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A B S T R A C T

Elevational gradients are often used to reveal how soil microorganisms will respond to climate change. However, 
inconsistent microbial distribution patterns across different elevational transects have raised doubts about their 
practical applicability. We hypothesized that variations in bedrock, which influence soil physical and chemical 
properties, would explain these inconsistencies. We therefore investigated soil microbial communities (bacterial 
and fungal) along two adjacent elevational transects with different bedrocks (granite vs. slate) in a subtropical 
forest. Our findings reveal that soil microbial communities are shaped by complex interactions between bedrock 
type and environmental factors along elevational gradients. Bacterial biomass was higher on slate, whereas 
fungal biomass was higher on granite. On granite, both bacterial and fungal biomass increased with elevation, 
whereas divergent patterns were observed on slate, likely due to the distinct soil properties or combinations of 
properties influencing microbial biomass on each bedrock. Bedrock and elevation strongly influenced microbial 
beta-diversity, with beta-diversity on granite driven primarily by soil total phosphorus and moisture, and on slate 
by soil organic carbon and pH. In contrast, alpha-diversity was impacted less by bedrock and elevation, but its 
relationship with environmental factors varied markedly between bedrock types. Overall, our results highlight 
the critical influence of bedrock in determining soil microbial community structure along elevational gradients 
and their potential responses to climate change.

1. Introduction

As a proxy for the impacts of climate change on microbial commu-
nities, elevational gradients provide unique insights into the regulatory 
mechanisms governing the spatial distribution of soil microorganisms 
(Sundqvist et al., 2013). Studying the distributions of soil microorgan-
isms along elevational gradients not only reveals the mechanisms 
structuring soil microbial communities (Nottingham et al., 2018; Peters 
et al., 2019), it also useful for understanding the impacts of climate 

change on soil biogeochemical cycles (Bahram et al., 2018; Hartmann 
and Six, 2022; Philippot et al., 2023). Numerous studies of the eleva-
tional patterns of soil microbial communities have emerged over the 
past two decades (Bryant et al., 2008; Fierer et al., 2011; He et al., 2020; 
Hendershot et al., 2017). However, these studies have not found 
consistent trends in microbial biomass or community α-diversity: linear 
increases, linear decreases, unimodal and concave trends have all been 
detected (He et al., 2020; Hendershot et al., 2017; Wang et al., 2024). 
Environmental explanations for these disparate patterns include 
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climatic regions (He et al., 2020), vegetation types (Li et al., 2016), or 
microclimate variation (Ma et al., 2022). However, the type of soil 
parent material − known as “bedrock”– may also explain complex ele-
vational patterns.

Spatial variations in soil microbial communities are influenced 
strongly by soil properties (Fierer et al., 2009; Ni et al., 2022; Seaton 
et al., 2020). The factors shaping these communities are often deter-
mined by specific combinations of local soil characteristics. For 
example, soil pH is a well-established driver of bacterial community 
composition, particularly in acidic soils (Griffiths et al., 2011; Tripathi 
et al., 2018). Similarly, the availability of nutrients such as nitrogen and 
phosphorus plays a key role in regulating microbial dynamics, especially 
in nutrient-limited ecosystems (Delgado-Baquerizo et al., 2017). While 
climatic factors along elevational gradients tend to follow predictable 
trends within similar climate zones, the responses of soil microbial 
communities to climate change may vary depending on underlying soil 
conditions (e.g., acidic vs. neutral soils; nutrient-limited vs. nutrient-rich 
environments). Bedrock, as the parent material for soil formation, in-
fluences a wide range of soil physico-chemical properties, including pH, 
texture, and P levels (Augusto et al., 2017; He et al., 2021; Porder and 
Ramachandran, 2013; Spinola et al., 2022; Zeng et al., 2023). Conse-
quently, soil microbial communities on different bedrock types may 
exhibit distinct responses to climate changes along elevational gradi-
ents, reflecting the unique soil environments created by bedrock char-
acteristics. In the present study, we explored the extent to which bedrock 
can explain complex elevational patterns.

Bedrock varies in mountainous regions at both regional and local 
scales (Antonelli et al., 2018), affecting the spatial patterns of soil mi-
croorganisms (He et al., 2024; Hu et al., 2020; Li et al., 2018). However, 
only two studies have revealed that differences in bedrocks can affect 
the response of soil microbes to elevational gradients (Bhople et al., 
2019; Singh et al., 2014). Singh et al. (2014) established two adjacent 
elevational transects on Mount Hana in South Korea, one on basalt and 
one on coarse-grained basalt. They observed a triple-curve in bacterial 
species richness on the basalt and a concave pattern on the coarse- 
grained basalt. Bhople et al. (2019) showed a linear increase in soil 
microbial biomass on basaltic bedrock and acidic soils, and a unimodal 
pattern on limestone bedrock with pH neutral soils.

