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ABSTRACT
Lateral connectivity between rivers and terrestrial landscapes is critical for both river and landscape health. Due to widespread 
anthropogenic degradation of riverscapes, river management is aiming to connect rivers to floodplains, riparian zones, and wet-
lands, putting a spotlight on lateral connectivity. However, there is currently no consensus on how to conceptualize and study 
lateral connectivity in rivers across disciplines. Here, we review lateral connectivity between riverscapes and terrestrial land-
scapes. We focus on the natural sciences, considering hydrology, geomorphology, ecology and biogeochemistry, but also consider 
social connectivity and the management and restoration of lateral connectivity. We emphasize the importance of considering the 
bidirectional nature of lateral connectivity, operating both into and out of river channels and the balance between these direc-
tions. The resulting “lateral connectivity balance” provides a framework to understand natural spatial and temporal variability 
in connectivity. Anthropogenic impacts have swung the balance of lateral connectivity, enhancing the transport of materials into 
and through river networks while suppressing fluxes from rivers to adjacent landscapes. We conclude that further research at 
the interfaces between the aquatic and terrestrial components of riverscapes is critical to advance our conceptual understanding 
of river and catchment systems. We propose that such research should be framed within the paradigm of “rebalancing” lateral 
connectivity, explicitly recognizing the natural bidirectionality of laterally connecting processes, the significance of the hydro-
logic, geomorphic, and biologic functions they support, and the value to society of the ecosystem services and climate change 
resilience they provide.
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1   |   Introduction

Rivers connect landscapes by providing pathways for the move-
ment of water, sediments, solutes, and biota. Connectivity and 
disconnectivity have been fundamental concepts in the develop-
ment of river science across many disciplines including hydrol-
ogy (e.g., Ali and Roy 2009; Bracken et al. 2013; Rinderer, Ali, and 
Larsen 2018), geomorphology (e.g., Wohl et al. 2019; Poeppl, Polvi, 
and Turnbull 2023), ecology (e.g., Amoros and Roux 1988; Fuller 
and Death  2018; Liczner et  al.  2024), biogeochemistry (e.g., T. 
Covino 2017), and sociology (e.g., Kondolf and Pinto 2017; Dunham 
et al. 2018). Thus, the concept of connectivity has shaped the way 
we conceptualize, research, manage, and restore rivers (Bracken 
et al. 2013; Parsons et al. 2015; Keesstra et al. 2018; Rinderer, Ali, 
and Larsen 2018; Wohl et al. 2019; Allen et al. 2020).

Connectivity is referenced to three orthogonal axes: longitudi-
nal, vertical, and lateral to the course of the river, and varies 
through both space and time (Ward 1989). Lateral connectivity, 
the focus here, describes the bidirectional flux of materials, en-
ergy, and organisms between waterscapes (here defined by the 
current extent of inundated surface water bodies, including river 
channels, ponds, wetlands, and flooded habitats), and adjacent 
landscapes (here defined as terrestrial features and habitats, in-
cluding dry valley floors, valley sides, terraces, and hillslopes). 
Lateral connectivity is bidirectional (Figure  1). Materials, or-
ganisms, and energy move from landscapes (L) into waterscapes 
(W) (landscape ➔ waterscape, denoted by L ➔ W in this man-
uscript), for example, via tributary inflow, subsurface trans-
port, overland runoff, and anthropogenic drainage. In contrast, 
fluxes also occur in the other direction: out of waterscapes and 
into the surrounding landscape (waterscape ➔ landscape; W ➔ 
L). For example, overbank flood events drive W ➔ L fluxes, as 
they deposit water, sediments, and organisms on the floodplain, 
while some animals may move actively between the waterscape 
and landscape irrespective of flow stage.

The boundaries between waterscapes and landscapes are 
not fixed, but vary through time (e.g., Stanley, Fisher, and 
Grimm 1997). These lateral expansions and contractions drive 
many connecting processes (Junk, Bayley, and Sparks  1989) 
and support transitional habitats, which switch between 
aquatic and terrestrial. Both L ➔ W and W ➔ L fluxes involve a 
wide range of materials, energy, and organisms (and therefore 
scientific disciplines) including not only water, but sediments, 
solutes, biota, and people. Consequently, bidirectional lateral 
connectivity is integral to, and essential for, the health of rivers 
and landscapes, and the provision of many riverine ecosystem 
services (Leigh and Sheldon  2009; Desjonquères et  al.  2018; 
Petsch et al. 2023; Figure 1).

Modifications to lateral connectivity represent some of the 
most pervasive human impacts on river systems (Figure  2). 
Across most of the planet, river management has been under-
taken with the specific intention of reducing W ➔ L fluxes 
of water, sediment, and energy, for example, by enlarging the 
channel and raising artificial levees. Simultaneously, humans 
have increased the rate of fluxes of material L ➔ W, for ex-
ample, through land drainage (Blann et  al. 2009; Gramlich 
et  al.  2018; Gurnell and Downs  2021; Morrison et  al.  2023). 
In parallel, catchment- scale deforestation, urbanization, and 
water resource development have indirectly reinforced these 
modifications to lateral connectivity through their effects on 
river flow and sediment regimes (Simon and Rinaldi  2006; 
Walter and Merritts  2008). In combination, the intended 
and unintended consequences of anthropogenically driven 
changes to river systems have typically exaggerated L ➔ W 
connectivity while suppressing fluxes of material W ➔ L. The 
pervasive extent of reductions in W ➔ L lateral connectivity 
are largely responsible for the global decline in transitional 
habitats: riparian zones, wetlands and floodplains, and the 
ecosystem services these provide (Jones et al. 2010; Schneider 
et al. 2017; Rajib et al. 2023; Morrison et al. 2023). Similarly, 

FIGURE 1    |    Examples of lateral connectivity in a human- modified riverscape. The lateral connectivity balance describes the relative importance 
of fluxes of material into waterscapes from landscapes (L ➔ W) and vice versa (W ➔ L).
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as transitional riverine habitats, or hydrologic ecotones, are 
characteristically biologically diverse, their reduction con-
tributes to the ongoing collapse in global biodiversity (Krause 
et al. 2017; Wohl et al. 2021).

In response to anthropogenic modifications to lateral connectiv-
ity, there is increasing interest in “reconnecting” rivers to flood-
plains. Recent experience in river restoration demonstrates the 
benefits of restoring river–floodplain connectivity to help boost 
biodiversity (Leigh and Sheldon  2009; Opperman et  al.  2009; 
Beechie et al. 2010; Desjonquères et al. 2018; Wohl et al. 2021), 
including aiding endangered fish populations (Flitcroft 
et al. 2022; Stoffers et al. 2022) and increasing the resilience of 
rivers to the impacts of climate change (Weber et al. 2017; Pugh 
et al. 2022). It follows that shifting the focus of river research, 
management, and restoration toward “rebalancing” lateral con-
nectivity should help recover lost riverine biodiversity and eco-
system services, while increasing river resilience in the face of a 
changing climate (Opperman et al. 2010; Cluer and Thorne 2013; 
Powers, Helstab, and Niezgoda 2019; Wohl et al. 2021; Flitcroft 
et al. 2022). Rebalancing connectivity involves reinstating lost 
and desirable directions of connectivity, where anthropogenic 
constraints allow, to maximize the societal value and services 
provided by the riverscape. In most contexts, this involves re-
ducing L ➔ W and restoring W ➔ L fluxes, by slowing material 
flows into river systems and promoting hydrological fluxes from 
rivers to landscapes.

In river science and management, there is wide variability in 
how much emphasis is given to lateral versus longitudinal con-
nectivity. In river management there remains a tendency to 
view rivers as being, first and foremost, linear (longitudinal) 
features, which can lead to management and policy approaches 
that favor longitudinal over lateral connectivity. For example, 
recent research quantifying the impacts of “physical blockage of 
free- flowing rivers” only considered structures which primarily 
restrict longitudinal connectivity (dams, weirs, sluices, culverts, 
fords, and ramps) (Parasiewicz et al. 2023). Yet physical barri-
ers restrict river lateral connectivity across most rivers globally, 
including levees, drainage and over- deepened river channels 
(Chin 2006; Blann et al. 2009; Woodbridge et al. 2016; Gurnell 
and Downs  2021; Morrison et  al.  2023), although these barri-
ers are often less obvious (and their construction less well doc-
umented) than weirs and dams. That said, there is an increased 
focus on restoring lateral processes (Opperman et  al.  2009; 
Beechie et al. 2010; Serra- Llobet et al. 2022), though ambition is 
often limited to hydrological reconnection at river stages that ex-
ceed bankfull, without recognizing the anthropogenic impacts 
which have modified bankfull or the importance of lateral pro-
cesses at low flows.

