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ABSTRACT
Underutilized sheep and goat breeds can adapt to challenging environments due to their genetics.
Integrating publicly available genomic datasets with new data will facilitate genetic diversity
analyses; however, this process is complicated by data discrepancies, such as outdated assembly
versions or different data formats. Here, we present the SMARTER-database, a collection of
tools and scripts to standardize genomic data and metadata, mainly from SNP chip arrays
on global small ruminant populations, with a focus on reproducibility. SMARTER-database
harmonizes genotypes for about 12,000 sheep and 6,000 goats to a uniform coding and assembly
version. Users can access the genotype data via File Transfer Protocol and interact with the
metadata through a web interface or using their custom scripts, enabling efficient filtering and
selection of samples. These tools will empower researchers to focus on the crucial aspects of
adaptation and contribute to livestock sustainability, leveraging the rich dataset provided by
the SMARTER-database.
Availability and implementation: The code is available as open-source software under the MIT
license at https://github.com/cnr-ibba/SMARTER-database.

Subjects Animal and Plant Sciences, Bioinformatics, Animal Genetics
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STATEMENT OF NEED
Background
The presence of small ruminant populations is crucial to the socio-economic prosperity of
human settlements, particularly in European marginal regions. In these areas, sheep and
goat breeds that are not fully utilized have the potential to significantly increase the
profitability of small ruminant farming. Their value comes from their distinctive and often
unusual genetic composition (e.g., [1, 2]), which helps them adapt to challenging
environments, withstand harsh farming conditions, combat biotic and abiotic stressors, and
produce high-quality animal-derived products. In this context, the SMARTER (SMAll
RuminanTs breeding for Efficiency and Resilience) project [3] developed innovative
strategies to improve the resilience and efficiency-related traits of sheep and goats in
diverse environments. Here, we present the SMARTER-database, a collection of tools and
scripts to gather, standardize, and share with the scientific community a comprehensive
dataset of genomic data and metadata information on worldwide small ruminant
populations. Existing datasets were scouted from public repositories (see Table 1) and
complemented with newly produced data within the context of the SMARTER project [3].
Our system provides a single entry point and standardization tools to explore the genetic
diversity and demography of goat and sheep breeds, and to understand the genetic basis of
resilience and adaptation, especially in under-utilized breeds.

Table 1. Publicly available datasets integrated into the SMARTER database, including chip types, sample sizes,
and references. See GigaDB supporting dataset [4] for the full details.

chip_name Samples Reference
IlluminaOvineHDSNP 542 Rochus et al. 2018 [5]
IlluminaGoatSNP50 4653 Stella et al. 2018 [1]

IlluminaOvineSNP50 2957 Kijas et al. 2012 [2]
IlluminaOvineHDSNP 93 Rochus et al. 2020 [6]
IlluminaOvineSNP50 1512 Wang et al. 2021 [7]
IlluminaOvineHDSNP 911 Wang et al. 2021 [7]

WholeGenomeSequencing 355 Wang et al. 2021 [7]
IlluminaOvineSNP50 353 Beynon et al. 2015 [8]
IlluminaOvineSNP50 116 Barbato et al. 2017 [9]
IlluminaOvineSNP50 838 Ciani et al. 2020 [10]
IlluminaOvineSNP50 48 Belabdi et al. 2019 [11]
IlluminaOvineSNP50 46 Gaouar et al. 2016 [12]
IlluminaGoatSNP50 364 Burren et al. 2016 [13]
IlluminaGoatSNP50 523 Cortellari et al. 2021 [14]