Studies focusing on the influence of bedrock on elevational patterns 
of soil microbes are remarkably scarce, and these studies often 
concentrate on a single feature of soil microbial communities, such as 
biomass, or community α-diversity. Biomass, α-diversity, and β-diversity 
are crucial characteristics of soil microbial communities, usually regu-
lated by different factors. Soil microbes are often carbon (C) limited, 
which is why microbial biomass is predominantly driven by the avail-
ability of labile C (He et al., 2020). α-diversity is more responsive to 
variations in soil pH (Fierer, 2017; Looby and Martin, 2020), particu-
larly within acidic environments (Calderón-Sanou et al., 2022). The 
β-diversity of soil microbial communities, which describes the compo-
sitional variation among microbial communities across different envi-
ronments, is influenced by a complex interplay of factors (Chen and 
Lewis, 2023). With such diverse characteristics of microbial commu-
nities being regulated by an assortment of environmental factors, it is no 
surprise that the interactions between bedrock, elevation, and soil mi-
crobial communities are extremely intricate.

In accordance with our hypothesis that bedrock modulates the 
environmental factors regulating soil microbial communities at different 
elevations, we anticipate significant differences in microbial community 
composition between the two bedrock types. Specifically, we expect to 
find that: (1) Soil microbial biomass, α-diversity, and β-diversity differ 
between bedrock types. We expect microbial biomass and α-diversity to 
increase on the slate transect due to its higher SOC, phosphorus levels, 
and pH (He et al., 2021). (2) Bedrock type will govern the relationship 
between elevation, microbial biomass and α-diversity. Given that key 
environmental conditions structuring microbial communities differ on 
different bedrocks, we also predict that (3) factors driving β-diversity 

along the elevational gradient will vary between the two bedrocks, and 
similar environmental conditions may shape microbial community 
patterns differently on different bedrock types.

2. Materials and methods

2.1. Study sites

We worked in the Chebaling National Nature Reserve in the 
Guangdong Province of southern China (114◦09′–114◦16′E, 
24◦40′–24◦46′N). The climate is a typical subtropical monsoon (He et al., 
2021). The geological structure of the Reserve belongs to the South 
China fold system. Elevation ranges from 330 m above sea level to 1,256 
m.a.s.l. Cambrian and Ordovician strata are present in the northwest 
section. Northeast-southwest slate was formed after fold-fracture. The 
middle and south are Cambrian strata, forming slate mountains. The 
northern parts experienced intrusion of Jurassic plutonic rocks, forming 
acid plutonic rock mountains. Soils are classified in the Ultisol order and 
the Udult suborder based on the USDA soil classification system (Zhou 
et al., 2013).

We identified two adjacent mountains with different bedrocks 
(granite and slate) in the Chebaling National Nature Reserve (He et al. 
2021). The geographic distance between the two mountains does not 
exceed 10 km. The vegetation on both mountains is well-preserved 
subtropical evergreen broad-leaved forest. The forest on the granite 
bedrock is dominated by Schima superba, Machilus chinensis, and Eurya 
nitida, while the forest on the slate bedrock is dominated by Machilus 
chinensis, Eurya nitida and Rhododendron simsii. A total of 18 sites were 
established along two elevational transects (Fig. S1), with nine sites on 
each bedrock. Plots were distributed at about 100-m intervals in 
elevation (determined by GPS) within each transect, with elevations 
ranging from 410 to 1,080 m.a.s.l. on the granite bedrock and 350 to 
1,120 m.a.s.l. on the slate bedrock. To reduce the influence of aspect, 
sampling plots were located on the south side of any microtopography at 
each site.

2.2. Sampling and analytical methods

All plots (40 m × 40 m) were sampled in October 2018. All trees with 
a diameter at breast height above 1 cm were recorded in each plot. We 
estimated the forest above-ground biomass (AGB) using diameter at 
breast height of each tree and allometric relationships (Réjou-Méchain 
et al., 2017). We installed a Micro Station Data Logger (USA, HOBO, 
H21-002) in each plot, with two probes inserted into the soil (at a depth 
of approximately 10 cm) which monitored soil temperature and mois-
ture. Recordings were taken hourly from July 13, 2018, to July 13, 2019. 
Here, we use the data collected over the entire year to calculate the soil 
mean annual temperature (MAT) and moisture, which we use to explain 
the spatial variation of soil microbial community characteristics.

Volumetric soil samples were taken to determine soil bulk density. 
Soil depth was more than 100 cm in all but two of the high elevation 
sites in the slate transect. In these two plots, soil depth was roughly 60 
cm. These shallow soil depths were likely due to severe erosion on the 
steeper slopes. Five subplots (10 × 10 m) were randomly selected at each 
site. We removed the leaf litter from the forest floor and collected topsoil 
to a depth of 20 cm using a stainless soil corer (inner diameter = 3.5 cm). 
We collected six random soil cores and homogenized them into com-
posite samples for each subplot. A total of 90 soil samples (i.e. 18 plots ×
5 subplots) were collected and transported on ice directly to the labo-
ratory. Each soil sample was then passed through a 2-mm sieve before 
being divided into two subsamples: one was stored at − 80 ◦C for 
phospholipid fatty acid (PLFA) analysis and high-throughput sequencing 
(HTS), and one was air-dried at room temperature for the measurement 
of soil physicochemical properties in the laboratory.

