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Abstract 

Background Improving the germination performance of bread wheat is an important breeding target in many 
wheat-growing countries where seedlings are often established in soils with high salinity levels. This study sought 
to characterize the molecular mechanisms underlying germination performance in salt-stressed wheat. To achieve 
this goal, a genome-wide association study (GWAS) was performed on 292 Iranian bread wheat accessions, includ-
ing 202 landraces and 90 cultivars.

Results A total of 10 and 15 functional marker-trait associations (MTAs) were detected under moderate (60 mM 
NaCl) and severe (120 mM NaCl) salinity, respectively. From genomic annotation, 17 candidate genes were identified 
that were functionally annotated to be involved in the germination performance of salt-stressed wheat, such as CHX2, 
PK2, PUBs, and NTP10. Most of these genes play key roles in DNA/RNA/ATP/protein binding, transferase activity, trans-
portation, phosphorylation, or ubiquitination and some harbored unknown functions that collectively may respond 
to salinity as a complex network.

Conclusion These findings, including the candidate genes, respective pathways, marker-trait associations (MTAs), 
and in-depth phenotyping of wheat accessions, improve knowledge of the mechanisms responsible for better germi-
nation performance of wheat seedlings under salinity conditions.
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Background
Common wheat (Triticum aestivum L.) provides calories 
and carbohydrates for about 25% of the world’s popu-
lation [1]. This, along with the rapidly growing global 
human population and climate change, highlights the 
importance of sustainable wheat production to meet 
future nutritional demands [2]. Rapid climate change is 
expected to increase soil salinity in many areas due to, for 
example, saltwater intrusion following sea-level rise or 
excessive use of groundwater resources. Therefore, soil 
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salinity is one of the greatest global challenges to wheat 
germination in arid and semi-arid regions [3].

Crop yield is adversely affected by salt stress in nearly 
20% of the world’s arable lands and in about 50% of irri-
gated lands. Wheat also suffers yield loss when grown in 
saline soils [4]. One of the impacts of high salt concentra-
tions is disturbance in germination and seedling growth 
by decreased water accessibility, osmotic stress, oxidative 
stress, nutritional disorders, and  Na+ and  Cl− ion toxicity 
[5]. Thus, it is important to understand the genetic basis 
of salt adaptation-related mechanisms in wheat during 
the early stages of breeding programs.

Earlier research has shown that different crop growth 
stages may display varying levels of salinity tolerance or 
sensitivity [6]. Crops can be sensitive to salinity at one 
growth stage but tolerant at another, i.e., the impacts of 
salt tolerance at various growth stages are generally inde-
pendent of each other [6]. Some studies have revealed 
that breeding practices for salinity tolerance at germina-
tion stages are not useful for improving salinity tolerance 
in adult crops [7], while others have shown the opposite 
results [8]. Regardless of whether germination tolerance 
results in adult plant tolerance, it is more important 
to focus on the germination performance that allows 
healthy seedlings to develop under salinity conditions [6].

The advent of next-generation sequencing (NGS) 
approaches has enabled cost-efficient genotyping-by-
sequencing, which is a useful tool to facilitate genetic 
dissection of complex traits in non-model organisms [9]. 
Association mapping overcomes many of the restrictions 
of classic quantitative trait loci (QTL) mapping and helps 
identify minor genetic factors underlying complex traits 
[9]. QTLs identified through association mapping can be 
directly utilized in marker-assisted selection for improv-
ing genetic gain [10].

To date, genome-wide association studies (GWAS) 
have been adopted to explore marker-trait associa-
tions (MTAs) and candidate genes affecting growth 
and development under salinity stress in alfalfa [11], 
sesame [12], rapeseed [13], cotton [14], barley [9], 
and rice [15]. For example, Shi et  al. [16] explored 
salinity tolerance during rice germination via GWAS 
and identified a 164  kb genomic region located on 
chromosome 2 (Chr2) that harbors two nitrate trans-
porter genes (NRT2.1/2) and controls vigor index. A 
genomic region associated with germination time was 
also identified on Chr1 that contains some QTLs for 
total  K+ concentration, total  Na+ uptake, and  Na+: 
 K+ ratio. Based on GWAS analysis of root length in 
rice, Yu et  al. [17] identified the Chr4-located gene 
OsMADS31, a MADS-box transcription factor that is 
down-regulated by salinity, and suggested it is involved 
in stress tolerance during germination. In a GWAS on 

dry weight, Li et  al. [12] identified the gene SiMLP31 
in Sesamum indicum L. that encodes a major latex-like 
protein, homologous to the MLP31 gene in Arabidop-
sis. This gene plays a key role in the salicylic acid syn-
thesis, which improves germination and seedling vigor 
under salinity stress. However, little is known on QTLs 
linked to germination performance under salinity, cor-
responding genetic mechanisms, and specific genes in 
wheat.