Data composition
SMARTER-database is mainly composed of two types of data: (i) genotype data, derived
from low/high density genome chips and Whole Genome Sequencing (WGS); (ii) phenotype
data, including a wide range of information, such as Global Positioning System (GPS) data
relative to sampled populations, morphological descriptions of animals, and other
production measurements. The objective of our work was to integrate numerous publicly
available and newly generated datasets into a single entry point. For genotype datasets, the
process of data integration was complicated by the fact that several public datasets were
generated years ago and refer to outdated genome assembly versions, using different
variant names assigned by different single nucleotide polymorphism (SNP) array
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manufacturers, or encoding the same information in different ways. Phenotype data is even
more heterogeneous. Missing information is hard to retrieve since animals may no longer
be available. Phenotypic data collection often aligns closely with specific experimental
objectives, yet descriptions of such data seldom adhere to validated ontological frameworks
(e.g., PATO, the Phenotype And Trait Ontology [15]). This lack of standardization complicates
cross-study comparisons, hindering robust cross-referencing and comprehensive analytical
endeavors. Since the focus of the SMARTER project was on adaptation, a minimal set of
attributes was identified for newly collected data: country of origin, breed name, internal
IDs used in the genotype file, GPS coordinates, and the main purpose of the breed when
available (dairy, meat, wool). However, we encourage the submission of any type of
information relevant to resilience, efficiency and adaptation potential.

Since most of the data are derived from SNP chip arrays, the SMARTER-database is
structured primarily around this type of information. WGS data, which represents a smaller
fraction of the total dataset, is filtered and integrated by aligning the SNPs present in the
SNP arrays. While WGS data can provide deeper insights into genetic variation across
species, including the ability to perform complex genomic analyses such as pangenome
analyses due to recent advances in sequencing technologies [16], bead-chip genotyping
remains a highly valuable tool. This is largely because of its cost-effectiveness in analyzing
large populations, especially in studies involving livestock or animal breeding, and the fact
that SNP arrays yield highly accurate and reproducible genotypes. In contrast, WGS data at
low coverage often results in numerous false homozygote calls due to insufficient
sequencing depth. In contrast, SNP arrays are specifically designed to minimize such errors,
particularly for large-scale genotyping studies [17, 18].

To integrate genotype datasets generated at different times and with different
technologies, all files must first be converted to the same format. The majority of data
submissions were formatted in PLINK [19], followed by Illumina and Affymetrix formats.
Most software packages lack support for proprietary file formats, such as Illumina’s row
files or Affymetrix’s cell data files. Consequently, prior to merging, these proprietary files
must undergo conversion into universally accepted formats.

Furthermore, it is imperative to ensure consistency in the reference genome assembly
across all datasets. Discrepancies in assembly versions can lead to variations in SNP
positions. Even within the same assembly, SNPs may exhibit divergent locations if the
mapping procedures between two genotyping array types are not identical [20, 21].
Reliance solely on SNP names was found to be inadequate, given that SNPs from different
manufacturers frequently possess unique identifiers and may lack comprehensive
information required for unambiguous SNP identification across diverse datasets.

The encoding of genotypes presents another compatibility challenge, as two different
formats may be employed to convey identical SNP information. SNPs are identified by
aligning an SNP probe (comprising a brief DNA sequence around the SNP) to the reference
genome, which may be on either the forward or reverse strand across various genome
assemblies. As a result, the same SNPs can be represented by different bases: for example,
an [A/G] polymorphism becomes [T/C] if the probe matches on different strands. In such
cases, the Food and Agriculture Organization (FAO) Guidelines for Genomic characterization
of animal genetic resources [22] recommend reversing the SNP before merging the datasets,
and excluding the SNP when the first base is complementary to the second (i.e., [A/T] -
[C/G]), since in these cases it is not possible to verify if the SNP is on the same strand on both
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Table 2. Genotype conversion of DU186191_327.1 (A/G) SNP for four different samples in the SMARTER
database. The source version is the assembly version of the received samples, and source coding and genotype
are the inferred coding and the received genotype, respectively. The TOP genotype is the final genotype present
in the database according to the Illumina TOP [23] convention.

Smarter_id Source version Source coding Source genotype TOP genotype
UYOA-CRR-000003890 Oar_v4.0 Forward T C A G
UYOA-CRL-000000382 Oar_v3.1 A/B A B A G
NAOA-ADP-000001020 Oar_v3.1 Top G A G A
GROA-CHI-000004137 Oar_v3.1 Forward T T A A

Table 3. Genotype conversion of OAR1_103790218.1 C/G SNP for four different samples in the SMARTER
database. The source version is the assembly version of the received samples, and source coding and genotype
are the inferred coding and the received genotype, respectively. The TOP genotype is the final genotype present
in the database according to the Illumina TOP [23] convention.

