. 1),
n is the Number of bins considered to create the Lorenz curve.

2.3. Study areas

This study was conducted in two tropical forests: i) a tropical dry
forest at the Santa Rosa National Park Environmental Monitoring
Supersite (SRNP-EMSS) in Costa Rica, and ii) La Selva Biological Station
(Costa Rica) a wet tropical forest (Fig. 3). These two ecosystems provide
different precipitation patterns, temperature, and relative humidity
ranges. The SNRP-EMSS site experiences an average rainfall of 1720 mm
per year. The majority of precipitation occur during the wet season from
June to November with minimal water availability during the dry season
from December to May (Kalácska et al., 2005). The annual average
temperature is 25 ◦C. Vegetation in the park is classified into three
successional stages based on ecosystem structure and composition:
early, intermediate, and late (Kalacska et al., 2004). La Selva Biological
Station (LS) tropical wet forest is in a climax stage (Hartshorn, 1980;
Knight, 1975) and is located in the Atlantic lowlands of northeastern
Costa Rica. The average annual rainfall at LS is 4000 mm, and the mean
temperature is 26 ◦C. The majority of precipitation occurs during the
wet season from May to January, with a minimal water availability
during the dry season from February to April (Jiménez-Rodríguez et al.,
2020).

2.4. Data curation and processing

2.4.1. Data acquisition
The data used in this study was collected in March 2005 over the

SRNP-EMSS and La Selva Biological Station (LS). Using the Land Vege-
tation Ice Sensor (LVIS) Level 1B Geolocated Waveform (.LGW) and
Level 2 Ground Elevation (.LGE) (version 1.02) with a 20-m footprint.
The data were obtained from the LVIS website (https://lvis.gsfc.nasa.
gov/).

2.4.2. Waveform LiDAR data pre-processing
The LVIS data underwent two pre-processing steps: first, the effective

waveform was produced using LGW and LGE; second, the Lorenz curve
was generated (Fig. 1), and the GC was calculated (Eq. (4)). Pre-
processing was performed using R (version 4.1.1) and RStudio (version
2021.9.0.351).

2.4.3. Calculation Gini coefficient from the waveform
A Savitzky-Golay signal processing smoothing filter was applied to

the waveform data using the R package (Moreno et al., 2023), and a
moving average function was used to smooth the waveform data and
calculate the elevation height. A threshold function was applied to
define the ground, where all values below the threshold were set to zero,
allowing for elevation calculation.

The original LiDAR waveform for each LVIS footprint was generated
using LGW data, which involved waveform amplitude (counts) on the x-
axis and elevation on the y-axis. According to LVIS metadata, the
waveform amplitude was calculated as the difference between the wave
(return energy) and the sigmean, the mean signal noise level during
flight. To calculate the elevation, the height between the highest sample
(Z0) and lowest sample (Z431) was divided by 432, the total number of
returns in each waveform.

After detecting the ground elevation (zg) and top of the canopy
elevation (zt), the canopy height was calculated by subtracting zg from
zt. A graph with the canopy height elevation on the y-axis and
normalized cumulative return of energy (counts) on the x-axis was
created for each footprint. The accumulated normalized canopy height
elevation was plotted on the x-axis, and the accumulated normalized
return of energy (counts) was plotted on the y-axis to create a Lorenz
curve. The GCwas calculated for each 20-m footprint by determining the
area between the Lorenz curve and the equitability line (1:1), in
accordance with Adnan et al. (2021) (Eq. (3)).

To represent the steps required for capturing the Lorenz curve to
calculate the LE and the GC from the LVIS waveform data, we collected
25 sample footprints (Zhao et al., 2021) from various successional stages
of the study areas, namely the early, intermediate, and late stages from
the SRNP-EMSS, and the climax stage from the LS (Fig. 4).

2.5. Successional forest stages

In the SRNP-EMSS, forest successional stages were identified using
the final map results from studies conducted by Gu et al. (2018) and
Zhao et al. (2021). Their approach involved statistical analysis and
image classification using LiDARmetrics, and hyperspectral images. The
study calculated 21 LiDAR metrics, which were categorized into point-
based, line-based, area-based, and shape-based groups derived from
LiDAR waveforms and normalized cumulative return energy curves.
Their results were represented on a map, showing the different areas of
SRNP-EMSS assigned to early, intermediate, and late stages (Supple-
mentary Table 4).

La Selva Biological Station (LS) is considered a mature wet forest in
the climax succession. The climax stage is the mature forest, which has a
regeneration of dominant tree species. However, applying this criterion
is challenging due to the vast diversity of species, lack of clear domi-
nance in most tropical forests, and taxonomic unfamiliarity (Hartshorn,
1980). The fact that a forest’s dominant demographic remains stable is a
strong indicator that the forest it occupies is in a state of dynamic
equilibrium. In other words, it is a mature forest (Beard, 1944; Harts-
horn, 1980; Feeley et al., 2011).