We measured soil pH with a PHS-3C pH acidometer (soil–water ratio 
of 1:5) and used dry combustion with an elemental analyser (Perkin 
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Elmer 2400 Series II) to measure soil organic carbon (SOC) and total N 
(TN) concentrations. Soil total P (TP) concentration was measured using 
a nitric acid–perchloric acid digestion, followed by a colorimetric 
analysis (Murphy and Riley, 1962) using a UV–Vis spectrophotometer 
(UV1800; Shimadzu, Kyoto, Japan). We measured particle size distri-
bution using a laser particle analyzer based on the laser diffraction 
technique operating over a range of 0.02–2000 μm (Mastersizer 2000 
particle size analyzer, Malvern Instruments, Ltd., UK).

We used a modified PLFA analysis (Frostegård and Bååth, 1996) to 
determine bacterial and fungal biomass. The abundance of individual 
fatty acids was expressed as μg per g of dry soil. Concentrations of each 
PLFA were calculated based on the 19:0 internal standard concentra-
tions and microbial biomass was expressed as the sum of identifiable 
PLFAs. We chose a set of fatty acids to represent bacterial PLFAs. Bac-
terial PLFAs were obtained by summing the phospholipid fatty acid 
14:00, 15:00, 16:00, 18:00, 13:0 anteiso, 13:0 iso, 14:0 iso, 14:1 ω5c, 
15:0 anteiso, 15:0 iso, 15:1 ω6c, 16:0 iso, 16:1 ω5c, 16:1 ω7c, 17:0 
anteiso, 17:0 cyclo ω7c, 17:0 iso, 18:1 ω7c, 18:1 ω9c, 19:0 cyclo ω7c, and 
19:0 cyclo ω9c contents. Gram-positive bacteria were identified by 
branched-chain fatty acids, including 13:0 anteiso, 13:0 iso, 14:0 iso, 
15:0 anteiso, 15:0 iso, 16:0 iso, and 17:0 anteiso and iso. Gram-negative 
bacteria were distinguished by monounsaturated and cyclopropyl fatty 
acids, specifically 14:1 ω5c, 15:1 ω6c, 16:1 ω5c, 16:1 ω7c, 17:0 cyclo 
ω7c, 18:1 ω7c, 18:1 ω9c, 19:0 cyclo ω7c, and 19:0 cyclo ω9c. The sum of 
18:2ω6c and 18:3 ω6c represented fungal PLFAs.

Soil DNA was extracted from composite soil samples using the 
FastDNA SPIN Kit for Soil (MP Biomedicals, Heidelberg, Germany) and 
purified by agarose gel electrophoresis. The quality of the DNA samples 
was checked on a spectrophotometer (NanoDrop, ND2000, Thermo-
Scientific, USA). Total DNA was used for high-throughput sequencing on 
an Illumina MiSeq platform (San Diego, CA, USA). The bacterial V4 
hypervariable region of the 16S rRNA gene and fungal internal tran-
scribed spacer (ITS) region was amplified using the primer pair 505F/ 
816R (5′-GTGCCAGCMGCCGCGG-3′/5′-GGACTACHVGGGTWTCTA AT- 
3′) (Caporaso et al., 2011) and ITS1F/ITS2 
(5′-GGAAGTAAAAGTCGTAACAAGG-3′/5′-GCTGCGTTCTTCATCGATG-
C-3′) (Shen et al., 2020) along with the Illumina adaptor sequence and 
barcode sequences, respectively.

The raw sequence data were processed and analyzed using QIIME 
Pipeline (Caporaso et al., 2011). To improve sequence quality we 
removed average quality (value ≤ 20) sequencing reads with ambiguous 
nucleotides in barcodes, and homopolymer reads between 8 bp and 150 
bp in length. Paired ends were joined with FLASH (Magoc and Salzberg, 
2011). Chimeric sequences were detected and eliminated using the 
Uchime algorithm (Edgar, 2011). All sequences were clustered into 
operational taxonomic units (OTUs) at a 97 % identity threshold. 
Finally, the representative sequences of each OTU were classified 
against the RDP 16S rRNA database for bacteria and UNITE Fungal ITS 
database for fungi with an 80 % confidence threshold. The resultant 
OTU abundance tables from these analyses were rarefied to an even 
number of sequences per sample to ensure equal sampling depth (26,160 
and 26,760 for 16S rDNA and ITS, respectively). To minimize the in-
fluence of potentially spurious OTUs, we excluded those with a total 
read count below 50 or present in fewer than five samples after rare-
faction. All subsequent analyses of α-and β-diversity were conducted 
based on this filtered OTU table. The raw reads have been deposited into 
the National Centre for Biotechnology Information (NCBI) Sequence 
Read Archive database (PRJNA1177672).