Smarter_id Source version Source coding Source genotype TOP genotype
UYOA-CRR-000003890 Oar_v4.0 Forward G G G G
UYOA-CRL-000000382 Oar_v3.1 A/B B B G G
NAOA-ADP-000001020 Oar_v3.1 Top G G G G
GROA-CHI-000004137 Oar_v3.1 Forward C C G G

assemblies without additional information. Besides, in the A/B format, the letters A and B
do not represent the real genotype, but the first and second letters of the SNP recorded in
the manifest file. In such cases, it is mandatory to get access to the information in the same
manifest file used in the genotyping process. To avoid problems caused by probe alignment
and ensure consistent SNP representation regardless of the genome version, the company
Illumina has proposed a TOP/BOTTOM format [23], which relies on the SNP probe
sequences themselves rather than on probe alignments as in the forward/reverse
convention. This solution is not widely adopted: for example, to submit data to EBI-EVA [24],
one must provide SNPs in forward orientation with respect to the reference genome (the
reference allele needs to match the reference genome in the same position [25]). In 2015, we
responded to the need to standardize SNP data [26] by developing SNPchiMp [27] and a
series of tools to work with different data sources and to convert data in the same
format [28]. In SMARTER, we followed up on the same concept: development of tools to
convert genomic data to a reference format (i.e., Illumina TOP) and giving the possibility to
convert data according to the user’s needs, such as publishing data to public repositories or
before merging data with other datasets encoded differently. An example of genotype
conversion for unambiguous and ambiguous SNP is presented in Tables 2 and 3, respectively.
During the genotype data import, genotypes are converted to Illumina TOP in order to refer
to the same SNP coding across samples from different datasets. It is important to note that
after the Illumina TOP conversion, the only available genotypes will be [A/T], [C/G], [A/G], or
[A/C], as all possible allele combinations can be converted to one of these four.

Collecting phenotypes and other metadata
Besides genotype data, other types of data can also be useful when processing and
analyzing genotypes in the context of adaptation and genomic selection. Genotype file
formats are not suitable for the inclusion of data like geographical coordinates or
morphological descriptions of animals. Even though advanced standards like Variant
Calling Format (VCF) provide an INFO field supporting user-defined data [29], accessing this
kind of information is inefficient because this field cannot be indexed. Preferably, metadata

Gigabyte, 2024, DOI: 10.46471/gigabyte.139 4/15

https://doi.org/10.46471/gigabyte.139


P. Cozzi et al.

information should be stored in a dedicated resource where it can easily be queried. In the
context of the SMARTER project, a schemaless database was more desirable since metadata
do not follow a standard format. A minimal set of requirements should be provided in
order to make useful queries; for instance, breed, country, and GPS locations are required
in order to retrieve data relevant to adaptation analyses.

METHODS
The SMARTER-database project
In order to standardize data and merge genotypes from different datasets, we collected
information from SNP chip manufacturers by accessing publicly available manifest files
and by directly contacting the manufacturers in case of custom manifest files. Data stored
in the SNPchiMp database [27] was also collected as a unique source of information for SNP
positions and code conversion. In addition, information from public databases like dbSNP
(RRID:SCR_002338) [30] and EVA (RRID:SCR_017425) [31] was integrated in order to provide
external reference IDs to the SNPs. To store metadata information, we decided to employ a
MongoDB [32] database. This type of database, characterized by its schemaless nature and
support for spatial queries, enables the flexible modeling of data with the capability to
dynamically add or remove attributes as needed. In addition to sample information, the
database is designed to also accommodate variant information, thereby facilitating
genotype conversion through reliance on the database. The variant class model defined
with the help of the MongoEngine [33] library, a Python-based Object-Document
Mapper [34] that facilitates working with MongoDB in an object-oriented way, is presented
in Figure 1: a VariantSpecie abstract class defines all the attributes that can be referred to
the same SNP, like the different names present in different chip manufacturers or external
accession IDs. Multiple Locations are then embedded in the same document in order to
track different positions across different assemblies with their specific allele coding. Finally,
the VariantSpecie abstract class is extended by the VariantGoat and VariantSheep classes,
which serve as the final Object Document Mappers [34] for each sheep and goat variant in
the database. All information related to the same SNP is present in the same document,
allowing the same SNPs to be tracked even when named differently by different
technologies. Moreover, it is possible to identify which SNPs are in common between
different datasets and to query data relying on the manufacturer’s variant name, Reference
SNP cluster IDs, and genomic locations. Finally, the MongoEngine [33] implementation
defines some accessory methods that, while not directly represented in MongoDB, can be
used to determine the genotype coding or the genotype conversion of a provided SNP
according to the assembly information present in the database. More information about the
variant model is in the SMARTER-database documentation [35].