In the present study, we aimed to identify trait-asso-
ciated markers that can be directly or indirectly linked 
to the germination performance of salt-stressed wheat. 
This work will provide a foundation for future wheat 
breeding programs aimed at improving the germination 
performance of salt-stressed wheat by exploring salinity-
responsive pathways, putative candidate genes, and the 
MTAs identified in our GWAS (Fig. 1).

Results
Phenotypic assessment
Analysis of Variance (ANOVA) revealed that the effect 
of genotype, salinity, and their interaction on the studied 
traits was significant at the level of 1%. Data for normal, 
moderate (60  mM NaCl), and severe (120  mM NaCl) 
salinity conditions in 292 wheat accessions were ana-
lyzed separately (Table 1). The maximum and minimum 
values of measured traits were obtained under normal 
and severe salinity conditions, respectively. Phenotypic 
observations revealed that most germination-related 
traits under salinity indicated lower performance than 
those in the normal conditions, suggesting that salt stress 
significantly limits seed germination and thereby growth, 
as previously reported by Yu et al. [17] for rice. The great-
est variation was recorded for the germination percent-
age (GP) in all conditions (SD 13.76, 16.60, and 19.47 for 
normal, moderate, and severe salinity, respectively), indi-
cating the potential of this trait to be employed in selec-
tion-assisted breeding.

Pearson correlation coefficients were estimated for 
all conditions. A significant positive correlation was 
observed between all traits (P < 0.01), while the ratio of 
shoot to root length was negatively correlated with root 
length (P < 0.01) (Table 2). These results indicate that all 
traits evaluated in the current study can be adopted for 
GWAS analysis.

Genotypic assessment
SNP genotyping
A total of 566 439 207 unique reads were obtained after 
sequencing, with nearly 80% being non-redundant. 
After de-duplication and alignment steps, 133 039 
SNPs were called, of which 10 938 had a minor allele 
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frequency (MAF) > 1%, heterozygosity < 10%, and miss-
ing data < 10%. The final data set included 46 203 imputed 
SNPs, which were used in all subsequent analyses.

Linkage disequilibrium
Linkage disequilibrium (LD) varies both within and 
between chromosomes and sub-genomes and usually 
decreases with increasing distance between SNPs. Based 
on the mrMLM model, 1 830 925 marker pairs (MP) with 

Fig. 1 Flowchart of a step-by-step process to analysis GWAS and exploring candidate genes linked to wheat germination

Table 1 Descriptive statistics for germination-related traits of Iranian bread wheat accessions under normal, moderate, and severe 
salinity conditions

Abbreviations: RL Root length, ShL Shoot length, PL Plomule length, WW Wet weight, DW Dry weight, ShL_RL Ratio of shoot length to root length, GI Germination 
index, GR Germination rate, GE Germination energy, GP Germination percentage, SV Seedling vigor, Std. Dev standard deviation

Conditions

Normal Moderate stress Severe stress

Trait Range Mean Std. Dev Range Mean Std. Dev Range Mean Std. Dev

RL 2.3–16.5 9.24 2.22 1.6–14.17 6.96 1.94 1.37–12.83 4.93 1.58

ShL 0.66–14.9 7.03 2.97 0.5–13.53 5.75 2.64 0.16–10 4.24 1.87

PL 3.1–29.22 16.27 4.30 3–26.47 12.72 4.10 1.97–22.66 9.17 3.12

WW 0.1–1.41 0.69 0.21 0.11–1.42 0.61 0.19 0.07–1.01 0.48 0.16

DW 0.009–0.13 0.06 0.01 0.015–0.11 0.05 0.01 0.008–0.58 0.04 0.02

ShL-RL 0.048–2.76 0.78 0.38 0.2–3.43 0.83 0.37 0.07–2.91 0.87 0.35

GI 0.28–0.97 0.74 0.13 0.12–0.93 0.65 0.15 0.09–0.87 0.57 0.16

GR 3.3–22 13.26 3.38 2–19.33 10.96 3.26 1.25–16 8.96 3.05

GE 0.36–1 0.84 0.13 0.16–1 0.76 0.16 0.12–1 0.68 0.19

GP 36–100 86.09 13.76 16–100 77.84 16.60 12–100 69.78 19.47

SV 1.36–28.05 14.32 5.01 2.96–26.47 10.23 4.51 0.39–21.75 6.68 3.34
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 r2 = 0.21 (as average squared allele frequency correlation) 
were identified in wheat cultivars, of which 38% had sig-
nificant linkages at P < 0.001 (Table 3). All MPs indicated 
a distance < 10  cM. The highest and lowest numbers of 
marker pairs were found in the B (949 425, 51.85%) and D 
(206 175, 11.26%) genomes, respectively. The highest LD 
was found between marker pairs located on Chr4A (0.37) 
followed by Chr1D (0.29) (Table 3).