2.3. Statistical analyses

We used Wilcoxon tests to assess differences in microclimate, plant 
traits, and soil properties between granite and slate bedrocks. To eval-
uate elevational trends, we applied univariate linear regression models, 
while multivariate linear regression models were used to examine soil 
microbial community responses across different elevations and bedrock 

types, as well as to identify interactive effects. Model fit was evaluated 
using Akaike’s Information Criterion (AIC), with the model having the 
lowest AIC score selected as the best fit.

Spearman correlation analyses were conducted to determine 
whether bedrock type influenced relationships between environmental 
variables and soil microbial communities. Additionally, we applied 
multiple regression models to investigate associations between micro-
bial variables (bacterial and fungal biomass, biomass ratios, and alpha 
diversity indices) and a range of environmental predictors, including soil 
properties, i.e., pH, moisture, clay content, soil organic C (SOC), soil P, 
soil C-to-N ratio (C:N), soil C-to-P ratio (C:P), soil N-to-P ratio (N:P), 
plant traits (above-ground biomass and plant Shannon diversity), and 
climatic factors (mean annual temperature). Multicollinearity among 
predictors was assessed using Variance Inflation Factor (VIF) values 
calculated with the vif function from the car package. Initial VIF analysis 
revealed high collinearity among certain soil nutrient ratios (soil C:P and 
soil N:P), with VIF values exceeding 100; thus, these variables were 
excluded, reducing the VIF of all remaining predictors to below 5. To 
examine interactions between environmental predictors and bedrock 
type, we incorporated selected interaction terms (bedrock:TP, bedrock: 
moisture, bedrock:pH, and bedrock:MAT) aligned with our research 
questions. Due to the limited sample size, we focused on these specific 
interactions rather than including all possible terms. Stepwise model 
selection using AIC was performed with the dredge function from the 
MuMIn package to identify best-fit models for each microbial variable, 
allowing for retention of the most informative predictors while opti-
mizing model performance.

We calculated the Chao1 index, Shannon, and Inverse Simpson di-
versity index as α-diversity indices of soil microbial communities. 
Shannon index is defined as H = −

∑i
1PilogPi, where Pi is the propor-

tional abundance of species i. Inverse Simpson index is defined as 1/D, 
where D = ΣP2

i . We used the Bray-Curtis-dissimilarities-based principal 
components analysis (PCoA) to assess differences (β-diversity) in mi-
crobial communities in different sites and bedrocks. We performed 
square root transformations of the OTU relative abundances before the 
PCoA. We performed distance-based Redundancy Analysis (db-RDA) of 
the correlation between predictor variables and microbial composition. 
We calculated these diversity indices and conducted these ordination 
analyses using the vegan R package (Oksanen et al., 2020). We per-
formed a Principal Component Analysis (PCA) to visualize the variation 
in environmental variables across elevational gradients on two bedrock 
types. The analysis was conducted using the PCA function from the 
FactoMineR package. A biplot was created using fviz_pca_biplot from the 
factoextra package. We used a neutral community model (NCM) (Sloan 
et al., 2006) to test whether deterministic or stochastic processes were 
structuring the microbial communities. We used Hmisc, minpack.lm and 
stats4 packages for the NCM, with default parameters for model fitting.

All statistical analyses were performed using R (R Core Team, 2023) 
and graphs were generated with the ggplot2 package (Wickham, 2016).

3. Results

3.1. Effects of elevation and bedrock on soil characteristics

Wilcoxon tests showed no significant differences in soil MAT, mois-
ture, and SOC concentration between the granite and slate transects 
(Table S1). AGB, soil C:N, C:P, N:P ratios, and soil silt and sand contents 
were higher on the granite transect, whereas plant diversity, soil pH, 
bulk density, TN, TP, and clay content were lower on the granite than on 
the slate transect. Univariate linear regression models revealed a 
consistent pattern of significant declines in MAT, plant diversity and soil 
pH with elevation, and an increase in SOC, TN, TP and silt content across 
both bedrock types (Figs. S2 and S3). Soil clay content and moisture 
showed no significant elevational trend along either transect (Fig. S3). 
AGB decreased with elevation on the granite but showed no significant 
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trend on the slate (Fig. S2). PCA results revealed a clear separation of 
sampling sites along PC1 (Fig. S4). Key variables associated with PC1, 
such as soil P, C:N, C:P, N:P, clay, and moisture, appear to be major 
environmental drivers of microbial community differences between the 
two bedrocks. Variables closely aligned with PC2, including elevation, 
MAT, SOC, and pH, are likely primary drivers of microbial community 
changes along the elevational gradient within each transect.