2.6. Statistical analysis

We conducted a one-way ANOVA (Analysis of variance) test to
determine if the LE can effectively distinguish between the four suc-
cessional stages (early, intermediate, late, and climax) and to analyze
whether our hypothesis, which suggests that the LE increases from the
early to late stages, then levels off at equilibrium during the climax
stage, is supported. Given that the dataset for each stage comprised a

Fig. 3. Study sites of tropical forests: Santa Rosa National Park Environmental
Monitoring Supersite (SRNP-EMSS) in Costa Rica, and La Selva Biological Sta-
tion (Costa Rica). The Santa Rosa site has different levels of ecological suc-
cession while La Selva is considered a mature tropical forest on climax.
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substantial number of observations, from LVIS footprint data, the pre-
requisites for ANOVA, particularly the assumptions of normality and
homogeneity of variances, were deemed less stringent. This is due to the
Central Limit Theorem (CLT) and the tolerance of ANOVA towards de-
viations from these assumptions. Prior to running the ANOVA and post
hoc tests, we tested the residuals for normality using the Q-Q plot test
and for heteroskedasticity using Levene’s test (Levene, 1960). These
tests confirmed that the assumptions of normality and homogeneity of
variances were met, validating the use of ANOVA and subsequent post
hoc tests for our analysis.

A one-way ANOVA allowed us to simultaneously analyze and
compare the effects of the successional stages (Early, Intermediate, Late,
Climax) on the two variables, the GC and the LE (Fig. 5a, and b, and
details in supplementary Tables 2, and 3). Moreover, to assess the extent
of change, we computed the Cohen’s d values (Cohen, 1988) for each
pair comparison in ANOVA.

2.7. Characterizing the Lorenz-entropy relative to the scale of waveform

This study calculated Lorenz-entropy (LE) using LiDAR waveforms
by incorporating both the 20 m footprint size and tree distribution
within each footprint. This dependency of the LE computation based on
the waveformmaking its applicability dependent on the availability and
quality of the waveform rather than the specific unit area (e.g., footprint
size). Studies by Gu et al. (2018), Duan et al. (2023), and Liu et al., 2023
have explored the potential of shape-based LiDAR metrics derived from

LVIS data to differentiate various successional stages in Tropical Dry
Forests (TDFs). Following these studies, we analyzed the shape of each
waveform (Elevation vs. Amplitude, Fig. 6) and computed three shape-
based LiDAR metrics: the x-coordinate of the waveform centroid (Cx),
the y-coordinate of the waveform centroid (Cy), and the radius of gy-
ration (RG) (Table 1, Eq. (5)). These metrics were selected to capture the
structural characteristics of the canopy within each 20 m footprint,
providing insights into the vertical and horizontal distribution of trees.
The distinct shape of the waveform is a direct representation of tree
distribution, density, and height variability within the footprint (Muss
et al., 2013), all of which are critical components in calculating LE. By
using these shape-based metrics, we assess the effect of tree distribution
within each unit area on LE values.

RG =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(xi − Cx)
2
+
(
yi − Cy

)2

n

√

(5)

To evaluate the response of the LE to variations in relative height
(RH) values across different ecological stages, we conduct a local
sensitivity analysis (Hamby, 1994; Borgonovo and Plischke, 2016). This
approach was chosen for its suitability in studies of environmental
modeling, where it helps in understanding system behavior under slight
changes in input parameters (Saltelli et al., 2000; Xu et al., 2004).
Therefore, sensitivity was calculated as the change in Lorenz entropy
relative to the change in RH values using the following formula (Eq. (6)):

Fig. 4. Effective LiDAR waveform (a), normalized cumulative return energy curves (b), and Lorenz curve (c). The red line in each figure represents the average of the
corresponding twenty-five curves. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 5. Successional stage vs. the Gini coefficient (a) of different study sites. The analysis of variance table and Tukey post hoc test between different successional
stages group (early, intermediate, late, and climax) and the Gini Coefficient (GC) represents the significant differences between these stages. It is evident that as the
forest grows from early to climax, the Gini coefficient’s mean value (red dot) decreases to 0.33. Simultaneously, the successional stage vs. the Lorenz-entropy (b)
increased to 1 and the analysis of variance table and Tukey post hoc test prove the significant differences between the corresponding successional stages. The red
dashed line in each plot represents the maximum entropy of the Gini coefficient (a) and the maximum Lorenz-entropy (b), and the red dots are the mean values of the
corresponding Gini coefficient and Lorenz- entropy. The black dashed line shows the trend of mean values in (a) and (b). (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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Sensitivity =
ΔLE
ΔRH

(6)

Where ΔLE is the difference in the LE between consecutive obser-
vations, and ΔRH is the corresponding difference in RH values. For each
successional stage, we computed the sensitivity of LE against all the RH
metrics (from RH_0 to RH_100). Only valid consecutive observations
with non-zero changes in RH (ΔRH ∕= 0) were included to avoid division
by zero errors. For each valid pair, the sensitivity was calculated, and the
mean sensitivity across all pairs was determined as (Eq. (7)):

Average sensitivity =
1
n
∑n

i=1

ΔLEi

ΔRHi
(7)

where n is the number of valid observations as indicated above.