In practice, the ability to identify, conceptualize, and quantify 
lateral connectivity is important to plan and evaluate river man-
agement. This concept has important legal implications. For 
example, the EU Water Framework Directive applies to aquatic 

FIGURE 2    |    Defining bidirectional lateral connectivity for a pre- anthropogenic disturbance riverscape (A) and a modified riverscape (B). Lateral 
connectivity describes the movement of many materials (outer circle) within and between waterscapes and landscapes. Event- related and seasonal 
expansion/contraction of the waterscape(s) drive many laterally connecting processes. The waterscape and the area bidirectionally connected to 
the waterscape forms the riverscape. Riverscapes have been shrinking globally due to anthropogenic activities. River cross sections adapted from 
Hogervorst and Powers (2019).
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ecosystems and terrestrial ecosystems which “directly depend” 
on these aquatic ecosystems (Stoffers et al. 2024; WFD; 2000/60/
EC) while the EU Biodiversity Strategy requires definition of 
“free- flowing rivers,” including the lateral dimension (van de 
Bund et  al.  2024). Consequently, we require an explicit defi-
nition of lateral connectivity in concept and practice, one that 
identifies how connectivity varies naturally through space and 
with flow stage and considers ongoing human impacts on lateral 
connectivity and future management strategies.

In this paper, we review river lateral connectivity with the aim 
of reframing how this is considered in river research and man-
agement. We review knowledge across multiple materials and 
organisms (e.g., water, solutes, sediments, and biota). We con-
sider lateral connectivity in an anthropogenic context: exam-
ining society's impact on laterally connecting processes, the 
reciprocal impacts of lateral connectivity on society, and how a 
better understanding of lateral connectivity can be used to im-
prove river management. We lay the foundation for a broader 
appreciation of the many components of lateral connectivity in 
rivers, and crucially, the linkages between them. We also move 
beyond the conceptual, to address how lateral connectivity can 
be identified and quantified, and how the resulting knowledge 
can be used to guide restoration of rivers for the benefit of both 
people and nature. A focus on lateral connectivity forces one to 
“think outside the channel” and view the drainage network not 
as comprised of discrete zones (e.g., aquatic, riparian, terres-
trial), but as a shifting mosaic of inter- connected elements and 
patches whose boundaries are fuzzy and change through time 
and space (Stanford, Lorang, and Hauer 2005). We hope our re-
view will provide a foundation for future, multi- disciplinary re-
search and management of lateral connectivity at scales ranging 
from the short to the long- term, and from individual reaches to 
entire drainage systems.

2   |   Defining and Conceptualizing Lateral 
Connectivity

Lateral connectivity is the bidirectional transfer of matter, en-
ergy, and organisms between and within waterscapes and land-
scapes (Figure 2). Since aquatic zones are variable through time, 
expanding and contracting with discharge, both the waterscape 
and landscape vary in their areal extent. These lateral expan-
sions and contractions are the catalyst for many connecting 
processes (Junk, Bayley, and Sparks  1989) and support transi-
tional habitats, which shift from being part of the waterscape 
versus the landscape over time. The riverscape encompasses 
both the wetted features of the river (e.g., channels) and the area 
of the landscape which is bidirectionally connected to the river 
(e.g., influenced by fluvial processes, such as riparian zones 
and floodplains). In the lateral dimension, waterscapes, river-
scapes and landscapes are intimately connected across a range 
of scales, from the catchment hydrological regime down to the 
life histories of individual organisms, many of which rely on 
aquatic- terrestrial connectivity. Thus, a conceptual understand-
ing of lateral connectivity requires consideration of variation 
through space and time.

Connectivity is commonly divided into two elements: structural 
and functional (Rinderer, Ali, and Larsen 2018; Wohl et al. 2019). 

Structural connectivity describes the configuration of the rele-
vant landforms (e.g., the spatial distribution of river channels) 
and, therefore, how the riverscape and landscape impede or 
facilitate the movement of matter, energy, and organisms. In 
contrast, functional connectivity describes the movement of the 
matter, energy, and organisms themselves. Consequently, struc-
tural connectivity can be understood as connectivity in form 
while functional connectivity describes process.

2.1   |   Conceptualizing Lateral Connectivity 
in Space

At its most simplistic, lateral connectivity can be understood 
as the movement of materials, energy, and organisms perpen-
dicular to the river's course (Ward 1989). Of course, the lateral 
component of connectivity rarely operates in isolation from 
longitudinal and vertical components (Wohl  2017) and there-
fore, longitudinal, lateral, and vertical connectivity interact. 
Increases in the connectivity in one dimension may result in in-
creased connectivity in another. For example, during high flows, 
sediment is not only moved long- stream but also exchanged 
laterally, such as via surface runoff, tributaries, and bank ero-
sion and exchanged vertically with the river bed and floodplain 
(Benda and Dunne 1997; Rice and Church 1998). Many of the 
processes involved in lateral connectivity also increase vertical 
connectivity between surface water and subsurface water stores 
and pathways. Therefore, although our focus is on lateral con-
nectivity, the ideas, concepts, and approaches we present also 
relate to longitudinal and vertical connectivity.

Rivers occur naturally along a spectrum in the strength and di-
rection of their lateral connections, and the ratio of L ➔ W to W 
➔ L fluxes can vary substantially through space (Figure  3A,B). 
Variations in lateral connectivity with position along river sys-
tems have been recognized in several conceptual models. The 
Fluvial System Model (Schumm  1977) provides a geomorphic 
perspective on longitudinal changes in sediment sources and 
transport processes. This model identifies three process domains 
(Schumm  1977), sediment production, transfer, and deposition 
zones, which differ in the balance between L ➔ W and W ➔ L 
fluxes (Figure  3Ci). The River Continuum Concept (Vannote 
et al. 1980), while emphasizing the longitudinal connectivity of 
rivers, also incorporates some consideration of lateral connectiv-
ity along a river's course (L ➔ W) via terrestrial inputs of organic 
matter (allochthonous litter) (Figure  3Cii). Viewing the Fluvial 
System Model and the River Continuum Concept through the 
lens of lateral connectivity, we suggest broad- scale predictions of 
lateral dynamics in each process zone (Figure 3Ci,ii). In streams 
characterized by confined valleys and higher slopes, lateral in-
puts L ➔ W typically exceed those W ➔ L (Zone 1). For example, 
surface water and transported sediments, biota and solutes drain 
directly into channels (and L ➔ W connectivity is not buffered 
by floodplains). Belowground, lateral connectivity processes are 
more complex, since in steep headwater streams, hydrologic gains 
and losses via lateral exchange are common (Payn et  al.  2009), 
although subsurface flows are often predominantly L ➔ W (net 
gaining reaches). In contrast, rivers characterized by low slopes 
and wide valleys with extensive floodplains, are characterized by 
a higher degree of W ➔ L connectivity (Zone 3), since subsurface 
and surface flows of water (flooding) exchange materials with the 
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floodplain and wider riverscape. In transfer zones, long- stream 
transport of materials dominates although some lateral exchange 
with the floodplain occurs (Zone 2).

An important limitation of both the Fluvial System Model and 
the River Continuum Concept is that they present gradients 
in processes as smooth and continuous along the river long 
profile. In reality, longitudinal discontinuities are prevalent 

in most catchments and can correspond to strong shifts in 
the balance between longitudinal and lateral connectivity 
(Montgomery  1999; Poole  2002; Fryirs et  al.  2007). Lateral 
inputs of sediment (e.g., landslides or heavy inputs of sedi-
ment from tributaries, Rice and Church 1998; D'Odorico and 
Fagherazzi  2003), sediments derived from glacial processes 
(Mason and Polvi  2023), biogeomorphic activities (e.g., log 
jams or beaver dams; Wohl and Beckman  2014), channel 

FIGURE 3    |    The lateral connectivity balance (A) describes the relative importance of waterscape to landscape (W ➔ L) and landscape to water-
scape (L➔ W) fluxes. (B) Three process domains along a continuum of changes in the lateral connectivity balance. Zone 1: rivers dominated by inputs 
into the waterscape, L➔ W; Zone 2: rivers with similar magnitudes of L➔ W and W ➔ L; Zone 3: rivers characterized by high outputs of material from 
the waterscape onto floodplains and valley floors. Examples of each process domain reach type may be found in the Torne River drainage system, 
northern Sweden; (Z1) Šielmmánjira, (Z2) Mjellejohka, and (Z3) Čeavččanjira. (C) The lateral connectivity balance incorporated into four conceptual 
models to understand spatial and temporal patterns in river processes. The locations of lateral connectivity process Zones 1–3 (from B) are indicated. 
Image credits: Z1 and Z3, Richard J. Mason. Z2, Sophia Laporte.
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blockages resulting from human activities (e.g., dams and 
weirs; Ward and Stanford 1983), and variation in valley floor 
width (Wohl, Lininger, and Scott 2018), may all drive lateral 
connectivity by increasing residence time and roughness, pro-
moting lateral (and vertical) flows of materials. Consequently, 
lateral connectivity Zones 1–3 (Figure  3B) are often inter-
spersed along the course of the river and, at the catchment 
scale, discontinuities in longitudinal connectivity promote 
spatial variability in the processes driving lateral fluxes and 
connectivity.