Although the VCF [29] file format was proposed as a standard for the distribution of
genotype information, we chose to first merge all genotypes we received in a unique PLINK
binary file, one for goats and one for sheep. Proprietary file formats (e.g., the Illumina row
and the Affymetrix cell files) were converted to PLINK files and merged with other data
using the PLINK software (RRID:SCR_001757) [19]. The reason for adopting this format is
related to its popularity in the research community: many software applications, libraries,
and pipelines focusing on adaptation or genetic diversity rely on this format. In addition,
the much smaller size of the PLINK binary file makes it easy to manage (to subset, to index,
and more in general to analyze) data using the PLINK software.
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Figure 1. A Unified Modeling Language diagram of the Variant classes model implemented in Python: the boxes
in the diagram show class attributes and methods, with data types like str for string and dict for dictionary.
The central VariantSpecie class serves as an abstract base class, containing common attributes and methods
relevant to different species, such as SNP IDs, chip names, and genotype data. The Location class models assembly-
specific information, including chromosomal positions, alleles, and strand orientation, and is embedded within
the VariantSpecie class to handle multiple locations per variant. The VariantSheep and VariantGoat classes
inherit from VariantSpecie, extending the base class by specializing it for sheep and goat data, respectively. This
inheritance allows for the efficient reuse of common functionality while tailoring specific attributes or behaviors
for each species. The Probeset class, associated with VariantSpecie, represents specific data types that come from
Affymetrix chips. It captures metadata linked to SNP probes, such as the chip name and probeset ID.

The Illumina TOP/BOTTOM coding convention was selected due to its reliance solely on
the probe itself [23]. Its primary advantage lies in ensuring consistent encoding of SNPs
across various assembly versions. Consequently, updating SNP positions to accommodate a
new reference assembly merely entails a straightforward adjustment.

Different attributes linked to the same SNP, including varying names used by Affymetrix
and Illumina or differences in coding types, are leveraged to produce a unified genotype
file. This consolidated file guarantees SNP standardization across different datasets by
assigning them uniform names and codes, thereby streamlining analyses across samples
from various datasets. Furthermore, sample metadata stored in the SMARTER-database
helps to identify relevant samples, simplifying their extraction from the comprehensive
genotype file relying on the same sample IDs.
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The final intersection among all different chip types in sheep will be close to 30K SNPs,
including various versions of the Illumina 50K chip (which ranges between 50K and 60K
SNPs depending on the release), HD chip, and public and custom Affymetrix chips. This
implies that at least 30K SNPs are theoretically shared across all 12K sheep samples;
however, all remaining SNPs are reported in the final genotype to support nearly all the
620K sheep SNPs managed by the database. Samples without information on SNPs outside
the chip used to generate them will have missing data. The same approach was adopted for
goats; however, the number of supported chips is lower, resulting in a final intersection of
nearly 93% of the goat-supported SNPs. The data are provided as-is, with only minimal
filtering applied based on Identical By State (IBS) to remove duplicate samples when there
is overlap between background datasets. This is the only filtering applied to the final
dataset; users may apply their own filters after selecting the data they need, avoiding
unnecessary filtering for missingness in samples that are irrelevant to their analyses.
Standard Minor Allele Frequency (MAF) filters applied as a percentage cannot be applied to
the entire dataset, as stated by the FAO guidelines [22], since we would lose all the
variability associated with local adaptation, and MAF could change depending on different
subsets of samples. Additionally, filtering based on assembly position or sex chromosomes
could result in a loss of information: for example, when updating an assembly, unmapped
SNPs might be mapped in the new assembly, while previously mapped SNPs could become
unplaced. Ideally, a custom remapping of the Illumina and Affymetrix probes against new
genome assemblies could increase the intersection between different chip technologies; this
can be added in a future release of the database. Sex chromosomes can also be informative,
particularly for users interested in reproduction studies, therefore they are not removed.
Consequently, we believe that this dataset should be presented without any filtering,
leaving it to the user to document all the steps needed to produce the final dataset required
for their analyses.