2.8. Biomass and basal area

To validate the result from the LE, we used the inventory data from
two- and three- dimensional (BA, and biomass) forest metrics were
procured from the SRNP-EMSS 2005 annual forest inventory (Calvo-
Rodriguez et al., 2021), and subsequently utilized Chave et al. (2014) to
estimate forest biomass at the three distinct stages at the SRNP-EMSS
(Calvo-Rodriguez et al., 2021). The biomass estimation for La Selva
Biological Station (LS), as climax stage, was taken from Meyer et al.
(2018), which used the Brown et al. (1989) and Gibbs et al. (2007)
allometric models to derive the biomass (Supplementary Table 5). The
BA data was taken from (Clark et al., 2021). To confirm the observed
trend in the LE, we conducted a comparative analysis of biomass and

basal area (BA) distributions across different stages, employing both
violin and boxplot visualizations. Furthermore, to illustrate alterations
in the GC of inventory data—specifically biomass and basal area—a
Lorenz curve was constructed.

2.9. Heatmaps from the Lorenz-entropy and the Gini coefficient

Using the data from the LE and the GC, which were quantified from
waveform LiDAR, we collected the data across various sample plots
representing different stages of ecological succession. The analytical
process involved creating heatmaps using Surfer, a scientific visualiza-
tion software designed for geospatial data analysis (Golden Software,
2024). This software was used to transform the LE and GC data into a
grid or raster format. The transformation process involved using
advanced interpolation methods, particularly kriging, a geostatistical
technique for accurately predicting continuous spatial variables from
discrete data points. The kriging process required fine-tuning various
parameters, such as range, sill, and nugget, to ensure that the interpo-
lated surface was smooth and accurately reflected the underlying spatial
patterns in the data (Chilès and Desassis, 2018).

3. Results

In our study, we explored the application of airborne waveform
LiDAR technology (LVIS) to develop an entropy-based indicator to
evaluate the vertical structural diversity and complexity of tropical
forest ecosystems. The two- (Basal area), and three- (Biomass) dimen-
sional forest metrics utilizing to validate the result.

3.1. Waveform LiDAR and Lorenz-entropy

Fig. 4 represents the effective LiDAR waveform (Fig. 4a) from the
LVIS, the normalized cumulative return energy (Fig. 4b), and the Lorenz
curve for each 20-m footprint data (Fig. 4c) that were generated for all
successional stages. From the waveforms in this figure, we could easily
distinguish the differences in the number of peaks, relative heights, and
Lorenz curve shapes for each stage. Here, the GC was calculated based
on the Lorenz curve and the differences between the GC values for each
footprint are visible through the area between the Lorenz curve and line
of equality (dashed line).

3.2. Statistical analysis

The one-way ANOVA analysis, p-value (<2e-16) indicates that there
is a statistically significant difference among at least one pair of suc-
cessional stages in both the GC and the LE indicators (GC: F = 11,383, p
< 2e-16; LE: F = 11,425, p < 2e-16). A subsequent Tukey post-hoc test
was performed to ascertain the specific groups between which these
significant differences occur. The outcomes of this test, conducted with a
significance level of α = 0.05 and yielding a p-value of 0.0, indicate
statistically significant differences in both the LE and the GC between all
pairs of stages. These differences are illustrated in Fig. 5a and b and
further elaborated in Supplementary Tables 1 and 2. The mean differ-
ence between the climax and late stages for the GC (− 8.70× 10− 3) and
the LE (1.70× 10− 2), indicating that these two stages have very similar
values. Additionally, the effect size between the late and climax stages is
small (d = 0.25), suggesting a relatively minor difference in the LE and
the GC between these two stages, despite a statistically significant dif-
ference detected by ANOVA. A large effect size is observed between the
early and late stages (d = 2.80), indicating substantial differences in the
LE between the early and late stages. An effect size of − 0.09 is indicating
that the difference in the GC between the late and climax stages is very
small. This suggests that the structural inequality (as measured by the
GC) is quite similar between the two stages.