3.2. Effects of elevation and bedrock on soil microbial biomass

Bacterial biomass was slightly higher on slate, whereas fungal 
biomass was higher on granite (Table 1). Consequently, the bacteria-to- 
fungi biomass ratio (B/F) was significantly higher on slate than on 
granite. Given that Gram-positive bacteria are ecologically and func-
tionally more similar to fungi, our findings align with this pattern: the 
Gram-positive to Gram-negative bacteria ratio (G+/G− ratio) was 
significantly higher on granite than on slate. Notably, both bacterial (B) 
and fungal (F) biomass, along with the G+/G− ratio increased signifi-
cantly with elevation on the granite but not on the slate transect; B/F 
ratios showed no significant linear trends on either bedrock (Fig. 1). 
Multivariate linear regression models confirmed significant impacts of 
elevation and bedrock on microbial biomass characteristics, including 
significant interactive effects for bacterial and fungal biomass but not for 
B/F ratios or G+/G− ratios (Table 2).

The best models selected through stepwise regression provided 
strong explanatory power for variations in microbial biomass, with 
adjusted R2 values ranging from 0.45 to 0.71 (Table 3). Soil microbial 
biomass was shaped significantly by multiple environmental factors and 
their interactions with bedrock type. For bacterial biomass, SOC, TP, and 
the soil C:N ratio were key factors, with positive associations observed 
for soil C and P, and a negative association with the C:N ratio. Fungal 
biomass was also influenced by SOC, C:N ratio, and TP, though the 
impacts of moisture and MAT varied depending on bedrock type. The B/ 
F biomass ratio was shaped by soil moisture, plant Shannon diversity, 
and TP, with an interaction between moisture and bedrock type. Addi-
tionally, the G+/G− ratio was driven by soil clay content, MAT, and pH, 
with a significant interaction between TP and bedrock type.

Spearman correlations corroborated the multiple regression results 
(Tables S2 and S3). On the granite transect, bacterial biomass was 
strongly associated with SOC and TP, whereas on slate, no significant 
correlations were observed. Fungal biomass on granite correlated posi-
tively with SOC and the soil N:P ratio, while being negatively associated 
with AGB and MAT. On slate, fungal biomass correlated only with 
moisture. The B/F ratios on granite were positively linked with soil TP 
and negatively to moisture, whereas on slate, they correlated negatively 
with moisture. Additionally, the G+/G− ratios showed a strong positive 
correlation with the soil N:P ratio on granite and a negative correlation 
with MAT on slate.

3.3. Effects of elevation and bedrock on soil microbial community 
diversity and composition

Microbial richness, as indicated by Chao1 indices, was consistently 
and significantly higher on slate for both bacterial and fungal commu-
nities (Table 1). In contrast, Shannon indices showed no significant 
differences between bedrock types for either bacterial or fungal com-
munities, indicating comparable overall diversity. The inverse Simpson 
index, however, was significantly lower for bacterial communities on 
slate than on granite, suggesting reduced evenness and potential 
dominance by a few species on slate. Interestingly, soil microbial α-di-
versity, encompassing Shannon and inverse Simpson indices, showed no 
clear elevational trends (Fig. 2). Multivariate linear regression analyses 
confirmed these observations, identifying significant differences be-
tween bedrock transects in the Chao1 and inverse Simpson indices for 
bacteria, and in the Chao1 index for fungi, but not in other α-diversity 
measures. Additionally, elevation significantly influenced only the 
fungal Chao1 index, with no observable effect on other α-diversity 
indices or significant interactions between elevation and α-diversity 
(Table 2).

Regression models for diversity indices showed lower explanatory 
power compared with biomass (adjusted R2 = 0.20–0.38; Table 4). 
Bacterial Shannon index was significantly affected by clay content, 
MAT, moisture, and pH, while the bacterial inverse Simpson index was 
associated with soil C, P, and a moisture-bedrock interaction. Both the 
fungal Shannon and inverse Simpson indices were influenced by soil P, 
soil C, and pH, with strong effects from interactions between these 
variables and bedrock type; soil P, in particular, played a prominent role 
in shaping fungal community diversity.

Spearman correlation analysis indicated that the Shannon index of 
the bacterial community correlated positively with soil pH on both 
granite and slate transects (Tables S2 and S3). The inverse Simpson 
index of bacteria correlated positively with soil C:P and N:P ratios on 
granite but showed no significant relationship on slate. The fungal 
community’s Shannon index correlated negatively with MAT on both 
bedrocks, and additionally with clay content on granite. On slate, it 
correlated significantly with TP, C:P, and N:P. The inverse Simpson 
index for fungi correlated negatively with clay on granite, whereas on 
slate it showed significant correlations with soil pH, C:N, C:P, N:P, and 
other environmental factors (Table S3).