Reproducibility
The code developed in the SMARTER-database project was enhanced to develop utilities
used to keep the database updated, such as adding new data sources, adding new breeds
and samples, and converting genotypes in the desired formats in order to produce the final
genotype file, as described by our data import guide [36] in the project documentation. The
idea behind this implementation is to adhere to the FAIR principles [37] by providing a
reproducible and transparent workflow to create and manage the final dataset. Our project
is based on the Cookiecutter Data Science Project [38], aiming to standardize data science
projects for sharing purposes. It adheres to conventions outlined in the Cookiecutter
framework [39], which includes organizing data into specific folders, such as raw data,
external data, processing, and final data. Additionally, it includes source folders for
importing scripts and libraries, which can be installed as a Python package in a Conda
environment (RRID:SCR_018317) [40]. All software dependencies are managed using Conda
– a package and environment management system for Python – and tracked through
requirements files. Furthermore, it introduces a database folder not found in the original
Cookiecutter template. This folder manages database installation and initialization through
Docker [41] and docker-compose [42], where Docker is a platform for containerizing
applications to ensure they run consistently across different environments. Raw data
undergoes initial exploration using IPython (RRID:SCR_001658) notebooks stored in the
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Table 4. Number of samples with GPS coordinates. Foreground samples are produced within the SMARTER
project, while background samples are collected from already published datasets.

Total With GPS
Foreground sheep 5,945 79,34%
Background sheep 5,892 82,30%
Foreground goats 464 87,28%
Background goats 5,540 58,34%

notebook folder, aiming to comprehend its structure and potential issues before importing
data into the database. This process includes efforts to infer genotype coding and ensure all
necessary information is available for genotype conversion and sample addition to the
database.

Subsequently, the dataset is integrated into the database, with updates to available
breeds when new ones are added, and the assignment of SMARTER unique and stable IDs to
samples, which are used in the resultant genotype files. If metadata is provided, it is
appended to the corresponding samples. Currently, the SMARTER database tracks
information on approximately 12,000 sheep and 6,000 goats, with nearly 80% and 60% of
samples possessing GPS coordinates for sheep and goats, respectively, as indicated in
Table 4. In Figures 2 and 3, a graphical representation of samples by country for sheep and
goats, respectively, is reported. Figure 4 illustrates the distribution of 12,000 sheep samples
based on the genotype technology employed. Despite variations in genotyping technologies,
a subset of SNPs are in common: this enables comparison among samples from different
datasets. All data processing steps, including environment setup, database initialization,
and data processing, are handled using GNU Make [43] in order to provide simple
commands to execute all the steps required to produce the final database. These steps, and
the importing scripts executed by these steps, are idempotent, meaning that repeating the
same command has no side effects, ensuring consistency in the final dataset. This also
means that a new dataset can be added simply by updating the Makefile with the new
required steps and then calling the proper make command again. The database follows
Semantic Versioning [44] to track updates and changes effectively. This project is publicly
accessible on GitHub [45], where GitHub workflows automate the process of running
Continuous Integration tests that validate critical steps, such as genotype conversion, to
ensure that everything functions correctly after each new code contribution.