Implementing a similar assessment using the wheat 
landraces identified 1 828 675 marker pairs with an aver-
age  r2 = 0.18, which is lower than in cultivars. A larger 
fraction of MPs had significant LD (836 400, 45.74%) in 
landraces. The highest and lowest MPs were found in the 
B (928 125) and D (233 075) genomes, respectively. Link-
age disequilibrium was strongest between marker pairs in 
Chr4A (0.32) followed by Chr2A (0.25) (Table 3).

On the other hand, the lowest estimated values for 
Ho, Hs, and Ht were observed in the D genome (0.026, 
0.269, and 0.290, respectively) compared with the A and 
B genomes. However, the Fst values corresponding to 
each of the three genomes were different (0.074, 0.080, 
and 0.061 in genomes A, B, and D, respectively) (Table 4).

Population kinship and structure matrix
The population structure also revealed the maximum 
value of ΔK for K = 3, showing that the wheat accessions 
can be divided into three subpopulations (Fig.  2). Thus, 
the analysis of population structure identified three sub-
populations with varying levels of admixture.

In the principal component analysis, PC1 and PC2 
explained 16.95% and 6.39% of the genotypic varia-
tion, respectively (Fig. 3). Clear subpopulations could be 
identified based on the first two PCs, suggesting three 

subpopulations with admixed accessions falling between 
the main three subpopulations. As the panel of wheat cul-
tivars and landraces have subpopulations, the PCA and 
kinship matrix were performed as variance–covariance.

A cluster analysis of the kinship matrix showed that the 
SBP-I subgroup harbors 110 accessions (105 landraces 
and 5 cultivars), the SBP-II harbors 38 accessions (28 
landraces and 10 cultivars), and the SBP-III harbors 144 
accessions (69 landraces and 75 cultivars) (Fig.  4). The 
Shahpassand, Shahi, Azar, Roshan, and Rayhani cultivars 
all displayed high admixture levels. A neighbor-joining 
tree of all accessions also clearly exhibited clustering into 
three subgroups (Supplementary 1 Fig. S1).

MTAs for germination‑related traits
Collectively, across all traits, 659 MTAs were discov-
ered at a significance threshold (cut-off) of − log10 
(P-value) ≥ 3.0 (P ≤ 0.001). A total of 237 and 179 highly 
significant MTAs were identified under moderate and 
severe salinity conditions, respectively (Table  5). The 
highest number of marker-trait associations was found 
in the A and B sub-genomes under severe and moderate 
stresses, respectively. The D sub-genome displayed the 
lowest number of MTAs in all three conditions.

Genomic annotation
Of 659 marker-trait associations, 10 and 15 MTAs 
were located inside protein-coding regions under 
moderate and severe salinity conditions, respectively 
(Tables  6  and  7). These regions mainly encode proteins 
responsible for several biological processes in the stressed 
crops, including oxidation–reduction (i.e., monooxyge-
nase and oxidoreductase activity, Fe- and heme-binding), 

Table 2 Correlation coefficients between the germination-related traits of Iranian bread wheat accessions

Abbreviations: RL Root length, ShL Shoot length, PL Plomule length, WW Wet weight, DW Dry weight, ShL_RL Ratio of shoot length to root length, GI Germination 
index, GR Germination rate, GE Germination energy, GP Germination percentage, SV Seedling vigor, Std. Dev standard deviation

* p < 0.05

** p < 0.01

Traits RL ShL PL WW DW ShL_RL GI GR GE GP SV

RL 1

ShL .606** 1

PL .889** .903** 1

WW .699** .743** .805** 1

DW .482** .496** .546** .629** 1

ShL-RL -.190** .588** .235** .222** .163** 1

GI .516** .547** .594** .615** .447** .203** 1

GR .528** .512** .580** .585** .423** .141** .934** 1

GE .485** .530** .567** .594** .430** .213** .971** .841** 1

GP .485** .537** .571** .600** .438** .227** .970** .837** .988** 1

SV .837** .871** .953** .816** .558** .246** .772** .722** .755** .761** 1
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chromosome organization (i.e., ATP and protein bind-
ing), transmembrane transport (i.e., solute:proton anti-
porter activity), response to ethylene (i.e., ethylene 
receptor activity and ethylene binding), transcription 
regulation (i.e., transcription factor activity), protein 
phosphorylation (i.e., kinase and phosphatase activity), 
ubiquitination (i.e., ubiquitin-protein transferase activ-
ity), and phylloquinone biosynthesis (methyltransferase 
activity). The strongest associations are summarized in 
Tables 6 and 7.