Fig. 6. The centroid (Cx, Cy), and the Radius of Gyration (RG), based on
waveform amplitude (Gu et al., 2018).

Table 1
The description of shape-based metrics, WAF is waveform amplitude figure.

Type Acronym Source Description

Shape-
based

Cx

WAF

The x coordinate of the waveform centroid
Cy The y coordinate of the waveform centroid

RG
The radius of gyration, is the root mean square
of the sum of the two-dimension distances that
all points on the waveform are from its centroid
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Fig. 7. The scatter plot of shape-base LiDAR metrics (RG, Cx, and Cy) and Lorenz-entropy (LE) (a) and the density plot of these metrics (b) along the different
successional stages (early, intermediate, late, and climax). The Cx, is the x coordinate of the waveform centroid, the Cy is the y coordinate of the waveform centroid,
and the RG is the Radius of Gyration.
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3.3. Characterizing Lorenz-entropy relative to the scale and waveform

Fig. 7a represents the relationship between shape-based metrics, Cx,
Cy, and RG with LE across different successional stages, highlighting
how variations in the waveform shape influence entropy values. The
waveform amplitude distribution within each footprint determines the
centroid positions (Cx and Cy) and the RG, indicating the spread and
density of the canopy structure.

The Cx metric, representing the x-coordinate of the waveform
centroid, decreases due to increased foliage density and reduced
amplitude variability as the canopy becomes denser and more homo-
geneous. In contrast, the Cy metric, which represents the y-coordinate of
the waveform centroid, increases as the forest matures, indicating a rise
in average canopy height and vertical complexity (Fig. 7a and b). This
change in amplitude distribution also results in a decrease in RG,
reflecting a more compact canopy structure with less dispersion of fo-
liage (Liu et al., 2023, Fig. 7b).

The sensitivity analysis revealed how the LE responds to changes in
RH across the four ecological stages: early, intermediate, late, and cli-
max. The mean sensitivity values, which represent the average response
of LE to changes in RH metrics at each stage, are summarized in the
Table 2.

Intermediate stage exhibited the highest mean sensitivity (2.06),
indicating that LE in this stage is the most responsive to changes in RH
values. However, climax stage showed the lowest mean sensitivity
(1.42), implying that LE is less affected by RH changes at this stage.
Moreover, late and early stages displayed moderate sensitivity, with
mean values of 1.89 and 1.78, respectively.

3.4. Structural diversity and inequality

The analysis of the Lorenz curve derived from the airborne waveform
LiDAR revealed a discernible pattern: as forests advance towards the
climax stage, the mean value of the GC, approaches 0.33 (the MAXENT
of GC for the one-dimensional metric (canopy height)). This finding,
depicted in Fig. 5a with the red dashed line, symbolizes a trend towards
uniformity in the canopy height distribution. The convergence of the
mean GC value towards 0.33 indicates a decrease in canopy height di-
versity, suggesting a transition towards a more homogenized forest
structure. This homogenization is characterized by less variance in
canopy heights (high uniformity), signalling a move towards ecological
evenness within the climax forest stage (Ehbrecht et al., 2021).

3.5. The Lorenz-entropy vs the Gini coefficient

Based on the evaluation of Fig. 5, it can be discerned that in diagram
6a, the GC transitions from the early to the climax stage, achieving a
value of approximately 0.33. Conversely, in diagram 5b, within the same
temporal sequence, the LE index monotonically increased (mean values)
and reach plateau at climax stage and 1, representing the peak of this
index. This increment signifies that the ecosystem has attained its climax
phase, characterized by peak complexity and structural heterogeneity.
Ideally, this culmination promotes enhanced productivity until the
ecosystem arrives at a dynamic equilibrium, displaying a stabilized
state, particularly in tropical forest ecosystems (Chitale et al., 2012;
Schnabel et al., 2019, Supplementary Fig. 1).

3.6. Validation of the Lorenz-entropy

Fig. 8 is representing the results of analysis the inventory data which
indicates the trends in biomass and Basal Area (BA) across different
successional stages within the SRNP-EMSS and La Selva Biological Sta-
tion. This analysis clarifies the relationship between the LE, quantifying
by using airborne waveform LiDAR technology, and forest’s two- and
three-dimensional structural components (BA and biomass). BA as two-
dimensional and biomass as three-dimensional variables were measured
from inventory data from early to climax successional stages. The
findings suggest a positive correlation between the increase in LE—from
early successional stages to climax—and the increase in biomass and BA.
Higher biomass and BA values indicate stand density and the distribu-
tion of tree sizes within a forest ecosystem (Enquist and Niklas, 2001;
Arcanjo and Torezan, 2022). These values suggest denser forests, char-
acterized by more prominent and numerous trees, and play a key role in
determining forest productivity (Luo et al., 2023). In addition, in Fig. 8
the Lorenz curve, which represents the variation in the Gini Coefficient
(GC) across different stages is added. By quantifying the GC and the LE
from inventory data, as outlined in our conceptual model (shown in
Fig. 2), we can determine if the studied plots result from the nuclear
tree’s advancement or the natural proliferation from zero forests.
Table 3 delineates the GC and LE values as deduced from these analyses.
From these calculations, we can infer that these plots predominantly
occupy the left segment of the graph, indicating their derivation from
zero forests. However, it is important to acknowledge that these are
representative sample plots from our study areas intended to illustrate
the fluctuations in the GC and LE according to actual measurements.