The String of Beads analogy (Stanford and Ward  1993; Wohl, 
Lininger, and Scott  2018) provides a useful model in many 
catchments to explain spatial variability in lateral connectivity 
(Figure  3Ciii). This describes how rivers oscillate with distance 
downstream between reaches with narrow valley floors (i.e., 
strings, Zone 1), where the planform is constrained to a single- 
threaded channel, within which fluvial processes are closely cou-
pled with valley side slope processes and lateral connectivity is 
dominated by L ➔ W inputs of water, energy and matter, versus 
reaches with wider valley floors (i.e., beads, Zone 3), where the 
planform is unconstrained and multi- threaded, fluvial processes 
dominate and lateral connectivity features both L ➔ W and W 
➔ L processes (Fryirs and Brierley  2010; Fryirs, Wheaton, and 
Brierley 2016; Wohl et al. 2021). The Serial Discontinuity Concept 
was developed to capture the effects of dams in interrupting lon-
gitudinal connectivity (Ward and Stanford  1983). Although the 
Serial Discontinuity Concept did not initially consider lateral in-
teractions, it was later extended to incorporate lateral flood pro-
cesses (Ward and Stanford 1995). While dams may increase W ➔ 
L connectivity upstream through increased material residence 
time, they may simply move the transition zones (e.g., riparian) 
in the backwatered reach vertically upwards (and remove natu-
ral variability in water elevation in the ponded zone). Similarly, 
dams may regulate downstream discharges such that lateral fluc-
tuations driving W ➔ L within the downstream waterscape are 
reduced (Stone, Byrne, and Morrison 2017).

Finally, it is important to note that the conceptualization of lat-
eral connectivity in space is scale dependent. Fluvial systems 
may be viewed as a nested hierarchy of scales (Frissell et al. 1986; 
Petts and Amaros 1996; Polvi 2020). At the catchment scale, sur-
face hydrological connectivity depends on landform configura-
tion including the shape and relief of the basin, the topology of 
the drainage network (Altermatt 2013; Rice 2017). Hydrological 
connectivity, however, is not confined to the surface river net-
work because fluxes of hyporheic and groundwater also occur 
(Winter 1999; B. Liu et al. 2022). Similarly, while many organ-
isms use the waterscape to move around the catchment (Rossi 
et  al. 2024), others use the terrestrial and aerial parts of the 
riverscape or landscape for migration or dispersal (Bunn and 
Hughes 1997; Lancaster and Downes 2013). At the valley scale, 
connectivity between hillslope, floodplain, and channel stor-
ages governs when, how, and how much material moves into 
and through the fluvial system. On the valley floor, flood pulses 
control the degree and direction of lateral connectivity between 
channels, riparian zones, valley floors, and hill slopes. At the 
habitat patch scale, the mobile boundaries between the water-
scape and the riverscape margins, together with the transitional 
ecotones they support, provide the links between the aquatic, 
riparian, wetland, and terrestrial zones, and are hotspots for 

biogeochemical (e.g., nutrient cycling, contaminant processing), 
geomorphological (e.g., bank erosion, bar accretion), and ecolog-
ical processes (e.g., insect emergence, seed germination, and fish 
population dynamics).

2.2   |   Conceptualizing Lateral Connectivity 
Through Time

Lateral connectivity varies through time. Flow stage is a strong 
determinant of lateral connectivity, with hydrological pulses 
driving the connectivity of many materials. Thus, seasonal vari-
ation in connectivity is key to river functioning. Temporal vari-
ation in lateral connectivity is also highly dependent upon river 
characteristics. Most work on lateral connectivity has focused 
on rivers which flood (Zones 2 and 3 in Figure 3). Floodplains 
are formed by lateral fluxes of sediment that is deposited as the 
river migrates and avulses. The lateral connections between 
the river and the valley floor results in the temporary storage 
of large quantities of sediment, controlling the morphology and 
character of floodplain environments (Walling et al. 2003; Noe 
and Hupp 2009; Swinnen et al. 2020). Over annual to decadal 
timespans, fluctuations and trends in the hydrological regime 
drive considerable variability in both the direction and mag-
nitude of laterally connecting processes. Therefore, while 
for most of the year, river channels act primarily as sinks for 
materials and energy from the wider catchment, during high 
flows, flooding drives bidirectional exchanges (Figure  4). In 
contrast, reaches in more confined valley segments (Zone 1 in 
Figure 3), and rivers that have incised sufficiently to disconnect 
their channels from their floodplains, primarily flush material 
downstream during high flows.

The Flood Pulse Concept (Junk, Bayley, and Sparks  1989) 
was developed to understand seasonal changes in lateral con-
nectivity in rivers with floodplains. This concept describes 
connectivity driven by the expansion and contraction of the 
waterscape, due to changes in river stage and was foundational 
in recognizing that flood pulses drive both L ➔ W and W ➔ 
L lateral connectivity, iv and that materials derived from the 
floodplain are critical to both floodplain and in- channel pro-
cesses. Furthermore, disturbance resulting from flood pulses 
maintains dynamism in floodplain processes. While the Flood 
Pulse Concept was originally developed for large tropical 
rivers with extensive periods of flooding (Junk, Bayley, and 
Sparks  1989), Tockner, Malard, and Ward  (2000) extended 
the model to temperate systems, specifically detailing the im-
portance of discharge pulses that occur below bankfull stage. 
The resulting Flow Pulse Concept is therefore better suited 
to many human- modified rivers that rarely flood. The Flow 
Pulse Concept emphasizes that as discharge increases, but 
remains below bankfull, lateral expansion is nonetheless im-
portant in connecting diverse habitats inset below the valley 
floor. such as paleo- channels and disconnected anabranches 
(Tockner, Malard, and Ward 2000). However, in overly simpli-
fied anthropogenic channels, high discharges, which remain 
below bankfull, may lead to increased depths and velocities 
with little increase in surface lateral connectivity.

Clearly, the magnitude, timing, and frequency of flood peaks 
are critical to floodplain inundation and lateral connectivity. 
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This is recognized in the Natural Flow Regime Concept (Poff 
et al. 1997), which explains how key aspects of hydrographs 
(magnitude, frequency, duration, timing, and flashiness) 
impact river ecosystems, and how human modifications to 
river discharge that produce unnatural flow regimes, degrade 
river ecosystems, disproportionately affecting native species 
that have co- evolved with naturally variable flows. Allen 
et  al.  (2020) draw attention to the importance of connectiv-
ity in non- perennial rivers. Even during periods when surface 
water connectivity is interrupted, lateral connectivity may 
continue (e.g., via wind, animal movement). In their recent 
“foodscapes for salmon” concept, Rossi et  al.  (2024) provide 
a template for understanding the importance of connectivity 
between resources in the waterscape. Mobile consumers, like 
salmon, can track fluxes in resources such as food, shelter, or 
rearing habitats, thus access to zones of different lateral con-
nectivity (i.e., Zones 1–3 in Figure 3) is important at different 
life stages.

The River Wave Concept (Humphries, Keckeis, and Finlayson 
2014) seeks to integrate existing frameworks and is anchored by 
the notion that these different concepts operate under specific 
flow conditions. For example, the River Wave Concept suggests 
that the relative importance of autochthonous and allochthonous 
production (and therefore the importance of L ➔ W connectiv-
ity) differs with flow stage. At low flows the Riverine Productivity 
Model (Thorp and Delong  1994) best captures the transforma-
tion and storage of materials within the channel and local inputs 
of allochthonous materials, while at medium flows the River 
Continuum Concept (Vannote et al. 1980) best explains the im-
portance of longitudinal matter transport, and at peak flows, eco-
system dynamics are best captured by the Flood Pulse Concept 
(Humphries, Keckeis, and Finlayson 2014). Thus, the relevance of 
each concept depends upon the landscape setting and flow stage 
of a river.

An important limitation of these concepts is that they take lit-
tle account of channel morphology and, in particular, human 

modification of river channels. The same magnitude flood will 
have different impacts on lateral connectivity depending upon 
river type and channel morphology. The Stream Evolution 
Model (Cluer and Thorne 2013; Figure 3Civ) describes changes 
to channel morphology through time, resulting from distur-
bances, such as those caused by anthropogenic activities. 
Considering the Flood Pulse Concept and Flow Pulse Concept 
at different stages of the Stream Evolution Model clearly shows 
the influence of channel cross- section morphology on lateral 
connectivity under different discharge scenarios (Figure  5). 
Anastomosing rivers (Stages 0 or 8 of the Stream Evolution 
Model) have a gradation of lateral features that are sequentially 
submerged by rising water levels (Figure  5a). The anthropo-
genic simplification of lateral topography, particularly of flood-
plains, has led to lateral connectivity becoming more binary, 
with the flow being above or below bankfull, as opposed to a 
gradient of connectivity as flow magnitude increases. In de-
grading channels (Stages 1–4), increasingly large floods are 
contained within the channel (Figure  5B). Such flows flush 
matter and organisms downstream, earning them the epithet 
“fire hose channels” (Johan Hogervorst, pers. comm., 2016) 
and flow events that inundate the former floodplain (which has 
become a terrace) are relatively rare.