In plants cultivated under normal conditions, 11 SNPs 
fell within coding genes located on Chr2A, 5A, 6A, 7A, 
1B, 7B, and 6D that were related to GI, GE, GP, GR, PL, 
RL, SL, SV, DW, and WW traits. In moderately salinity-
treated plants, 10 SNPs were related to genes responsible 
for GI, GE, GP, PL, RL, SL, SV, DW, WW, and ShL-RL 
traits. These SNPs were located on Chr1A, 2A, 1B, 2B, 
3B, 5B, and 6B and no significant SNP was located in the 
D sub-genome. In the severe salinity-treated plants, 15 

markers located on Chr 5A, 6A, 7A, 1B, 2B, 4B, 6B, 2D, 
and 5D were identified for all traits. The Quantile–quan-
tile and Manhattan plots of highly associated SNPs for 
germination-related characteristics are shown in Fig.  5 
and Supplementary1 Fig S2.

Putative candidate genes
Putative candidate genes were identified for germina-
tion performance in salt-stressed wheat by annotating 
the function of discovered genes and their respective 
homologs in rice (Tables 8 and 9). Eight and nine com-
mon genes were identified for the moderate and severe 
salinity stress treatments, respectively. These genes 
encode protein products involved in DNA/RNA/protein 
binding, ATP binding, transferase activity, transporta-
tion, phosphorylation, and ubiquitination under mod-
erate and severe salinity. The gene ontology of these 
genes indicated that they are responsible for “response 
to stresses”, “metabolic processes”, and “transcription”. It 

Table 4 Diversity indexes of 292 wheat genotypes using 43203 SNPs

PIC polymorphic information content, MAF minor allele frequency, Ho observed heterozygosity, Hs discovered heterozygosity, Fst Fixation index

Chromosomes No. SNP GeneDiversity Heterozygosity PIC MAF Ho Hs Ht Fst

1A 2226 0.313 0.031 0.256 0.222 0.029 0.287 0.320 0.084

2A 2731 0.376 0.030 0.296 0.298 0.030 0.357 0.383 0.061

3A 1928 0.320 0.032 0.260 0.235 0.031 0.302 0.334 0.084

4A 2593 0.357 0.025 0.284 0.274 0.024 0.320 0.357 0.091

5A 1435 0.317 0.032 0.259 0.222 0.031 0.307 0.327 0.055

6A 1978 0.332 0.031 0.269 0.243 0.029 0.315 0.338 0.059

7A 2987 0.337 0.030 0.272 0.247 0.029 0.308 0.340 0.079

1B 3009 0.341 0.031 0.275 0.248 0.029 0.323 0.348 0.062

2B 3738 0.346 0.031 0.278 0.258 0.030 0.326 0.355 0.073

3B 4021 0.346 0.029 0.279 0.253 0.028 0.315 0.363 0.110

4B 1200 0.296 0.027 0.244 0.209 0.026 0.287 0.313 0.072

5B 3044 0.350 0.031 0.282 0.258 0.030 0.326 0.363 0.087

6B 3801 0.342 0.029 0.276 0.253 0.028 0.314 0.347 0.081

7B 2998 0.313 0.032 0.257 0.219 0.031 0.303 0.327 0.061

1D 971 0.302 0.029 0.248 0.212 0.026 0.280 0.300 0.059

2D 1368 0.270 0.027 0.227 0.178 0.026 0.248 0.270 0.065

3D 736 0.271 0.026 0.227 0.181 0.024 0.250 0.271 0.059

4D 268 0.314 0.028 0.256 0.227 0.027 0.282 0.311 0.078

5D 632 0.284 0.027 0.237 0.191 0.026 0.264 0.292 0.076

6D 763 0.319 0.032 0.259 0.229 0.030 0.296 0.313 0.048

7D 925 0.303 0.029 0.248 0.215 0.027 0.278 0.298 0.055

Unknown 851 0.315 0.051 0.258 0.221 0.049 0.299 0.325 0.069

A genome 15878 0.339 0.030 0.273 0.252 0.029 0.316 0.345 0.074

B genome 21811 0.338 0.030 0.273 0.247 0.029 0.316 0.349 0.080

D genome 5663 0.291 0.028 0.241 0.201 0.026 0.269 0.290 0.061

Whole genomes 43352 .332 0.030 0.269 0.243 0.029 0.310 0.340 0.075
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Fig. 2 The number of subpopulations in the wheat panel based on ΔK values (a), A structure plot of 292 wheat cultivars and landraces determined 
by K = 3 (b)

Fig. 3 Principal component analysis of Iranian bread wheat accessions using 46,203 markers
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is worth noting that the genomic regions associated with 
seedling salt tolerance are problematic for comparison 
across various studies because of differences in the map-
ping population and marker platforms and in the absence 
of a consensus map for comparing genomic locations. 
Based on the rice reference genome, the oxidative phos-
phorylation (Fig.  6) and fatty acid elongation pathways 
were discovered (Supplementary1 Fig S3).