Moreover, Fig. 9 shows the variations in LE and the GC across
different forest successional stages in plot level. The heat maps gener-
ated for this analysis were based on data collected from various plots
within both study areas. These heat maps revealed a trend: as the suc-
cessional stage progresses from early to climax, the intensity of the GC
decreases, whereas the intensity of the LE increases, moving towards its
maximum value of 1. This pattern underscores the dynamic nature of
forest ecosystems, highlighting how, as forests mature, the structural
complexity and entropy of the system intensify.

4. Discussion

4.1. Advantages of Lorenz-entropy

Vertical structural complexity and structural diversity play a key role
in understanding ecosystem health and resilience, as they are closely
linked to biodiversity, productivity, and the capacity of ecosystems to
withstand disturbances (Edeline et al., 2023; Madin et al., 2023).
Remote sensing techniques are valuable for gathering this information
on ecosystem function and biodiversity (Beland et al., 2019; Bush et al.,
2017). In this research, we used airborne waveform LiDAR data to
measure and demonstrate the structural diversity and complexity in
tropical forests using the Lorenz-entropy (LE) index. Our results indi-
cated that the proposed LE index is capable to indicate variations in
vertical structure and can detect changes across ecological successions in
tropical forests’ LiDAR footprints (Fig. 5a and b) and the plot level
(Figs. 8 and 9). Previous studies by Aoki (1995), Fath et al. (2004), and
Cushman (2018) predicted the behavior of entropy at different growth
stages of ecosystem using only mathematical approaches. However, the
LE index proves its ability to demonstrate entropy trends and uncer-
tainty across a chronosequence of a tropical dry forest and in a climax
rainforest (Fig. 5b). The LE reflects its capacity to quantify the entropy
across different dimensions of forest metrics (canopy height (one-
dimension), basal area (two-dimension), and biomass (three-dimen-
sion), Fig. 8a and b). Another advantage of the LE index is its capability
to trace back the ecological process of succession in tropical forests,
supporting the findings of Janzen (1988) (Fig. 2). Prior studies
(Macarthur and Macarthur, 1961; Cushman, 2021) only calculated

Table 2
Mean sensitivity of Lorenz Entropy (LE) to RH metrics across
successional stages.

Successional stage Mean sensitivity

Early 1.78
Intermediate 2.06
Late 1.89
Climax 1.42
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Fig. 8. The evolution of inventory biomass (a) and basal area (b) data from the Santa Rosa National Park (early, intermediate, and late) and La Selva Biological
Station as the climax stage. This trend is aligned with the changes in the entropy as indicated by the developed Lorenz-entropy index, which reveals an increase in
biomass and basal area from the early to climax stages. The corresponding Lorenz curve from biomass and basal area from the inventory data is created, representing
the trend in changing the area between the Lorenz curve and the line of equality (red dashed line) representing the Gini coefficient (GC), in different successional
stages. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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entropy using the FHD and Shannon entropy formula without empiri-
cally demonstrating its measurement. However, in this study, we used
the LE index to measure uncertainty in structural complexity, which
represents the significant differences across various dimensions of forest
metrics and successional stages (see Figs. 5 and 8).

Other entropy-based indices, specifically the Shannon Entropy Index
(SEI, Shannon, 1948), are often used to measure diversity; however,
they have limitations in accounting for the distribution and arrangement
of species or elements within an ecosystem (MacDonald et al., 2017;
Roswell et al., 2021). The SEI does not consider the ecological charac-
teristics of forest ecosystems and may not reflect the importance of
specific species or elements within a given ecosystem (Jost, 2006). As a
result, in this research, we tried to address these gaps by introducing a
LiDAR waveform-based entropy index that incorporates practical im-
plications for forest ecology such as enhancing monitoring of tropical
forest ecosystems. Moreover, the recent entropy-based method devel-
oped by Liu et al. (2022), for quantifying vertical and horizontal forest
canopy structural complexity; However, it also has certain limitations.
The key limitation is the potential variability in data quality and reso-
lution from different Lidar platforms, which can introduce in-
consistencies in the analysis. Additionally, the method relies heavily on
the accurate alignment and integration of data from multiple sources.
Moreover, by using TLS, the spatial coverage is limited due to the fixed
position of the scanner and the relatively small area that can be surveyed
from each scanning position. In our research, we overcome these chal-
lenges of data variability and spatial coverage by employing airborne
LiDAR technology. This technology provides consistent and extensive
spatial coverage, which allows us to generate more uniform and
consistent datasets.