3   |   Lateral Connectivity Involves Water, 
Sediments, Solutes, Organisms, and Society

Lateral connectivity provides an informative and interdisci-
plinary lens through which to view hydrological, geomorphic, 
biogeochemical, ecological, and social processes and, cru-
cially, the linkages between them (Figure 2). Connectivity of 
many of these materials is driven by hydrological processes 
but other drivers of transport occur, including eolian and 
gravity- driven processes, and the active movements of ani-
mals. Here we provide a summary of the lateral connectivity 
of each material type and how it influences, and is influenced 
by, other material fluxes.

FIGURE 4    |    Lateral connectivity is strongly dependent on season and discharge; at base flow (A), this hypothetical river is dominated by land-
scape to waterscape (L ➔ W) fluxes, because water flows into the river from tributaries, as surface runoff and via the hyporheic aquifer. During 
high flows (B), the floodplain is inundated, and net fluxes of water, sediments and biota occur from the waterscape into the riverscape and adjacent 
landscape (W ➔ L).
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3.1   |   Water

Hydrological connectivity is of primary importance since it drives 
the connectivity of many other materials and organisms. The de-
gree of hydrological connectivity is controlled by multiple factors 
including the hydrograph and the landform configuration. At 
the network scale, catchment shape and river network topology 
determine the degree of L ➔ W connection (Rice 2017; Heasley, 
Clifford, and Millington 2019). L ➔ W is further mediated by sur-
face topography, vegetation, artificial infrastructure, and animal 
activities, all of which may increase or slow the flow entering the 
drainage network. Hydrological connectivity between regional 
groundwater and the waterscape is controlled by the hydraulic 
conductivity of the aquifer, and the hydraulic gradient, which, 
while influenced by topography, may not follow surface flow 
paths (Condon and Maxwell 2015). These factors all control the 
rate at which water reaches river channels, and thus the discharge 
hydrograph. The hydrograph, in turn, has a strong influence on 
downstream lateral W ➔ L connectivity since it is a key control on 
flood magnitude, frequency, and duration.

Below the surface, hydrological exchange flows act both lat-
erally and vertically between river channels, hyporheic zones, 
and groundwater. The hyporheic zone is defined as the area in 
which water moves through sediments and returns back to the 
river channel, resulting in bidirectional transfers (Gooseff 2010). 
In contrast, groundwater exchanges are typically larger in spatial 
scale and unidirectional (Boano et al. 2014). Hyporheic flow is 
often envisaged as a vertical transfer but horizontal transfers are 
equally important (Poole et al. 2008). Hyporheic flow is driven 
by energy gradients at, and just below, the riverbed (Boano 
et al. 2014), and thus stream slope, stream bed topography and 
sinuosity are critical for vertical and lateral hydrological ex-
changes (Poole et al. 2008).

3.2   |   Solutes, Gases, Organic Resources, 
and Pollutants

Water flow paths exert strong controls over the transport of dis-
solved gases, solutes, and particulate organic matter, all of which 

FIGURE 5    |    Influence of channel morphology on lateral connectivity under different discharges. As the flow stage increases in the anastomosing 
river–wetland complex (A) an increasing proportion of the valley floor surface and activating floodplain features are wetted, resulting in a gradual 
increase in W ➔ L lateral connectivity processes. In contrast, the incised, single- thread channel (B) switches from connected only L ➔ W to connect-
ed W ➔ L abruptly when the flow depth exceeds bankfull, as demonstrated by Wolman and Miller (1960).
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may influence the ecological and biogeochemical functioning of 
riverscapes. As described by Poole et al. (2008), flow paths, often 
stretching 100 m laterally, “knit together” riverine ecosystems. 
Thus, transfers of nutrients and solutes occur both L ➔ W and 
W ➔ L and are essential for the functioning of habitats and the 
ecotones that rely on them, providing energy as well as the ele-
mental building blocks that support stream and riparian food 
webs (Meyer et al. 1988). Lateral transport of a given solute L 
➔ W from soils to streams is sensitive to the vertical location 
of its storage in soils, relative to the elevation of the water table 
(Li et al. 2024). Differences in vertical storage across solutes can 
thus give rise to distinct mechanisms and patterns of lateral mo-
bilization with changing discharge due to variations in water 
table elevation (e.g., transport vs. supply limitation; Mosquera 
et al. 2023). Lateral mobilization is also notably sensitive to land- 
use activities (e.g., fertilizer application) and climate features 
that either directly alter the amount and vertical distribution of 
resource pools in soils (Moatar et  al.  2017) and/or modify the 
vertical position and dynamics of hydrologic flow paths that 
drain soils (Li et al. 2024).

Considerable research has also focused on lateral exchanges be-
tween larger rivers and their floodplains, both above and below 
ground. As the area of the connected floodplain often far ex-
ceeds that of the river channels, floodplains can be particularly 
important sources of resources L ➔ W, which may exceed what 
is produced locally or supplied from upstream sources (e.g., 
Cuffney  1988). Yet, sediment deposition can be an important 
mechanism for transferring nutrients from channels to flood-
plains W ➔ L, particularly for phosphorus (Noe and Hupp 2009). 
Similarly, given the potential of floodplains to support anoxic 
soils and wetlands, lateral transfer of nitrogen W ➔ L can result 
in significant reductions of nitrate through denitrification (e.g., 
Forshay and Stanley  2005). Finally, hydrological connectivity 
between channels and floodplains during flood pulses can sup-
ply oxygen to connected aquatic habitats, which is critical for 
aquatic communities (e.g., Winemiller and Jepsen  1998; Starr, 
Benstead, and Sponseller  2014). However, floodplain soils and 
wetlands also have an enormous capacity to consume oxygen, 
and a high degree of W ➔ L connectivity can result in severe ox-
ygen depletion of river channels (Zurbrügg et al. 2012), in some 
cases with negative ecological consequences (e.g., fish mortality; 
Hamilton et al. 1997). Similarly, floodplains may act as stores for 
river- derived pollutants which may be remobilized during peri-
ods of enhanced L ➔ W connectivity (Lair et al.  2009), though 
floodplains generally also process pollutants and can reduce their 
overall availability (Gordon, Dorothy, and Lenhart 2020).

In addition to acting as a vector that carries particles, solutes and 
gases, hydrologic flow paths also influence the lateral exchange 
of matter by integrating biogeochemically active interfaces be-
tween land and water, and surface and groundwater (Krause 
et  al.  2017). Indeed, hydrological flows often connect patches 
within the fluvial landscape that support different physical, bio-
geochemical, and microbial characteristics. Transitions between 
these patches can support sharp gradients in conditions (e.g., in 
sediment redox), which drive locally high rates of biogeochem-
ical processes that either produce or remove a range of solutes 
(McClain et al. 2003; Krause et al. 2017). These hotspots or control 
points (Bernhardt et al. 2017) can have disproportionately large 
effects on the mass flux of dissolved materials moving across the 

broader landscape and can thereby act to either enhance or limit 
biological processes within recipient patches (Vidon et al. 2010; 
J. Harvey and Gooseff 2015). In this way, the lateral exchange of 
materials can be greatly influenced by the capacity for biogeo-
chemical transformations to occur along hydrological flow paths, 
which is in turn related to the medium through which water 
moves and the types of patches and interfaces that are integrated 
within the riverscape (Fisher and Welter 2005).

3.3   |   Sediment

The connectivity of sediment will in many cases map onto the 
hydrological connectivity, where sediment is available to be 
transported and the hydrological network has sufficient power 
(Hooke  2003). However, sediment connectivity also includes 
non- fluvial processes that may be independent of the hydro-
logical drainage network (e.g., landslides or eolian transport), 
which together yield a network of sedimentary links and nodes 
that overlies, but is not entirely equivalent to, the catchment- 
scale hydrological drainage network (Rice and Church  1998; 
Rice 2017). Fryirs et al. (2007) conceptualize sediment connec-
tivity as a series of switches which control sediment delivery. 
In return, sediment connectivity controls hydrological connec-
tivity across many scales, as sediment volume and caliber com-
bine to determine channel morphology (Church 2006). Lateral 
erosion and sediment deposition within the channel, for exam-
ple, drives river meandering (Dietrich and Smith 1984; Russell 
et  al.  2018). Channel morphology then has a strong influence 
on overbank flows and W ➔ L connectivity: in particular, chan-
nel capacity (Figure 5) and channel roughness (Cienciala et al. 
2020). At a smaller scale, fine sediment in interstices controls 
hyporheic hydrological (Negreiros et  al.  2023) and biological 
(Mathers et al. 2019) connectivity.

There has been a strong research focus in geomorphology on 
L ➔ W connectivity, including hillslope erosion and chan-
nel coupling (A. M. Harvey  2002), and fine sediment trans-
port into the channel network (Naura et  al.  2016; Poeppl 
et  al.  2019). W➔ L sediment connectivity is also important, 
since it controls floodplain formation and channel migration 
(Ashworth and Lewin  2012). Floodplain construction with 
sediment delivered from active channel(s) controls floodplain 
stratigraphy, hydraulic conductivity, and erosional resistance, 
which in turn influence subsurface water and solute fluxes, 
and the ecological communities and biogeochemical dynamics 
that control floodplain functions (Wohl 2021). After residing 
in the floodplain for tens to thousands of years (Wohl 2015), 
the sediment can be returned to the active channel via bank 
or floodplain surface erosion (Dunne et al. 1998). Floodplain 
budgets (Wohl 2021) describe the balance between L ➔ W and 
W ➔ L sediment transport and the resulting aggradation or 
degradation of floodplains.