Discussion
The mechanisms underlying better germination per-
formance of salt-stressed wheat remain almost largely 
unexplored. To better understand wheat germina-
tion responses to high-salt environments, we sought 
to identify alleles and genes linked with salt tolerance 
during germination using a diverse panel of accessions. 
Association mapping was a useful approach in this 

Fig. 4 Kinship matrix-based cluster analysis of Iranian wheat accessions using 46,203 markers
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study, as it exploits historical recombination events and 
provides high-resolution maps to identify candidate 
genes in response to salt stress in wheat [18].

In this study, we used a total of 11 interconnected 
germination traits, which were measured under nor-
mal and two salinity conditions. These traits have been 
successful for genomic mapping of salinity endurance 
during seedling germination in alfalfa [11], sesame [12], 
rapeseed [13], cotton [14], barley [9], and rice [15].

Seed germination is considered the first and most 
crucial stage in crop growth and development [13]. 
Seed germination begins with water imbibition, which 
is suppressed by salt stress, thus directly interfer-
ing with germination progression [11]. Similar to our 
observations on the detrimental impact of salinity on 
germination-related traits, researchers have previously 
highlighted that salinity can delay germination initia-
tion and hence decrease seed vigor [15]. A significant, 
positive correlation was observed between all traits, 
reflecting a similar impact of salinity. Similarly, Naveed 
et  al. [19] found a significant, positive correlation 
between root length and germination rate (GR) at the 
germination stage of rice.

From our findings, most SNPs were identified in the B 
and A sub-genomes while a lower number of SNP mark-
ers were found in the D sub-genome. This is consistent 
with previous reports [20]. The same trend was observed 
for linked marker pairs, where B sub-genome related 
MPs were nearly four times more common than those 
from the D sub-genome. The higher variation observed 
in the A and B sub-genomes may be a consequence of 
the following two factors: gene flow from T. turgidum L. 
(but not Ae. tauschii Coss.) to bread wheat or the older 
evolutionary background of the A and B sub-genomes 
[21]. In addition, it is possible that a bottleneck due to 
strong selection in ancestral 6 × landraces during the 
improvement of cultivars has differentially affected the 
D sub-genome [22]. This bottleneck reduced the effec-
tive population size, which in turn increased the rate of 
rare allele loss. Moreover, the higher fraction of low-fre-
quency alleles observed in the D sub-genome indicates a 
decrease in allelic variants [22]. Linkage disequilibrium 

and SNP distance across the B and A sub-genomes were 
much lower than in the D sub-genome. The fact that cul-
tivars exhibited higher LD in contrast to landraces, espe-
cially in the D sub-genome, is presumably a consequence 
of numerous rounds of selection during breeding for key 
crop characteristics [23]. Overall, population relatedness, 
genetic drift, recombination, mating systems, mutation, 
and selection are all the main factors influencing the pat-
tern and extent of LD [24].

A total of 10 and 15 significant, functional MTAs 
were detected under moderate (60  mM NaCl) and 
severe (120  mM NaCl) salinity, respectively. Aligning 
the sequences surrounding these SNPs to the reference 
genomes showed that most of these genes are respon-
sible for response to ethylene (i.e., ethylene receptor 
activity and ethylene binding), oxidation–reduction (i.e., 
monooxygenase and oxidoreductase activity), chromo-
some organization (i.e., ATP and protein binding), tran-
scription regulation (i.e., transcription factor activity), 
protein ubiquitination (i.e., ubiquitin-protein transferase 
activity), transmembrane transport (i.e., solute:proton 
antiporter activity), and protein phosphorylation (i.e., 
kinase and phosphatase activity). Such associations have 
also been demonstrated in earlier reports [9, 11, 13–15].

To date, several genes and QTLs linked to salinity tol-
erance at the germination stage have been identified by 
using linkage and association mapping in several plants 
and crops. In this study, we successfully identified eight 
and nine candidate genes for mediating tolerance to 
moderate and severe salinity stress, respectively. These 
genes encode proteins or enzymes involved in DNA/
RNA/protein binding, ATP binding, transferase activ-
ity, transportation, phosphorylation, and ubiquitination. 
Similar functional roles have been discovered for salt-
responsive genes during seed germination in cotton [14], 
rapeseed [13], alfalfa [11], rice [15], and barley [9].

One of the main consequences of salt stress is ionic 
challenge, which arises due to excess levels of  Na+. Since 
this ion interferes with  K+ homeostasis, cytosolic  Na+/K+ 
balance is a key mechanism mediating salinity tolerance. 
Maintaining this homeostatic balance requires functional 
 K+ and  Na+ ion channels, transporters, or both [25]. Our 
work led to the identification of a salt-responsive gene, 
cation/H antiporter 2 (CHX2), which regulates  Na+ and 
 K+ homeostasis. This gene is regulated differentially in 
various tissues and during different growth stages in 
response to salinity [25]. Shi et  al. [16] also identified a 
genomic region associated with germination time located 
on Chr1, near a QTL for total  K+ concentration, total 
 Na+ uptake, and  Na+:  K+ ratio.