4.2. The Lorenz-entropy vs the Gini coefficient

The LE formula is a function of the GC, defined through their
mathematical relationship as presented in Eq. (1). While GC measures
inequality, the transformation from GC to LE is grounded in the i)
ecological application of the second law of thermodynamics (entropy),
indicated by Svirezhev (2000) and Nielsen et al. (2020), ii) structural
complexity (Liu et al., 2022; Weiner and Solbrig, 1984), and iii)
ecological successional theory (Janzen, 1988) rather than being merely
a statistical reformulation without physical meaning. This makes the LE
a robust metric for describing structural diversity and complexity in
forest ecosystems. For example, in our analysis of successional stages, in
a tropical dry and a tropical rain forest using actual data, the LE effec-
tively distinguished the increasing entropy and complexity as a function
of ecological succession (Fig. 5b). In contrast, while the GC can classify
the different successional stages (Fig. 5a), it could not define the dif-
ferences of successional trajectories, influenced by forest origin pro-
cesses (e.g., wind dispersed vs vertebrate dispersed), as discussed by
Janzen, 1988. Studies by Castillo-Núñez et al. (2011) and Castillo et al.
(2012) which utilized LiDAR data, further demonstrated the significance
of these successional processes for understanding forest recovery in
tropical ecosystems.

The LE’s utility extends to detailed assessments of forest dynamics

and entropy, whereas GC provides a snapshot of evenness and inequality
(Valbuena, 2015; Valbuena et al., 2016). LE offers a broader perspective
on forest succession by capturing entropy-driven transitions across
successional stages, as demonstrated in Fig. 5b with data from a tropical
dry and a tropical rain forest. This makes the LE particularly valuable for
studies investigating the interplay between structural complexity, and
forest recovery.

4.3. Contribution to evenness and structural complexity

The outcomes of our study provide substantial contributions to the
comprehension of evenness and structural complexity within tropical
forest ecosystems. This is achieved through utilizing the GC, an indicator
for assessing ecosystem inequality. The significance of GC derives from
its role as a summary statistic for the Lorenz curve, which enhances our
grasp of plant size distributions and structural complexity (Weiner and
Solbrig, 1984; Damgaard and Weiner, 2000), as explained through
LiDAR data (Fig. 5a).

Empirical support for the applicability of the GC to assess structural
diversity within forests has been highlighted in previous studies
(Valbuena et al., 2016; Valbuena et al., 2012). The advantages of the GC
include its logical ranking of distributions and sensitivity to varying
sample sizes (Wright Muelas et al., 2019; Blesch et al., 2022), making it a
valuable tool.

Recent developments in ecological equations of state have provided
insights into the relationship between species diversity and other
ecosystem characteristics (Harte et al., 2022). However, these ap-
proaches often need to be revised in terms of scale. In our research, the
LE index aims to address this issue by acquiring footprints of airborne
LiDAR and spatially explicit LiDAR technology over swaths of forest
cover, rather than using just sample data.

As an ecosystem reaches a climax stage, a balance exists where a
greater variety of species coexist and resources are more evenly
distributed (Brun et al., 2019). This reduces inequality and increases
evenness (Jost, 2010; Hordijk et al., 2023). Our study shows this through
the decreasing trend of the GC towards 0.33. The relationship between
evenness and complexity is critical in understanding the stability and
resilience of tropical forests (Hill, 1973; Kvålseth, 1991). A higher
evenness suggests a more equal resource distribution and greater
ecosystem resilience in the face of disturbances. This suggests greater
biodiversity can improve an ecosystem’s overall functioning and ser-
vices (Hong et al., 2022). Moreover, high evenness suggests a more
equitable distribution of species abundance, which may enhance
resource utilization efficiency and promote stability within the
ecosystem (Stirling and Wilsey, 2001; Hordijk et al., 2023). Tuomisto
and Tuomisto (2012) and Yan et al. (2023a, 2023b) suggest that un-
derstanding the intricate relationships between species richness, even-
ness, and proportional diversity requires a thorough investigation across
different ecological contexts for explaining ecosystem dynamics. To
support this, our proposed LE index provides a solution for elucidating
the role of evenness in complementing richness and productivity in
tropical forest ecosystems through an empirical study using essential
forest variables, such as canopy height, basal area, and aboveground
biomass.