Data access
Data can be accessed through two distinct channels: the fully processed PLINK binary
genotype files for both goat and sheep are accessible via anonymous FTP, while sample
information and metadata are retrievable through SMARTER-backend [46], a RESTful
Application Programming Interface (API) interface [47]. Users are required to identify their
desired samples using the API interface and then extract their genotypes from the global
file. This also means that the resource can be programmatically accessed, thereby
enhancing reproducibility and facilitating data integration with other resources.

SMARTER-backend is a Python-Flask application built on top of the SMARTER-database
MongoDB, offering a specific URL (i.e., endpoint) to interact with each object stored in the
SMARTER-database. Users can query for SNPs, samples, datasets, and breeds by making
HTTP requests to the appropriate endpoint and providing the necessary parameters to
obtain information in JSON format (Figure 5). Endpoint parameters documentation is
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Figure 2. Geographical distribution of sheep samples in the SMARTER-database. Countries are colored based on
sample count using the Viridis scale, where brighter colors represent higher sample counts.

Figure 3. Geographical distribution of goat samples in the SMARTER-database. Countries are colored based on
sample count using the Viridis scale, where brighter colors represent higher sample counts.

detailed using Swagger [48] and can be accessed via the /docs location of the
SMARTER-backend itself. Table 5 provides a list of the available endpoints. Figure 6
showcases an example of documentation for the /sample/goat endpoint, which enables
users to gather information on goat samples. All available parameters are listed along with
their descriptions and the supported data types. When the input data type is an array, users
can provide the same parameter multiple times. For instance, it is possible to specify
multiple breed codes in a single query to obtain all desired samples, as illustrated in
Figure 5.

To facilitate data access for partners primarily focused on data analysis with R rather
than retrieving data via REST interfaces, we developed the smarterapi R package [49]. This
package aims to streamline data retrieval from SMARTER-backend by abstracting the
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Figure 4. Distribution of sheep samples by genotyping technology.

Figure 5. Structure of the SMARTER-backend API URL. The endpoint part specifies the desired data type and the
parameters to filter out results.

Table 5. SMARTER-backend available endpoints. The available data types are described in the SMARTER-
database online documentation [35].

Endpoint suffix Data type Description
/auth/login Users User authentication (removed after public release)

/breeds Breed Available breeds as a list
/datasets Dataset Available datasets as a list

/info SmarterInfo Information about database status
/samples/sheep SampleSheep Sheep samples as a list
/samples/goat SampleGoat Goat samples as a list

/samples.geojson/sheep GeoJSON Sheep samples in GeoJSON format
/samples.geojson/goat GeoJSON Goat samples in GeoJSON format

/supported-chips SupportedChip Supported genotype platforms as a list
/variants/sheep/OAR3 VariantSheep Supported sheep SNPs in Oar_v3.1 assembly
/variants/sheep/OAR4 VariantSheep Supported sheep SNPs in Oar_v4.0 assembly
/variants/goat/ARS1 VariantGoat Supported goat SNPs in ARS1.2 assembly
/variants/goat/CHI1 VariantGoat Supported goat SNPs in CHIR_1.0 assembly
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Figure 6. Screenshot of the Swagger interface for the SMARTER-backend API. The interface displays available
endpoints and parameters, allowing users to interact with and test the API directly. In this example, the GET
/samples/goat endpoint is shown, with parameters such as breed, breed_code, and chip_name. The array[string]
type indicates that multiple string values can be entered, enabling filtering by multiple criteria. Users can click the
‘Try it out’ button to input values, execute queries, and view the results with the URL to generate them, making it
easy to explore the API’s functionalities.

complexities of handling HTTP requests and result pagination. It offers simple R functions
that return data as R data frames, utilizing the same parameters described in the backend
documentation. This package facilitates URL generation and data retrieval within R. To
assist users, we created an online vignette outlining common operations, such as data
retrieval and filtering, as well as more advanced tasks, like working with variants,
conducting spatial queries, and extracting data from raster objects using the WorldClim
database [50]. These functionalities are valuable for performing landscape genomic
analyses on SMARTER data.