Protein phosphorylation is the most widespread 
post-translational modification and can affect all cellu-
lar processes, such as metabolic reactions, translation, 

Table 5 The number of marker-trait associations (MTAs) for 
germination-related traits of Iranian bread wheat accessions 
under moderate and severe salinity conditions

Genome Moderate Stress Severe Stress

Genome A 76 76

Genome B 129 67

Genome D 32 36

MTAs 237 179
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transcription, signal perception, and transduction 
under salt stress [26]. Generally, phosphorylation and 
dephosphorylation catalyzed by kinase and phosphatase 
enzymes can regulate protein configuration and modify 

their intracellular localization, function, enzyme activ-
ity, substrate specificity, and structure stability [26]. 
We identified a salt-responsive gene, protein kinase 2 
(GMPK2), which regulates salt stress tolerance [26]. Luo 

Fig. 5 The mrMLM-based Manhattan and QQ-plots of highly associated haplotypes for germination-related traits (herein, dry weight) 
under moderate and severe salinity conditions. X axis represents chromosome number [1)1A, 2)1B, 3)1D, 4)2A, 5)2B, 6)2D, 7)3A, 8)3B, 9)3D, 10)4A, 
11)4B, 12)4D, 13)5A, 14)5B, 15)5D, 16)6A, 17)6B, 18)6D, 19)7A, 20)7B, and 21)7D] and Y axis represents –log10(p), respectively. Line in red is referred 
to the cut-off threshold
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et  al. [5] also identified a Chr1-located SNP that con-
trolled expression of a serine/threonine-phosphoprotein 
phosphatase and was associated with dry weight under 
salinity stress. Moreover, Yu et al. [11] identified 14 func-
tional genes linked to 23 SNPs in alfalfa using a GWAS 

approach. Marker S2_46544981 on Chr2 was linked to 
a Ser/Thr protein kinase with a role in the ABA path-
ways in response to salinity. Mwando et al. [9] also per-
formed GWAS during germination on a salt-tolerance 
index in 350 barley accessions using 24 138 SNPs and 

Table 8 Annotation of genes harbouring significant trait-associated SNPs across all chromosomes in Iranian wheat accessions 
exposed to the moderate salinity stress

Marker Ch Position (bp) p-value FDR Gene ID in wheat Homolog gene ID in 
rice

Description

rs10987 3B 22764 0.0002139714 0.9958341268 TraesCS3D02G526300 Os07g0587100 transferase activity, glyco-
syltransferase activity

rs51559 2A 74319 0.0003315372 0.9784545081 TraesCS2A02G457500 OsWD40-
29 Os01g0924300

protein binding

rs28502 1B 17065 0.0002066565 0.9808556034 TraesCS2B02G069400 Os08g0326500 hydrolase activity, hydro-
lyzing O-glycosyl com-
pounds, hydrolase activity, 
acting on glycosyl bonds, 
glucan endo-1,3-beta-D-
glucosidase activity

rs51559 2A 74319 0.0003578241 0.9791934890 TraesCS2A02G457500 OsNTP10 Os10g0188300 nucleotidyltransferase 
activity, RNA uridylyltrans-
ferase activity

rs39391 6B 52377 0.0002147662 0.9994740214 TraesCS6B02G360200 Os01g0611900 protein binding

rs18853 5B 80923 0.0001298730 0.9988121296 TraesCS4B02G004000 Os05g0388500 RNA binding, mRNA bind-
ing, structural constituent 
of ribosome rRNA binding

rs17383 1A 85455 0.0001310011 0.7098953430 TraesCS1D02G386700 Os04g0623700 RNA binding, 7S RNA 
binding, endoplasmic 
reticulum signal peptide 
binding

rs45886 1A 616,821,401–616,824,347 0.0110322938 0.9999893491 TraesCS6A02G419200 OsPUB protein ubiquitination

rs15343 2B 86479 0.0001863726 0.9950479430 TraesCS2B02G554900 OsGELP63 
Os05g0209600

hydrolase activity, acting 
on ester bonds

Table 9 Annotation of genes harbouring significant trait-associated SNPs across all chromosomes in Iranian wheat accessions 
exposed to the severe salinity stress