4.4. Lorenz-entropy and successional stages

One important application of this study is using the LE to assess the
forest’s conditions along chronosequence, given changes in the di-
versity, structure and composition over time (Guariguata and Ostertag,
2001; Lohbeck et al., 2012).This scenario culminates in a climax stage,
where the species composition is relatively stable, and the community is
in equilibrium with the prevailing environmental conditions. The
dominant species in a climax forest are typically long-lived and well-
adapted to the local climate, soil, and other environmental factors
(Hartshorn, 1980). This is where these characteristics (diversity and

Table 3
The Gini Coefficient (GC), and the Lorenz-entropy (LE) values, calculated from
basal area and biomass inventory data for early, intermediate, and late succes-
sional stages of SRNP-EMSS, and climax stage of La Selva Biological Station.

Successional
stage

GC from basal area
(MAXENTGC=0.50)

GC from biomass
(MAXENTGC=0.60)

LE
from
basal
area

LE from
biomass

Early 0.26 0.22 0.76 0.56
Intermediate 0.27 0.32 0.77 0.66
Late 0.31 0.33 0.81 0.67
Climax 0.50 0.44 1 0.78
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Fig. 9. Heatmap of the Lorenz-entropy (LE) and the Gini coefficient (GC) at the SRNP-EMSS for early, intermediate, and late stages, and La Selva for the climax stage.
This figure represents the intensity of the GC and the LE across different stages of ecological succession.
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composition) are at their highest. This transformation results from in-
teractions between ecological development, biodiversity expansion, and
inequality dynamics (Tilman et al., 2014; Guralnick et al., 2015).

The results of the statistical analysis indicate that, although there are
statistically significant differences between the late and climax stages of
forest succession, the magnitude of these differences is relatively small,
as reflected by the small effect size (Cohen’s d = 0.25). This finding
supports our interpretation and hypothesis that Lorenz-entropy (LE)
increases substantially from the early to late stages and then stabilizes as
the forest reaches the climax stage and the GC value tends to converge
towards 0.33 for one-dimensional forest metric (canopy height), Adnan
et al. (2021). While the differences between the late and climax stages
are statistically significant, they are less meaningful in practical terms
due to the observed small effect size. In fact, these results suggest that
the late and climax stages are highly similar in terms of vertical struc-
tural complexity and entropy (Fig. 5). This observation is consistent with
the perspective that the climax stage represents an extension or stable
phase of the late successional stage, rather than a distinct stage with
unique structural characteristics (Guariguata and Ostertag, 2000;
Poorter et al., 2016; Rozendaal et al., 2019).

While this study focuses on 20-m footprints obtained from LVIS data,
the methodology can be extended to other spatial scales, including
spaceborne LiDAR datasets such as GEDI, as long as full waveform data
are available. This flexibility underscores the robustness of the LE index
in capturing entropy across varying resolutions and scales. As the find-
ings from LiDAR shape-based metrics revealed the impact of these
metrics (Cx, Cy, and RG) on LE, which is evident as the forest moves
from one successional stage to another (Fig. 7). In the early stages, a
more heterogeneous amplitude distribution leads to lower LE values due
to greater variability in canopy structure. As the forest develops and
canopy gaps close, the amplitude distribution becomes more homoge-
neous, causing an increase in LE. This transition is captured by the
decreasing Cx values, which reflect a reduction in amplitude variation
within each footprint. The increasing trend in Cy indicates a higher
vertical structure, which stabilizes in the climax stage, reflecting the
uniformity and complexity of the mature forest canopy. Simultaneously,
the reduction in RG values signals a more compact canopy structure,
indicating a shift towards uniformity and stability in the forest’s vertical
complexity. At the climax stage, these trends stabilize, indicating that
the canopy structure has reached equilibrium, and further changes in Cx,
Cy, or RG are minimal. The lack of variation in these metrics suggests
that the Lorenz-entropy (LE) has reached a plateau, capturing the uni-
formity and structural stability of the mature forest. This behavior aligns
with the expectations for climax-stage forests, where structural
complexity and vertical stratification are at their maximum, and further
entropy increases are limited (Petrokas, 2020; Pos et al., 2023).

The sensitivity analysis indicated the responses of the LE in changing
in the RH metrics from the LVIS in different successional stages
(Table 2). The intermediate stage exhibited the highest sensitivity,
suggesting that canopy structure during this phase is more dynamic,
with significant fluctuations in vertical distribution. This increased
sensitivity in the intermediate stage can be attributed to greater species
turnover, mortality, and liana density (Kalácska et al., 2005; Calvo-
Rodriguez et al., 2021; Duan et al., 2023).