3.4   |   Biota

Many organisms may move both actively and passively be-
tween the waterscape and landscape. Benthic invertebrates 
(Petersen et  al.  2004), fishes (Olden, Jackson, and Peres- 
Neto  2001; Dias et  al.  2013), and plants (Schmiedel and 
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Tackenberg 2013) use stream corridors for dispersal by crawl-
ing, swimming and drifting. Many wind- dispersed plants, 
crayfishes, amphibians, and emergent flying adult insects 
may instead disperse over land (Bunn and Hughes  1997; 
Lancaster and Downes 2013). Depending upon their modes of 
dispersal, the constraints and opportunities afforded to their 
movement will vary (Tonkin et al. 2018). At the network scale, 
species that disperse within riverine corridors are likely to be 
more influenced by the structure of the network compared to 
those that disperse over land. As a result, the dendritic struc-
turing of rivers can be a primary determinant of animal and 
plant distributions (Johansson, Nilsson, and Nilsson  1996; 
Muneepeerakul et al. 2008).

Bidirectional lateral connectivity between channel and flood-
plain habitats is crucial in the lifecycle of many organisms 
across a range of time scales. Many fish commonly use sec-
ondary channels, floodplain wetlands (e.g., Rosenfeld and 
Carrier  2008), or ponds (Couto et  al.  2018) and connectivity 
between these habitats is essential (Stoffers et  al.  2021). For 
example, some fish species travel daily between main chan-
nels and floodplain habitats to reach areas with optimal tem-
peratures (Bischoff and Scholten 1996), avoid predators (Baras 
and Nindaba 1999), or feed (Tewson et al. 2016). Furthermore, 
many species of fish spawn on the inundated floodplain 
(Górski et al. 2010; Stoffers et al. 2022). Therefore, biological 
connectivity is often mapped onto specific temporal or sea-
sonal patterns in hydrological lateral connectivity (Naiman 
et al. 2008; Erös et al. 2012). Similarly, many species of ripar-
ian plants have evolved to release their propagules during pe-
riods of peak flow, relying on flows within the riverscape or 
frugivorous fish, to disperse the propagules (J. T. Anderson, 
Rojas, and Flecker 2009; Nilsson et al. 2010). Thus, the direc-
tion and nature of lateral connectivity varies through time and 
organisms must adapt to utilize different areas of the river-
scape as discharge varies (Rossi et al. 2024).

The transitional riparian zone is critical for both aquatic and 
terrestrial biota. Riparian vegetation provides shade, with im-
plications for stream temperature (Johnson and Wilby  2015) 
and animal behavior (Sabal et al. 2021). Riparian vegetation also 
provides inputs of organic material, altering stream commu-
nities (Vannote et al. 1980). In- channel vegetation influences 
hydraulic roughness (Manners et al. 2013; White et al. 2023), 
providing structure and habitat diversity. Such structures are 
used by aquatic biota, including zooplankton, invertebrates 
and fish for refuge, grazing, and attachment (Angermeier and 
Karr 1984; Negishi, Inoue, and Nunokawa 2002). For example, 
many insects will use emergent structures at channel margins 
to crawl from the water, emerging as terrestrial adults that 
reproduce and lay eggs back into the water (Lancaster and 
Downes  2013). River banks are also important habitats for 
many burrowing species (e.g., crayfish; Sanders et al. 2023). As 
a result, rivers provide essential structural, energy, and nutri-
ent resources for terrestrial food webs and vice versa (Nakano 
and Murakami 2001).

Organisms exert strong feedback effects on other laterally con-
necting processes. For example, terrestrial vegetation affects 
river hydrographs by influencing surface roughness and infiltra-
tion rates (e.g., Crockford and Richardson 2000), the stability of 

regolith and rates of weathering of bedrock (e.g., Pawlik, Phillips, 
and Šamonil 2016), and subsurface water content via transpira-
tion (Stoy et al. 2019). Paths and channels eroded by animals can 
increase L ➔ W connectivity and increases habitat complexity 
(Naiman and Rogers  1997). Similarly, the animals themselves 
provide pathways for the transport of nutrients. For example, 
hippopotamuses convey carbon and nutrients L ➔ W via excre-
ment (Sabalusky et al. 2015), salmon provide a nutrient source 
for riparian forests (e.g., W ➔ L; Helfield and Naiman  2001), 
and the emergence of aquatic insects provides prey subsidies for 
terrestrial consumers (Richardson and Sato  2015). Within the 
river channel, biogeomorphic processes are also important con-
trols on the connectivity of all constituent materials, including 
water (e.g., beaver, Larsen, Larsen, and Lane 2021; invertebrates, 
Mermillod- Blondin  2011), sediment (e.g., fish & invertebrates, 
Rice, Johnson, and Reid 2012; Mason and Sanders 2021), and sol-
utes (e.g., invertebrates; Mermillod- Blondin and Lemoine 2010). 
Thus, an appreciation of biological power is key to connectivity 
and therefore river management (Johnson et al. 2019, 2024).

3.5   |   People and Society

Connectivity with water has been a primary influence on cul-
tural development, livelihoods, identity, sense of place, and re-
ligion (Boelens 2014; E. P. Anderson et al. 2019). Rivers have a 
strong influence on the movement of people and goods, both 
enabling and restricting movement. For example, dispersal cor-
ridors within river networks likely facilitated the migration of 
humans out of Africa 120,000 years ago (Osborne et  al.  2008). 
In contrast, rivers often mark the edges of territories since they 
provide natural barriers to the lateral connectivity of people and 
cultures (Axelsson, Sköld, and Röver 2019). Furthermore, river-
ine connectivity supports society by providing a vast range of pri-
mary products and ecosystem services. Since the earliest human 
civilizations, floodplain ecotones have been shared spaces for 
people and the river, due to the advantages of social connectiv-
ity to waterscapes (Petsch et al. 2023). Specific timings of lateral 
connectivity have been used by people (Wantzen et  al.  2016). 
For example, the lower Mekong flood pulse (Junk, Bayley, and 
Sparks 1989) is essential to fisheries as well as many other flood-
plain services (Grundy- Warr and Lin 2020). Consequently, social 
connectivity to riverscapes is essential for livelihoods, has been 
of significant importance in the development of culture, and is 
important to society today.

However, historically there has been a tendency to view water 
resources independently from their cultural and social values 
(E. P. Anderson et  al.  2019). For example, excluding human 
management from river conceptual models (Abbott et al. 2019; 
Wymore et al. 2023), yet such context is critical for river man-
agement. In river science, the importance of people as an intrin-
sic part of the water cycle is recognized in disciplines of social 
hydrology (Sivapalan et  al.  2014; Pande and Sivapalan  2017; 
Wesselink, Kooy, and Warner  2017) and the hydrosocial cycle 
(Boelens  2014). Increasingly, river management is incorporat-
ing not only the biophysical sciences but also society and culture 
(Boon 1998; Pahl- Wostl, Gupta, and Petry 2008; E. P. Anderson 
et  al.  2019). Connectivity to riverscapes is especially import-
ant in urban areas where rivers are more likely to be viewed 
through a primarily negative lens (Cervantes- Avilés, Mares, and 
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Osorno- Sánchez 2024). May (2006) state that, for urban planners, 
connectivity to rivers involves accessibility (pedestrian paths, 
bridges, and transport), visual and cultural links to the city (e.g., 
greenways, attractive river margins) and cultural attractions at 
the river edge. Such connectivity is often lost through traditional 
hard engineering approaches such as levee construction, which 
may remove physical and visual access to riverscapes and de-
grade transitional ecotones like riparian zones and floodplains. 
Yet, with thoughtful design, beneficial aspects of social connec-
tivity to riverscapes can be maintained and restored, even in con-
strained urban settings (Mathias Kondolf et al. 2018).

Restoration of social connectivity may determine the perception 
of success for a restoration project (Kondolf and Pinto 2017) and 
integrating social goals alongside physical and biological func-
tionality is essential to restore river ecosystem services. River 
restoration should not only aim to consider the views of com-
munity and civil groups but also be led by these groups (Smith, 
Clifford, and Mant  2014), installing senses of guardianship 
and thus ideological connectivity to the river. Furthermore, 
the greatest challenges to restoring floodplain connectivity are 
social (e.g., regulatory or perceptions) rather than technical 
(Serra- Llobet et al. 2022). However, this poses challenges for the 
restoration of lateral connectivity. For example, public percep-
tion often views rivers and valley floors as separate, discrete en-
tities and bidirectional lateral connectivity as a predominantly 
negative process. Challenging this perception is key to rebal-
ance lateral connectivity.