Principal Components Analysis results highlighted clear differences 
in beta-diversity, i.e., the composition of soil microbial communities 
(bacterial and fungal), across different bedrock types (Fig. 3a and b). 
Results of db-RDA revealed that the compositions of soil bacterial and 
fungal communities were determined primarily by the soil C:P and N:P 
ratios and TP content (Fig. 3a). These findings indicate that variations in 
phosphorus level were key in driving the differences in community 
composition observed between the bedrocks. Further db-RDA on indi-
vidual bedrock types revealed that on granite, soil TP content and 
moisture were crucial in shaping both bacterial and fungal communities 
(Fig. 3c and e). Conversely, on slate, SOC and soil pH were the dominant 
factors influencing bacterial communities (Fig. 3d), whereas moisture 
and clay content significantly affected fungal communities (Fig. 3f). This 
analysis suggests a role for bedrock in mediating species turnover along 
elevational gradients, with changes in soil P concentration and moisture 
levels being pivotal.

The fit of bacterial communities on granite to the NCM was higher 
(R2 = 0.92; Nm = 18943) compared with slate (R2 = 0.90; Nm = 16458) 
(Fig. S6a and b), suggesting the importance of stochastic processes in the 
assembly of these bacterial communities. In the case of the fungal 
communities, the fit to the NCM was comparable between granite (R2 =

0.62; Nm = 1237) and slate (R2 = 0.62; Nm = 1209), indicating no 
discernible difference in community assembly processes (Fig. S6c and 
d).

Table 1 
Results of the Wilcoxon test to compare the mean values of soil microbial 
biomass and α-diversities between two bedrock transects. Significantly higher 
mean values are in bold. Unit of biomass is μg g− 1 soil.

Variable Granite 
(Mean ± SD)

Slate 
(Mean ± SD)

w p

Fungal biomass 1.33 ± 0.54 1.09 ± 0.37 1267 0.040
Bacterial biomass 38.62 ± 14.2 42.95 ± 9.58 791 0.074
Bacteria to fungi ratio 30.79 ± 10.49 42.28 ± 11.66 476 <0.001
Gram + to Gram- ratio 0.81 ± 0.08 0.72 ± 0.05 1634 <0.001
Bacterial Chao1 3036 ± 294 3344 ± 349 520 <0.001
Bacterial Shannon 5.89 ± 0.2 5.95 ± 0.27 864 0.234
Bacterial inv-Simpson 104 ± 29 82 ± 28 1413 0.001
Fungal Chao1 1237 ± 187 1364 ± 209 695 0.010
Fungal Shannon 4.12 ± 0.48 4.03 ± 0.68 1060 0.706
Fungal inv-Simpson 18 ± 8 16 ± 9 1119 0.394
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4. Discussion

This study reinforces findings by Bhople et al. (2019) and Singh et al. 
(2014), confirming that bedrock composition plays a critical role in 
shaping soil microbial community responses along elevational gradients 
in subtropical mountain ecosystems. While this and previous studies 

each focused on a single transect per bedrock type, together they provide 
robust evidence that bedrock type significantly influences microbial 
elevational patterns. Unique combinations and ranges of soil properties 
are established by different bedrock types, resulting in distinct microbial 
community distributions along elevation gradients. Moreover, the 
impact of specific environmental factors on microbial communities 
varies with bedrock type, highlighting the interactive effects between 
bedrock and environmental conditions on microbial distribution. These 
interactions deepen our understanding of the intricate dynamics of mi-
crobial communities and underscore the necessity to consider bedrock 
type when evaluating microbial responses to environmental changes.

4.1. Bedrock modulates the elevational patterns of soil microbial biomass

Bacterial and fungal biomass differed significantly on the contrasting 
bedrocks. Both transects were under similar climates, and we therefore 
conclude that differences in microbial biomass were likely caused by the 
variation of bedrock, which concurs with previous studies (Deng et al., 
2015; Sun et al., 2016). Deng et al. (2015), who worked in a similar 
subtropical monsoon climate, concluded that bedrock explained more 
variation in soil microbial biomass than land use, after discovering that 
microbial biomass in soil derived from granite was significantly higher 
than in soil derived from quaternary red earth and tertiary red sand-
stone. Sun et al. (2016) showed that agricultural soils derived from 
granite supported more microbial biomass than quaternary red clay soil 
and purple sandy shale, even after 40 years of agricultural use. These 
results further emphasize the fact that bedrock drives the spatial vari-
ation of soil microbial biomass.

Bacteria and fungi responded differently to the different bedrocks in 
our study, which is further evidence of the regulatory effects of bedrock 
on microbial communities. Bacterial biomass, particularly the amount of 

Fig. 1. Soil microbial biomass along elevational transects on granite and slate bedrock. (a) Soil bacterial biomass; (b) soil fungal biomass; (c) bacterial biomass to 
fungal biomass ratios; (d) gram-positive to gram-negative bacterial biomass ratios. Solid and dashed lines indicate significant (p < 0.05) and nonsignificant (p > 0.05) 
linear regression relationships, respectively.

Table 2 
Effects of elevation and bedrock, and their interaction on the variations of soil 
microbial communities’ characters. Numbers in the table are the standardized 
linear regression coefficients.