In contrast, the climax stage showed the lowest sensitivity, reflecting
the stability and equilibrium of mature forests. At climax stage, canopy
height changes have a minimal impact on LE, suggesting that the forest’s
structural complexity has reached a relatively stable state which aligns
with our results from Fig. 5(b).

The early and late stages displayed moderate sensitivity, suggesting
that these stages are characterized by ongoing structural development,
but with less pronounced changes compared to the intermediate phase.
The early stage reflects the initial establishment of canopy layers, while
the late stage shows a gradual approach to maturity.

4.5. Limitation of the current study

Despite its outstanding utility, the Lorenz curve may not fully sum-
marize the complexity of biomass distribution patterns, particularly in
instances where ecological processes interact nonlinearly or exhibit
spatial heterogeneity. Our study did not incorporate trees’ spatial co-
ordinates (x and y positions) within the different successional stages.
This limitation could impact the spatial distribution patterns in forest
structure and dynamics. The Lorenz curve graphical representation
provides two distinct scenarios of forest structure when dealing with this
limitation regarding biomass: one characterized by a biomass distribu-
tion predominantly influenced by a larger number of individuals, and
another one marked by a domination of biomass by a smaller cohort of
individuals (Supplementary Fig. 2). This duality of the Lorenz curve
underscores the intricate growth dynamics inherent in tropical forest
ecosystems, where diverse biomass accumulation and distribution pat-
terns manifest as the original pass of succession. Therefore, while the
index and accompanying visual aids provide valuable insights into
broad-scale trends, they may fail to capture differences in biomass
allocation and ecological dynamics.

Another important aspect of developing the LE index is normalizing
the cumulative height profile to the [0,1] range. While this normaliza-
tion preserves the variability information of the height profile, it can
result in Lorenz curves for different forest canopy heights appearing
identical, regardless of their actual heights. Consequently, this can
obscure differences between taller and shorter canopies, indicative of
greater structural complexity. To address this issue, it is important to
complement the LE index with a measurement of absolute canopy height
or another relevant metric. This approach will help distinguish between
different canopy heights and provide a more accurate assessment of
forest structural complexity.

Future index improvements could involve integrating additional
metrics or employing advanced modeling techniques to better account
for such complexities and enhance the index’s discriminatory power
across diverse ecological contexts. Moreover, our future research aims to
answer whether the LE index effectively captures the complex entropy
and structural diversity variations across different tropical forests. Given
the wide range of ecological features in tropical forests-including species
composition, vegetation structure, and environmental conditions-
assessing the index’s ability to discern these differences is crucial for
establishing its validity and robustness. This investigation will
contribute significantly to the global applicability of the LE index in
tropical forest research.

5. Conclusion

In this research we developed an entropy-based index (LE index) to
measure the structural complexity and structural diversity in tropical
forests. The integration of various disciplines, and advanced analytical
remote sensing techniques presented in this study were proposed to
address the limitations of existing indices in capturing the intricate
structural variations and ecological dynamics within these ecosystems.

Using empirical data, this study advances our understanding of the
linkage between vertical structural complexity, structural diversity, and
productivity in tropical forest ecosystems. The results reveal that as
tropical forests progress through different successional stages towards
the climax stage, structural complexity increases while canopy height
inequality decreases. The LE index, peaking at 1 in the climax stage,
indicates maximum structural heterogeneity and complexity. The Gini
Coefficient (GC) trends towards 0.33, reflecting a more uniform distri-
bution of canopy heights and suggesting that mature forests exhibit
greater ecological evenness. LiDAR-derived shape-based metrics (Cx,
Cy, RG) effectively captured the structural changes within forest can-
opies, with Cx decreasing and Cy increasing as forests mature. These
metrics, in conjunction with LE, provide a robust framework for
assessing vertical complexity and canopy distribution across ecological
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succession.
The sensitivity analysis conducted in this study revealed that the

response of LE to changes in RH metrics varies across successional
stages. Intermediate stages exhibited the highest sensitivity, reflecting
greater fluctuations in canopy height and more dynamic forest struc-
tures. In contrast, the climax stage showed the lowest sensitivity, indi-
cating that canopy structure stabilizes as forests reach maturity, with
minimal impact on LE from further height variations. Early and late
stages displayed moderate sensitivity, representing ongoing but less
pronounced structural development.

The validation of the LE index using biomass and basal area (BA)
measurements further supports these trends, showing a positive corre-
lation between increasing LE values and higher biomass and BA in the
forest. Spatial heatmaps illustrate that the intensity of the LE index in-
creases with forest succession, reinforcing the observed patterns of ris-
ing structural complexity and evenness. We suggest that the proposed LE
index has the potential to contribute to a deeper understanding of
ecological communities and forest dynamics at tropical forests’
landscapes.
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