Marker Ch Position (bp) p-value FDR Gene ID in wheat Homolog gene ID in rice Description

rs10035 5D 256,463,138–256,485,526 0.0003028373 0.9882921528 TraesCS6D02G394300 Os02g0260700 protein binding

rs3046 7A 593,059,525–593,063,135 0.0001452906 0.9757731237 TraesCS2B02G109900 GMPK2 Os04g0546300 protein kinase activity, 
protein serine/threo-
nine kinase activity, ATP 
binding

rs16308 2B 357,918,017–357,924,451 0.0003154564 0.9896520404 TraesCS5B02G005700 - -

rs1619 4B 657,270,914–657,273,316 0.0006252700 0.9889360765 TraesCS4B02G372200 Os10g0469300 protein binding

rs25188 5A 97,940,658–97,950,133 0.0002054657 0.9999669788 TraesCS7D02G157100 Os02g0458900 hydrolase activity, acting 
on ester bonds

rs5312 6A 23,635,590–23,638,481 0.0001494948 0.9996324274 TraesCS6A02G046000 OsF-
box220 Os04g0479800

protein binding

rs61435 5D 529,826,163–529,827,625 0.0004237373 0.9998367235 TraesCS5D02G502300 OsCutA1 Os10g0378300 copper ion binding

rs45003 2D 613,324,693–613,325,883 81616 0.4179819854 TraesCS2D02G525100 Os04g0667900 -

rs30686 6B 473,514,839–473,517,451 0.0002362291 0.9986558102 TraesCS6A02G418500 OsCHX02 Os08g0550600 solute:proton antiporter 
activity

rs56460 1B 16,426,498–16,428,373 0.0003256200 0.9994840151 TraesCS1B02G033700 Os12g0511900 ADP binding
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DArTseq markers. They identified 19 quantitative trait 
nucleotides (QTNs) and several candidate genes, such 
as a protein kinase, which was regulated by microRNAs 
and transcription factors and played a key role in salinity 
tolerance.

In ubiquitination, U-box E3 ligases have key functions 
in degradation of proteins via post-translational modi-
fications in stress responses [27]. We identified a salt-
responsive U-box E3 Ub ligases (OsPUBs) gene, which 
has previously been demonstrated to regulate salinity 
response [28]. Tan et al. [13] also used association map-
ping for germination percentage (GP) and germination 
index (GI) in 520 Brassica napus L. accessions using 
52 157 SNPs. They reported a significant SNP, rs9466, 
located 2.2  kb away from a stress-responsive gene that 
encodes an E3 ubiquitin-protein responsible for control 
of proline biosynthesis.

Transferase activity, including catalysis of the transfer 
of a group, e.g., a nucleotide or glycosyl from one com-
pound to another, plays a key role in cellular mechanisms 

regulating plant responses to salt stress [29]. Our study 
detected a transferase enzyme, rice nucleotidyl trans-
ferase protein 10 (OsNTP10), which uridylates small 
RNAs and stimulates their degradation and plays a role in 
salt tolerance [29].

Apart from the processes discussed above, several 
other processes are important for wheat response to salt 
stress and have been considered in various studies. For 
instance, Yuan et al. [14] detected 17 SNPs located near 
or within 98 candidate genes from 13 different genomic 
regions, with 35 genes involved in Gossypium hirsutum 
L. reactive to salinity. Based on results from RNA-seq, 
the eight salt-responsive genes were shown to be homol-
ogous to known salt-tolerance genes, such as GAPN 
(engaged in GAPDH activity), BGAL3 (engaged in car-
bohydrate metabolism), HVA22E (response to abscisic 
acid), RR23 (engaged in CK-mediated signaling), CHIT1 
(chitotriosidase 1), ERF2 (ethylene-responsive TF), 
CLPB1 and HSP18.2 (heat shock protein), WAK2 (wall-
associated receptor kinase 2), and CUT1 (involved in 

Fig. 6 The KEGG pathway of oxidative phosphorylation. Reference pathway: this is the original version; white boxes are hyperlinked to KO, ENZYME, 
and REACTION entries in metabolic pathways; they are hyperlinked to KO entries in non-metabolic pathways. Reference pathway (KO): blue boxes 
are hyperlinked to KO entries that are selected from the original version. Reference pathway (EC): blue boxes are hyperlinked to ENZYME entries 
that are selected from the original version. Reference pathway (Reaction): blue boxes are hyperlinked to REACTION entries that are selected 
from the original version
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fatty acid biosynthesis). Based on a GWAS of RL in rice, 
Yu et al. [17] also found the Chr4-located OsMADS31, a 
MADS-box transcription factor that is down-regulated 
by salinity and is involved in stress tolerance during 
germination.

Theoretical modeling studies on regulatory networks 
are helpful for understanding regulatory mechanisms 
underlying salt-stressed wheat. As a reliable method of 
theoretical modeling, machine learning is an alternative 
to classic statistical procedures in GWAS analysis [30]. 
The use of machine learning algorithms in association 
mapping has been reported for the first time by Szym-
czak, et  al. [30], who elucidated random forests, Bayes-
ian network analysis, and artificial neural networks on 
human diseases. Recently, Yoosefzadeh-Najafabadi et  al. 
[31] used machine learning-based GWAS for explor-
ing QTLs responsible for soybean yield and successfully 
identified the respective MTAs. It seems that using the 
machine learning algorithms may improve our under-
standing of regulatory networks involved in wheat 
response to salinity [32].