Elevation Bedrock Elevation ×
Bedrock

Adjusted 
R2

Bacterial biomass 0.88*** 0.36* − 1.01*** 0.372
Fungal biomass 0.80*** − 0.49* − 1.08*** 0.373
B:F biomass ratio 0.19* 0.93*** ​ 0.231
G+ to G– biomass 
ratio

0.31*** − 1.06*** ​ 0.384

Bacterial Chao1 
index

0.11 0.87*** ​ 0.182

Bacterial Shannon 
index

0.04 0.26 ​ 0.001

Bacterial inverse 
Simpson

0.17 − 0.71*** ​ 0.140

Fungal Chao1 index 0.28** 0.62** ​ 0.151
Fungal Shannon 
index

0.09 − 0.12 ​ 0.001

Fungal inverse 
Simpson

− 0.15 − 0.20 ​ 0.001

Stars next to the numbers indicate significance in the regression model: *, **, *** 
indicates significance at the 95 %, 99 % and 99.9 % level, respectively; no star 
means p > 0.05.
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Gram-positive versus Gram-negative bacteria, was higher on slate than 
on granite. This can be attributed to slate’s higher soil TN and TP con-
tents, closer-to-neutral soil pH, and higher soil clay content, all of which 
favor bacterial growth. Bacteria, especially Gram-positive types, rely 
heavily on nutrient availability (Yu et al., 2022), are more sensitive to 
pH changes (Luan et al., 2023; Rousk et al., 2010), and benefit from the 
simplified physical conditions of soils richer in clay (Philippot et al., 
2023). In contrast, fungi are better at extracting nutrients from 
decomposing organic matter (Koranda et al., 2014), and have a greater 
tolerance to pH changes (Rousk et al., 2010). Moreover, their multi-
cellular, filamentous structure enables fungi to adapt to a variety of soil 
physical environments (Philippot et al., 2023). Furthermore, consid-
ering the competitive dynamics between fungi and bacteria (Bahram 
et al., 2018), the diminished bacterial biomass on granite reduces 
competition, potentially boosting fungal biomass. These mechanisms 
clarify why fungal biomass was higher on granite than on slate, 
providing insight into how bedrock variability distinctly influences 
bacterial and fungal communities.

As well as observing the effects of the bedrock itself on soil microbial 
communities, we also noticed inconsistencies in the elevational patterns 
of the soil microbial biomass along the two transects. On the granite, soil 
bacterial and fungal biomass increased with elevation, whereas on the 
slate, bacterial biomass showed no trend, and fungal biomass decreased 
slightly. Soil microbes usually need to derive energy and nutrients from 
soil organic matter, and as a result, their biomass is generally coupled 
with SOC concentration (He et al., 2020; Smith et al., 2021). However, 
in this study, such a relationship was observed only on granite; on slate, 
which had higher N and P levels, the biomass of bacteria and fungi did 
not show significant correlations with SOC, soil TP content, MAT, or 
other factors. This may be attributed to the fact that in nutrient- 

abundant environments, especially with sufficient P, soil microbes 
experience lower nutrient limitations; and their reliance on the pathway 
of nutrient acquisition through the decomposition of organic matter 
might be comparatively weaker (Lang et al., 2016). This would certainly 
explain why microbial biomass was not correlated with SOC and TP 
concentrations on slate. These findings suggest that the bedrock, by 
influencing the P levels in the soil and indeed throughout the entire 
ecosystem, can impact the responses of soil microbial biomass to ele-
vational gradients.

4.2. Bedrock modulates the elevational patterns of soil microbial 
community diversity

The higher Chao1 index for both bacterial and fungal communities 
on slate than on granite indicates greater microbial species richness in 
soils with higher nutrient content and pH (Xiao et al., 2022). However, 
neither the Shannon nor the inverse Simpson index on slate were 
significantly higher than on granite, suggesting that the increased 
richness on slate likely reflects a greater presence of rare or low- 
abundance taxa, reducing overall community evenness. In particular, 
the inverse Simpson index for bacterial communities was significantly 
higher on granite than on slate. This may be attributed to the lower P, 
moisture, and pH levels on granite, which may promote a broader range 
of microbial taxa that coexist more evenly. Conversely, the higher P, 
moisture, and pH levels on slate could favor a few dominant species, 
resulting in lower evenness despite the elevated species richness. 
Interestingly, unlike microbial biomass, neither bacterial nor fungal 
α-diversity varied significantly with elevation on either bedrock type, 
suggesting that soil microbial biomass and community α-diversity are 
regulated by different factors (Li et al., 2020; Ren et al., 2018). These 
distinct responses between microbial biomass and α-diversity, with their 
implications for ecosystem functioning, warrant further exploration.