4   |   Identifying and Quantifying Lateral 
Connectivity in Practice

Moving from an abstract concept to identifying and measuring 
connectivity is a challenge. This is due to many factors including 
the lack of consensus about the definition of connectivity and 
the practical complexity of measuring the many, interacting, 
processes involved. Furthermore, the time period for which lat-
eral connections are visible is commonly short- lived and can be 
unpredictable (e.g., floodplain inundation or insect emergence). 
Nevertheless, quantifying lateral connectivity is important for 
understanding the interactions between aquatic and terrestrial 
zones, for comparing levels of lateral connectivity between sites, 
and for designing and assessing the outcomes of river manage-
ment and restoration projects.

Table 1 provides an overview of methods used to assess lateral 
connectivity, with respect to water, solutes, sediments, biota, 
and people. Lateral connectivity has a long history of study; 
however, most studies consider a single aspect of connectivity 
and choose a measure aligned with this purpose, in isolation 
from other aspects of connectivity. Consequently, the interac-
tions between different connecting processes remain poorly 
understood and research at this interface is required to develop 
a deeper understanding of river systems (Gallardo et al. 2009; 
Trigg et al. 2013; Wohl et al. 2019).

Assessments of structural connectivity are typically easier to 
make than those of functional connectivity and so the former is 
often used to infer the latter. Hydrological lateral connectivity 
of channel and floodplain aquatic habitats may be assessed by 

measuring floodwater inundation extents (e.g., satellite imag-
ery; Bellido- Leiva, Lusardi, and Lund 2022). However, they may 
also be inferred from form, such as by modeling flood extents 
(e.g., Bolland et al. 2012; Beck et al. 2019; Czuba et al. 2019) or 
by defining a qualitative gradient of connectivity. For example, 
Manfrin et al. (2020) categorized waterbodies as (1) main chan-
nel, (2) permanently connected, (3) occasionally connected or (4) 
nearly isolated from the main channel. Structural hydrological 
connectivity may also be inferred from connectivity of other 
materials and organisms; for example, the biotic community 
(e.g., vegetation; Akasaka and Takamura 2012) or soil properties 
(Bourgault et al. 2017).

Large spatial and temporal scales provide a challenge in the 
measurement of functional connectivity since measuring pro-
cess is difficult at larger scales. Plot- scale measurements have 
been the focus for runoff and infiltration studies but are now 
being upscaled to catchments (Masselink et al. 2016). Tracing 
both water and sediment (e.g., fingerprinting; Pfister et al. 2009; 
Guzmán et al. 2013) enables identification of sources for these 
materials and therefore facilitates measurements of functional 
connectivity at larger scales. Emerging technologies and data 
are also facilitating the assessment of connectivity at greater 
scales than previously possible. For example, high- resolution 
topographic data facilitates assessment of variability in valley 
confinement at network scales (O'Brien et al. 2019), while sat-
ellite imagery allows floodplain integrity to be assessed at na-
tional scales (Morrison et  al.  2023) and river channel belts at 
global scales (Nyberg et al. 2023). Such data are typically limited 
in their capacity to indicate functional connectivity, but much 
can be inferred from form.

Given the increased interest in restoring lateral connectivity 
at both high and low flows (e.g., Figure 5; Flitcroft et al. 2022; 
Clarke 2024) a key area of future research should be the develop-
ment of indices describing lateral connectivity that incorporate 
connectivity of multiple types of matter, energy, and organisms, 
which can be used across studies and between sites, and can 
inform conceptual and quantitative modeling of lateral con-
nectivity (sensu Keesstra et al. 2018; Wohl et al. 2019). This is 
necessary to understand how the outcomes of projects aiming 
to rebalance lateral connectivity are monitored and evaluated. 
In this manner, the lateral connectivity balance concept can be 
used to assess the balance of L ➔ W and W ➔ L in a qualitative 
or semi- quantitative sense by identifying the fluxes of materials 
in each direction and assessing their magnitude and frequency 
of connection. This allows lateral connectivity to be compared 
between sites or over time (Box 1 and Figure 7).

5   |   Restoring and Rebalancing Lateral 
Connectivity

Systematic and widespread anthropogenic changes to the lat-
eral connectivity of waterscapes and landscapes have typi-
cally increased L ➔ W connectivity at the expense of W ➔ L. 
In many cases, reductions in W ➔ L lateral connectivity result 
in positive feedback loops; for example, flows that were for-
mally spread across the floodplain are increasingly concen-
trated within the channel, which increases unit stream power 
and local sediment transport capacity. Bed scouring can then 
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TABLE 1    |    Summary of techniques used to infer and measure lateral connectivity for different materials.

(1) Water

Stream and tributary network flow paths
• Inferred from the spatial distribution of river networks and landscape characteristics (e.g., from digital elevation models; 

Roelens et al. 2018).
• Hydrological fingerprinting, using existing biogeochemical characteristics to identify sources of water and flow pathways 

within a catchment (e.g., isotopes or diatoms; Pfister et al. 2009; Ala- aho et al. 2018).
• Mapping flow pathways by tracking added tracers (e.g., salt or dye; Sparacino et al. 2019; Ader et al. 2021).
• Surface and groundwater connectivity inferred from time series analysis of water- level sensors (e.g., Jaeger and Olden 2012), 

which may also be combined with numerical modeling (Nippgen, McGlynn, and Emanuel 2015; Rinderer, van Meerveld, and 
McGlynn 2019).

Valley floor habitats and channel connectivity
• Inferred from extent of intact valley bottom (i.e., not blocked by infrastructure; O'Brien et al. 2019; Morrison et al. 2023; van 

de Bund et al. 2024).
• Measured flood extents (e.g., from satellite imagery; Bellido- Leiva, Lusardi, and Lund 2022) and signs of overbank flows (e.g., 

floodplain sedimentation, flattened vegetation; D. N. Scott 2024).
• Inferred from vertical or horizontal distance between channel and possibly connected habitats (e.g., Bolland et al. 2012; 

Górski et al. 2013; Manfrin et al. 2020; Stoffers et al. 2021).
• 1D, 2D, and 3D modeling (e.g., Clilverd et al. 2016; Czuba et al. 2019; Federman, Scott, and Hester 2023). Modeled connectivity 

can then be compared to historical modeled connectivity (e.g., Eder et al. 2024).
• Calculated from hydrographs and morphology (e.g., D. T. Scott et al. 2019; Džubáková et al. 2015).
• Inferred from vegetation communities (e.g., Polvi, Wohl, and Merritt 2011; Caskey et al. 2015) or microbial and geochemical 

indicators (e.g., Brooks et al. 2022).
Overland flow and infiltration
• Assessed via plot- scale measurements (e.g., rainfall simulators, infiltrometers or topography; Wolstenholme et al. 2020).
• Inferred from measured floodplain water table (e.g., groundwater wells; Munir and Westbrook 2021).
• Models and indices developed to describe connectivity, using a combination of topography and flow dynamics. For example 

the relative connectivity index (modeled functional and structural connectivity of drylands; Turnbull and Wainwright 2019), 
all direction flow length, (Mayor et al. 2008), and the topographic over field capacity index (J. Liu et al. 2020).

(2) Solutes, gases, organic resources, and pollutants

Flux between waterscapes and landscapes
• Remote sensing to indicate ecosystem functioning (Gardner et al. 2021) (e.g., use of color to estimate dissolved organic carbon; 

Del Castillo and Miller 2008).
• Direct measurements of fluxes (e.g., drift nets to capture mobile particulate organic matter; Tockner et al. 1999).
• Measurements of the properties of mobilized material (e.g., sampling floodplain- deposited sediment for carbon, phosphorous, 

and nitrogen; Noe and Hupp 2005).
• Modeling flux between floodplains and channels based on discharge, solute concentration, and floodplain characteristics 

including trapping efficiency (e.g., for total phosphorous and suspended sediments; Beck et al. 2019).
• Mixing models and mass transport models to estimate hydrologic exchange between waterscapes and landscapes and 

residence times (e.g., transient storage models; J. Harvey et al. 2019).
• Tracing land–water fluxes of materials based on chemical signatures (e.g., Stewart et al. 2022).
• Variation in concentration through space or time to estimate inputs, exports or processing (e.g., dissolved organic carbon; 

Moody et al. 2013).

(3) Sediments

Sediment networks
• Identifying sediment paths via sediment fingerprinting, comparing properties of in- channel sediment samples to those of 

potential sources, including tracing via radioisotopes and radionuclides (e.g., Froger et al. 2018; Birkel et al. 2022).
• 1D, 2D, and 3D Modeling at network to reach scales (e.g., Schmitt et al. 2016; Heckmann et al. 2018; Gilbert and Wilcox 2020).
• Determined from distribution of landforms resulting from lateral sediment connectivity (e.g., alluvial fans; Fryirs et al. 2007).