The latest tool provided to the community is SMARTER-frontend [51], a web application
developed in Angular [52] on top of SMARTER-backend. This application allows users to
browse SMARTER data and gain insights into database contents without the need for
additional code or software installation. Regardless of the chosen method for collecting
samples (API request, R package, or web application), users must identify their samples of
interest and extract the required genotypes using PLINK.

CONCLUSIONS AND FUTURE DEVELOPMENTS
The SMARTER-database project provides valuable information on sheep and goat
populations around the world. It is an essential tool for researchers, enabling them to
generate new insights and offer the possibility to store new genotypes and drive progress in
this field. Comprising a suite of scripts, it standardizes genotype data sourced from various
methods and origins, resulting in a unified dataset primed for analyses across different
assembly versions for both sheep and goats. Data access is granted to users through the
SMARTER-backend, using R packages or web interfaces, while genotypes are available over
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FTP. The entire project was developed with the goal of facilitating reproducibility and
programmatic data accessibility. The SMARTER database is open to additional dataset
integration. Given the schemaless nature of the database and the ability to collect data
using the REST API, the most valuable contributions should include metadata, such as GPS
coordinates and phenotypes. This type of data will contribute significantly to understanding
adaptation and resilience in small ruminants. We plan to support additional assemblies
with the option to collect data in VCF format. This will help the community reuse this data
and provide the opportunity to upload genotypes to public archives like EBI-EVA. Moreover,
by utilizing Illumina TOP coding, users can easily convert data between different assembly
versions and project coordinates from older assemblies onto newer ones. This approach
ensures accurate SNP positioning across assemblies without concerns about probe
orientation. All new improvements are tracked as GitHub issues [53]. When changes are
finalized, they are released in a new dataset version, along with any enhancements to data
management. All release changes can be viewed in the HISTORY.rst [54] file available on
GitHub and in the SMARTER-database Read The Docs documentation [35].

AVAILABILITY OF SOURCE CODE AND REQUIREMENTS
• Project name: SMARTER-database
• Project home page: https://github.com/cnr-ibba/SMARTER-database
• Documentation: https://smarter-database.readthedocs.io/en/latest/
• Operating system(s): Linux
• Programming language: Python 3.x
• Other requirements: docker, docker-compose, anaconda
• License: MIT
• RRID:SCR_025884

• Project name: SMARTER-backend
• Project home page: https://github.com/cnr-ibba/SMARTER-backend
• Documentation: https://smarter-backend.readthedocs.io/en/latest/
• Operating system(s): Linux
• Programming language: Python 3.x
• Other requirements: docker, docker-compose
• License: GPL-3.0

• Project name: smarterapi
• Project home page: https://github.com/cnr-ibba/r-smarter-api
• Documentation: https://cnr-ibba.github.io/r-smarter-api/
• Operating system(s): Platform independent
• Programming language: R
• Other requirements: gdal
• License: GPL-3.0

• Project name: SMARTER-frontend
• Project home page: https://github.com/cnr-ibba/SMARTER-frontend
• Operating system(s): Linux
• Programming language: TypeScript
• Other requirements: NodeJS, npm, angular
• License: MIT
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DATA AVAILABILITY
Supporting data are available from the GigaDB repository [4]. The genotype files supporting
the results of this article are also available via anonymous FTP at ftp://webserver.ibba.cnr.it
or through the smarterapi R package (see
https://cnr-ibba.github.io/r-smarter-api/articles/smarterapi.html#collect-genotypes).
Metadata and sample information can be accessed via the SMARTER-backend REST API at
https://webserver.ibba.cnr.it/smarter-api/ using the smarterapi R package
(https://cnr-ibba.github.io/r-smarter-api/) and through the database portal at
https://webserver.ibba.cnr.it/smarter/.
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Transfer Protocol; GPS, Global Positioning System; MAF, Minor Allele Frequency; SMARTER,
SMAll RuminanTs breeding for Efficiency and Resilience; SNP, single nucleotide
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