With regard to those factors influencing α-diversity, our multiple 
linear models explained significantly less of the variation in α-diversity 
than in microbial biomass along the elevational gradient. Alongside the 
high explanatory power of neutral community models (NCM) on both 
bedrocks—especially with over 90 % for bacterial communities—our 
findings suggest that microbial community assembly along the elevation 
gradient was driven largely by stochastic processes, with environmental 
factors playing a lesser role. While we found significant relationships 
between soil pH and the Shannon indices for both bacteria and fungi, 
supporting the notion that microbial α-diversity is sensitive to soil 
acidity (Luan et al., 2023; Smith et al., 2021), α-diversity itself did not 
vary significantly with elevation. This is likely due to the relatively small 
pH fluctuations across the transects. Despite the limited explanatory 
power of our models, we observed that certain factors, such as soil 
phosphorus and moisture, had bedrock-specific effects on microbial 
α-diversity. These significant interactions indicate that although α-di-
versity did not shift noticeably with elevation, its relationship with 
environmental factors was still modulated by bedrock.

Our findings suggest that bedrock impacts the β-diversity of soil 
microbial communities. Bacteria and fungi displayed markedly distinct 
compositions across the two bedrocks. Our observation that bedrock 
influences the composition of soil microbial communities aligns with the 
conclusions of previous studies (Sheng et al., 2023; Tytgat et al., 2016; 
Weemstra et al., 2020; Xiao et al., 2022). Studies of different bedrocks 
have proposed different mechanisms for structuring soil microbial 
communities. For example, Tytgat et al. (2016) found that SOC content 
structured bacterial communities, whereas Sheng et al. (2023)
concluded that soil pH structured the bacterial community composition 
among different bedrocks. We identified differences in soil P as the 
primary mechanism structuring soil microbial communities on the 
granite and slate bedrocks. On granite, soil TP content and moisture 
govern species turnover of both bacteria and fungi, which is supported 
by another study in nearby subtropical forest (Chen and Lewis, 2023). 
On slate, however, the influence of soil P on species turnover appeared 

Table 3 
Summary of optimal model parameters for microbial biomass variables. This 
table presents the best-fit model results for microbial biomass variables, derived 
from an initial full model that included mean annual temperature (MAT), soil 
organic carbon (C), phosphorus (P), moisture, clay content, pH, carbon-to- 
nitrogen ratio (C:N), above-ground biomass (AGB), and plant Shannon di-
versity (Plant H). Additionally, interactions between bedrock type and specific 
environmental variables (soil P, moisture, pH, and MAT) were incorporated.

Microbial Variable Predictors Estimate p-value Adjusted 
R2

Bacterial Biomass Soil C 9.316 <0.001 0.625
Soil C:N − 4.936 <0.001 ​
Soil P 6.011 0.008 ​
Clay − 2.065 0.070 ​
MAT ×
Bedrock

4.294 0.022 ​

Soil P ×
Bedrock

− 11.818 <0.001 ​

Fungal Biomass Soil C 0.267 <0.001 0.453
Soil C:N − 0.216 <0.001 ​
Soil P − 0.351 <0.001 ​
Moisture ×
Bedrock

0.288 0.009 ​

MAT ×
Bedrock

0.221 0.047 ​

Bacterial-to-Fungal 
Biomass ratio

Moisture 3.715 0.002 0.502
Plant H 3.163 0.001 ​
Soil P 6.042 <0.001 ​
Moisture ×
Bedrock

− 9.585 <0.001 ​

Gram+ to Gram– bacteria 
biomass ratio

Clay − 0.015 0.046 0.710
MAT 0.014 0.018 ​
pH − 0.027 0.028 ​
Soil P ×
Bedrock

0.060 0.020 ​
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to be minimal. This could be due to P not being a limiting factor, as slate 
and its associated soils have high P concentrations. Together, these re-
sults indicate that bedrock type not only influences the composition of 
soil microbial communities, but also modulates the primary drivers of 
microbial community structure along elevational gradients.

Our results should be interpreted in light of the fact that our study 
was based on one elevational transect per bedrock type. Nonetheless, 
given the inconsistency of previous studies of soil microbial elevational 
patterns, including those based on single transects (e.g., Bayranvand 
et al., 2021; Peters et al., 2016; Zakavi et al., 2022), our findings provide 
relevant and valuable insights into how bedrock influences microbial 
community patterns along elevation gradients. Ideally, future studies 
should integrate multiple transects replicated within bedrock types to 
more thoroughly understand the responses of soil microbial commu-
nities to climate gradients.

5. Conclusion

We have shown that bedrock significantly influences soil microbial 
biomass and β-diversity, while having limited effects on α-diversity. 
Moreover, bedrock modulated the impacts of the elevation gradient on 
soil microbial biomass and β-diversity. This was likely an indirect pro-
cess via the alteration of soil P content, C:P, N:P ratios, soil moisture, and 
pH. We believe that bedrock may explain some of the inconsistencies 
surrounding previous studies of the elevational patterns of soil microbial 
communities. We also anticipate that bedrock will modulate the impacts 
of climate change on soil microbial communities.
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