(Continues)
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(3) Sediments

Hillslope- channel coupling
• Inferred from valley shape (e.g., valley bottom width; May et al. 2013).
• Mapping of sediment stores and sources (e.g., A. M. Harvey 2002; Schrott et al. 2003; Fryirs et al. 2007).
• Modeling of landslides, rockfalls, and debris flow inputs (e.g., Heckmann and Schwanghart 2013; Prajisha, Achu, and 

Joseph 2023).
Exchange between channel and floodplain
• Repeat topographic surveys to deduce volumetric changes (e.g., J. M. Wheaton et al. 2010).
• Monitoring of individual plots for erosion or deposition (e.g., Parsons 2019).
• Sediment trapping on the floodplain (e.g., accretion mats; Noe and Hupp 2009).
• Floodplain trapping factor (gross: floodplain yield/stream sediment yield, net: floodplain deposition—bank erosion; Schenk 

et al. 2013).
• Reconstructed accretion rates and historical connectivity from floodplain sediment stratigraphy coupled with dating (e.g., 

Hoffmann et al. 2007; Hobo et al. 2010).
• Modeling of channel and floodplain sediment transport potential (Sumaiya et al. 2021).
Channel migration and bank erosion
• Lateral movement of channel through time as measured from remote imagery (e.g., Richard, Julien, and Baird 2005; Dixon 

et al. 2018; Nagel, Darby, and Leyland 2023) or historical maps or photographs (e.g., J. M. Hooke 1984).
• Erosion and deposition determined from repeat surveys of cross sections (e.g., Lawler 1993), terrestrial lidar scanning (Lyons 

et al. 2015), photogrammetry, or erosion pins (e.g., Jugie et al. 2018).
• Tracer particles (e.g., maps of traced particles to capture lateral as well as longitudinal movements, Papangelakis and 

Hassan 2016; magnetic tracing of fine sediment, Milan and Large 2014).

(4) Biota

Movement of animals
• Tracking individual animals via passive integrated transponder technology, acoustic telemetry, biologgers (e.g., Cooke 

et al. 2013), or videos (e.g., Lancaster et al. 2006).
• Inferred from hydrological connectivity (e.g., Cote et al. 2009) and absence of barriers (e.g., levees or weirs restricting fish 

passage; Timm et al. 2019).
• Trapping using directional nets (e.g., fish: Górski et al. 2014; invertebrates: Brooks et al. 2020).
• Adult aerial dispersal of aquatic insects estimated with traps/experiments (Bogan and Boersma 2012; Lancaster et al. 2024) or 

isotopic tracers (Macneale, Peckarsky, and Likens 2005).
• Inferred from otolith chemistry, comparing the elemental and isotopic composition of fish to water characteristics (e.g., 

Gillanders 2005; Winemiller et al. 2023).
Movement of plants
• Trapping mobile propagules (e.g., Cubley and Brown 2016) or propagule surrogates (e.g., Su et al. 2019).
• Large wood transport monitored from aerial imagery (e.g., Latterell and Naiman 2007; D. N. Scott 2024), field surveys (e.g., 

Wohl et al. 2024), or modeling (e.g., Steeb et al. 2023).
Connectivity between populations
• Inferred from estimated gene flow of target organisms (e.g., Comte and Olden 2018) or similarity of ecosystem species 

composition or traits (e.g., Rodríguez and Lewis Jr. 1997).

(5) People and society

Risk
• Flood risk mapping and measurements (e.g., Mudashiru et al. 2021).
• Drought risk modeling and measurements (e.g., West, Quinn, and Horswell 2019; Brunner et al. 2021).
Resource use and access
• Irrigation and water use mapping (e.g., Conrad et al. 2007).
• Visual and spatial accessibility to river (e.g., pedestrian network, height of adjacent buildings, road and public transport 

accessibility; Kondolf and Pinto 2017; Hermida et al. 2019).
• Continuity of the green space or riverscape (e.g., May 2006).
• Public knowledge and perception of riverscapes (e.g., via interviews and focus groups; Eden and Bear 2011; Spink et al. 2010).
• Data from social media and GPS tracking apps (e.g., Hale, Cook, and Beltrán 2019; Grzyb and Kulczyk 2023).
• Knowledge exchanges and co- development of management strategies (e.g., Fox et al. 2017).
• Combinations of metrics, such as the Urban River Sustainability Index (Hermida et al. 2019).

Note: This table is not comprehensive since most measurements of river form or process include some aspect of lateral connectivity, but it provides a starting point for 
those looking to measure connectivity processes between waterscapes and landscapes and especially to compare multiple aspects of connectivity.

TABLE 1    |    (Continued)
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further deepen the channel, destabilizing its banks and lead-
ing to rapid widening (Schumm, Harvey, and Watson  1984; 
Simon and Hupp 1987; Cluer and Thorne 2013). Once formed, 
such channels are often locked in place by the encroachment of 

vegetation (often invasive; Pollen- Bankhead et al. 2009; Wieting 
et al. 2023) which stabilizes banks and reduces the ability of the 
river to modify its planform. These feedbacks can create “fire- 
hose channels” which quickly transport materials downstream, 
promoting longitudinal connectivity at the cost of lateral and 
vertical connectivity (Schumm, Harvey, and Watson  1984; 
Simon and Hupp  1987; Walter and Merritts  2008; Cluer and 
Thorne  2013; Hogervorst and Powers  2019; Powers, Helstab, 
and Niezgoda 2019; Gurnell and Downs 2021).

This imbalance in connectivity has led to globally widespread, 
persistent problems in riverscapes, including incision and the 
associated issues of accelerated bank erosion and in- channel 
sedimentation, extreme flood events, pollution, and excess 
nutrients. Furthermore, this has resulted in increasingly dis-
connected water and terrestrial zones and a shrinking of im-
portant marginal ecotones (Knox, Morrison, and Wohl 2022). 
It follows that rebalancing lateral connectivity where appro-
priate, by reducing the L ➔ W connectivity and increasing W 
➔ L connectivity (e.g., full floodplain reconnection, wetland 
restoration), will at least partly remedy some of these perva-
sive issues (Figure 6).

Given the importance of lateral connectivity to river function, 
rebalancing lateral connectivity should be one of the primary 
goals of river restoration. Rebalancing lateral connectivity 

FIGURE 6    |    Rebalancing lateral connectivity should be a focus for river management. (A) Traditional river management has reduced fluxes of 
material out of the waterscape and into the landscape (W ➔ L) while speeding the transport of materials from the landscape into the waterscape (L 
➔ W). (B) A “Rebalanced” river reach. Both the landscape and waterscape are managed to slow the flow of materials L ➔ W and (where appropriate) 
facilitate W ➔ L. Fully rebalancing lateral connectivity is not suitable everywhere, and an evaluation of the pre- disturbance and intended future 
directions and magnitudes of lateral connectivity is important.

BOX 1    |    Rebalancing lateral connectivity in practice—South 
Fork McKenzie River, USA.

The South Fork McKenzie River (SFMR) floodplain en-
hancement project is one of an increasing number of projects 
restoring rivers and their valley floors to a pre- disturbance, 
Stage Zero condition (Cluer and Thorne 2013). Prior to res-
toration, this reach of river was heavily incised (up to 4.3 m) 
and, less than 30% of the historic floodplain was wetted 
under base flows (K. Meyer 2019). The project aimed to re- 
establish hydrologic, geomorphic and biological processes 
and maximize three- dimensional connectivity at base 
flows, across the entire width of the valley floor (Flitcroft 
et al. 2022). The SFMR was restored using the Geomorphic 
Grade Line (GGL) approach, which involved infilling the in-
cised river channel, allowing the river to spread across the 
valley floor (Powers, Helstab, and Niezgoda  2019). Three 
thousand pieces of large wood were used to provide short- 
term complexity and roughness in disturbed areas, until 
new channel forms and vegetation established (Figure 7).
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does not mean that we should equalize fluxes L ➔ W and W ➔ 
L, rather that we should modify the relative balance of these 
two dimensions to improve the societal services the riverscape 
provides. Due to centuries of anthropogenic reductions in W 
➔ L, increasing these fluxes relative to L ➔ W is usually the 
aim, particularly  in rivers which would have had naturally 
high levels of W ➔ L. Reducing inputs of water, sediment, nu-
trients, and pollutants from the terrestrial zone to the channel 
has long been a goal of river and catchment restoration. For 
example, buffer strips (Cole, Stockan, and Helliwell  2020), 
changing land use (Kingsbury- Smith et al. 2023), blue- green 
urban infrastructure (O'Donnell et al. 2020), and natural flood 
management (Lane 2017; Quinn et al. 2022) all aim to reduce 
the speed of L ➔ W connections. More recently, a paradigm 
shift in river restoration has occurred with an appreciation of 
the importance of river–floodplain connectivity for both riv-
erscape and landscape health (Beechie et al. 2010; Cluer and 
Thorne 2013; Wohl 2021). This highlights the importance of 
W ➔ L connectivity at flow intervals well below bank full dis-
charge (Figure 5).

Although some degree of connectivity is essential to the func-
tioning of river systems, there may not be one “ideal” level of 

connectivity because the positive and negative effects of con-
nectivity are context dependent. Therefore, identifying a resto-
ration goal for laterally reconnecting processes should consider 
probable pre- disturbance processes and contemporary oppor-
tunities and constraints. A broad idea of historical connec-
tivity can be gained from the landscape context, because not 
all rivers naturally exhibit high lateral connectivity in both 
directions (Figure  3). Thus, restoration strategies for lateral 
connectivity in lowland, low- gradient river corridors will dif-
fer to steeper streams with confined valleys. Nevertheless, 
river long profiles are typically complex and, prior to anthro-
pogenic modification, reaches of high, bidirectional, lateral 
connectivity would have occurred naturally in many locations 
due to interruptions in longitudinal connectivity such as geo-
logic constraints, landslides, paraglacial features, log jams, 
and beaver dams (Wohl, Lininger, and Scott 2018; Mason and 
Polvi  2023). Key questions remain about where to prioritize 
the restoration of lateral connectivity within drainage net-
works. At the catchment scale, heterogeneity in connectivity is 
key to maximizing ecosystem services and both high and low 
connectivity are required to ensure the full spectrum of pro-
cesses and habitats is provided. It is also important to note that 
some species and habitats may be disadvantaged by increased 

FIGURE 7    |    (A) South Fork McKenzie Riverscape post- restoration, (B) pre- restoration, (C) changes in mapped inundation extent during sum-
mer, low flow conditions, between pre-  and post- restoration surveys. Credit: (A) Kate Meyer, (B) Google Earth, and (C) modified from Flitcroft 
et al. (2022).
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connectivity, which can increase competition or predation 
(Bolland et al. 2012; Manfrin et al. 2020).

Understanding which connectivity processes/functions to 
promote and which processes need management to reduce 
their negative impacts is key to success but is intrinsically site- 
specific. Ultimately, the choice of goals and techniques will 
depend on the catchment and societal contexts, and pragmatic 
decisions based on the site and permitting considerations. 
However, techniques to aid riverscape recovery to a more con-
nected state usually involve one or more of the following pro-
cesses (Figure 6):

1. removal of constraints to lateral processes and connectiv-
ity (e.g., levee set- back or removal and channel infilling);

2. increasing channel and floodplain roughness to increase 
residence times for water, sediment, and organisms and 
provide opportunity for increased lateral and vertical 
connectivity;

3. promoting lateral erosion and deposition such as via deflec-
tion of water with in- stream structures or increasing over-
bank flows; and

4. using biology to aid river recovery, such as by introducing 
beaver, adding large wood, and reducing fluvial power 
such that plants and animals have sufficient power to mod-
ify river processes (Johnson et al. 2019, 2024).

Overall, a common goal of increasing W ➔L connectivity is 
reducing channel capacity and promoting overbank flows. 
This may be achieved by re- designing the channel, regrading 
the valley floor (Powers, Helstab, and Niezgoda  2019), pro-
moting channel aggradation and lateral erosion (e.g., Pollock 
et  al.  2014; J. Wheaton et  al.  2019), or increasing channel 
roughness (e.g., Hankin et al. 2020). While removing obvious 
constraints to lateral connectivity (e.g., levees) is a crucial goal 
of restoration, historic incision and channel deepening may 
still cut off the waterscape from the landscape. Thus, further 
interventions to kick start bidirectional lateral connectivity 
may be required.

Anthropogenic constraints have a strong influence on the pos-
sibility to restore lateral connecting processes. Complete val-
ley floor reconnection (Box 1) is not possible everywhere. The 
Dutch Room for Rivers project is an example of restoring lat-
eral connectivity in a constrained setting at a large scale, and 
was seen as a paradigm shift from fighting against water to 
living with it (Warner and van Buuren 2011). Room for Rivers 
involved lowering floodplains, setting back obstacles to flood-
plain connectivity, adding bypass channels, and increasing 
water storage within the river corridor (Rijke et al. 2012). This 
program faced many challenges due to the need to balance 
restoring connectivity with reducing risks from connectivity. 
One such challenge has been the post- restoration aggradation 
of restored side channels, reducing their biodiversity value 
(Van Denderen et al. 2019) since restoration of structural con-
nectivity was not matched with a restoration of functional 
connectivity (maintaining flows) and instead may need to be 
maintained with adaptive management (Stoffers et al. 2022). 
Furthermore, local residents resisted some of these measures 

since, despite the aims of the project for nature recovery, the 
implementation was not seen as “natural” (de Groot and de 
Groot  2009). Nevertheless, despite the highly managed and 
controlled nature of the restoration, the Room for Rivers proj-
ect had broad benefits to biodiversity and flood risk reduction 
(Klijn, Asselman, and Wagenaar 2018; Verweij, Busscher, and 
van den Brink 2021; Stoffers et al. 2022).

Biological processes are important in driving and controlling 
lateral connectivity. For example, organisms may increase in- 
channel roughness (large wood, vegetation, or beaver dams; 
Pollock et al. 2014), alter bank stability (e.g., bank protection 
from riparian vegetation; Tal and Paola 2010), facilitate ero-
sion (e.g., by crayfish; Sanders et  al.  2023), and alter catch-
ment drainage and runoff pathways (e.g., riparian buffers, 
Cole, Stockan, and Helliwell 2020). By laterally reconnecting 
a channel to the valley floor, unit stream power in river chan-
nels may be reduced because river flows are attenuated and 
stored over areas much larger than that of the channel. This 
may increase the relative significance of biological processes 
in affecting riverscape and valley floor forms and dynamics 
(Johnson et al. 2019; Wohl et al. 2022), as well as lateral con-
nectivity. Therefore, promoting the role of nature's river re-
storers in the sustainable management of river functioning is 
a key benefit of rebalancing lateral connectivity. Ultimately, 
successful rebalancing of lateral connectivity requires consid-
eration of all fluxes, not just water and sediment but also how 
chemicals, organisms and people will connect to, and interact 
with, the river.

The initial phase of restoration was completed in 2016. During 
restoration, water table levels rose and the wetted area at base 
flow increased by 270% (Flitcroft et  al.  2022). Channel form 
transitioned from predominantly single thread to anastomosing. 
Consequently, the length of the wetted edge (representing the 
interface between the aquatic and terrestrial zones) increased 
by 476% (Flitcroft et al. 2022). The restored condition exhibits a 
greater degree of W ➔ L lateral connectivity (Figure 7), and con-
sequently integration between the aquatic and terrestrial zones 
as well as providing a more diverse range of habitats (Hinshaw 
et al. 2022), and supporting diverse ecosystem services (Flitcroft 
et al. 2022; Pugh et al. 2022; Hinshaw and Wohl 2023; Jennings 
et al. 2023).

6   |   Conclusions

Anthropogenic modification of the balance of lateral connec-
tivity into and out of watercourses is perhaps the greatest im-
pact of humankind on river systems (Morrison et al. 2023; Rajib 
et al. 2023). However, anthropogenic impacts on lateral connec-
tivity (e.g., channelization, levees) tend to be less visible than 
longitudinal obstructions (e.g., dams) and, consequently, less 
well recognized. A critically required paradigm shift is occur-
ring in river research and management toward enhanced recog-
nition of the importance of laterally connecting processes. This 
focus marks a shift from conceptualizing rivers primarily as 
linear features transporting water, matter, and organisms from 
source to sea, to a network that is intimately integrated with 
riparian and terrestrial processes, in which lateral exchanges of 
matter, energy and organisms are as important as longitudinal 
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transport. However, variability in the definition of lateral con-
nectivity and a lack of understanding of how to identify and 
quantify lateral processes in practice, currently restrict research 
on, and application of, the concept. Through reviewing work on 
lateral connectivity across disciplines, we lay the foundation for 
a broader appreciation of the many components of lateral con-
nectivity in riverscapes. As such, we conclude:

1. Lateral connectivity is defined as the bidirectional trans-
fer of matter, energy and organisms within and between 
waterscapes (W) and their adjacent landscapes (L). 
Conceptualizing rivers as connected, laterally, to flood-
plains and valley side slopes via bidirectional (L ➔ W and 
W ➔ L) processes forces us to think outside the channel 
and visualize the river in terms of a riverscape (or river cor-
ridor) with laterally connected zones above and below the 
surface (sensu Stanford and Ward 1993; Biron et al. 2014; 
Wohl et  al.  2021). We use the term riverscape to identify 
the area including and bidirectionally connected to the 
waterscape.

2. Although lateral connectivity is in many cases driven by 
hydrological processes, other materials and organisms 
may, to varying degrees, move independently. Research in 
river corridor lateral connectivity has typically focused on 
specific directions (e.g., L ➔ W or W ➔ L) and materials. 
Therefore, research which considers bidirectional connec-
tivity and the complex interactions between matter, energy 
and organisms is key.

3. Both L ➔ W and W ➔ L lateral connectivities have impor-
tant benefits to society and biodiversity, and although the 
balance between the two varies spatiotemporally, humans 
have systematically reduced W ➔ L fluxes and increased 
L ➔ W creating a broad- scale need to rebalance lateral 
connectivity.

4. Restoring and rebalancing bidirectional lateral connectivity 
is increasingly recognized as necessary to maximize river 
ecosystem services and resilience in a changing climate 
that features more frequent and persistent hydrological ex-
tremes. However, since much of our current understanding 
is based on in- channel processes, greater research on the in-
teraction between waterscapes and landscapes is required. 
Furthermore, understanding the causal links between mor-
phological interventions and enhanced ecosystem services 
requires a better understanding not only of the processes in-
volved, but also the temporal and spatial distributions of the 
bidirectional, lateral fluxes of matter, energy, and organisms.
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