As mentioned above, combining mathematical mod-
eling with experimental analysis is important for bet-
ter understanding of regulatory mechanisms underlying 
stresses. Li et  al. [33] used ordinary differential equa-
tion-based modeling to explore cellular regulatory 
mechanisms and reveal the stochastic dynamics of this 
signaling system by the potential landscape theory 
(PLT), which is a recent tool for uncover unknown reg-
ulatory mechanisms. They successfully found the first 
landscape of signaling-induced cell death. It seems that 
search for stress-related enzymatic activities and use the 
PLT can shed light on salt-induced signaling. Discover-
ing stress-related secondary metabolites by deep learn-
ing is another stress research topic of interest. Sun et al. 
[34] employed graph convolutional network with graph 
attention network (GCNAT) alongside experimental 
analysis for prediction the disease-metabolite associa-
tions. They found that GCNAT can be a powerful tool to 
predict the correlations between metabolites and obesity, 
colorectal cancer, and Alzheimer’s diseases. As a result, 
metabolite profiling of salt-stressed wheat alongside 
using neural networks provide an opportunity to detect 
salt-responsive natural products. Recently, mathematical 
modeling has been suggested to uncover competition of 
mRNA droplet pattern. Xu et al. [35] revealed the control 
mechanisms of protein phase-separated pattern forma-
tion. This successful attempt reflects a new approach to 
determine the droplet patterns of salt-induced mRNA. 
Although these approaches were not used in this study, 
there is great potential in using them in future studies 
focused on the relationship between salinity stress and 
wheat responses such as stress-related miRNA [36].

Taken together, our results provide novel insights into 
the genetic basis of wheat germination performance 
under salt stress. Moreover, the candidate genes identi-
fied in this study were located in genomic regions dis-
playing strong associations with germination-related 
characteristics and are thus potential targets for wheat 
breeders. Breeding for germination performance under 
salt stress is challenging as both tolerance and germina-
tion are polygenic traits and are controlled by multiple 
genes. A possible solution may be to pyramid the candi-
date genes in future studies.

Confirmation of GWAS results by using gene expres-
sion analysis can add a screening layer to the correspond-
ing analysis steps, so that the expression of key genes 
related to stress, uncovered by GWAS, can be checked 
again under stressful conditions. Considering the limita-
tions of this research, it is suggested that the genes identi-
fied in this study be further evaluated by gene expression 
techniques such as Real-Time PCR, RNAseq, etc.

Conclusion
In this study, association mapping of germination-related 
properties was performed on a genetic panel of 292 Ira-
nian wheat accessions. A total of 25 significant, func-
tional MTAs were located within protein-coding regions 
in the salt-stressed seedlings. From gene ontology, 17 
candidate genes were identified and shown to be involved 
in mechanisms regulating germination performance 
under salt stress. These findings provide further knowl-
edge of the molecular control of wheat germination per-
formance under salt-stress conditions.

Material and methods
Plant materials
The plant material used in this study consisted of 90 cul-
tivars and 202 landraces of Iranian bread wheat. These 
seeds were provided by the Seed and Plant Improvement 
Institute and the University of Tehran, Karaj, Iran. Fur-
ther details on these 292 wheat accessions can be found 
in Supplementary 1 Tables S1 and S2. These samples are 
available at USDA and CIMMYT with USDA PI numbers 
and CIMMYT numbers (Supplementary 1 Table S1 and 
S2), respectively. The authors declare that all permissions 
or licenses were obtained to collect wheat plants from the 
University of Tehran, Iran. 

Experimental design, treatments, and phenotyping
Wheat accessions were evaluated for germination per-
formance under salt stress using the following three 
salinity levels: 0 (control), 60 (moderate stress), and 120 
(severe stress) mM NaCl. The factorial experiment was 
performed in a completely randomized design (CRD) 
with two replicates in the laboratory of the Department 
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of Farming and Plant Breeding, Tehran University, Iran. 
ANOVA was performed on genotype and treatment. The 
first factor included the 292 Iranian bread wheat acces-
sions and the second factor included three salinity levels 
(0, 60, and 120 mM NaCl).

To perform the experiment, two Petri dishes (diam-
eter 90  mm and thickness 15  mm) were prepared for 
each treatment. Petri dishes were sterilized in an auto-
clave at 150 °C for 2 h. Two layers of Whatman qualita-
tive filter paper No. 1 were placed inside each Petri dish. 
These filter papers were previously sterilized in an auto-
clave at 75 °C for 2 h. Each Petri dish was regarded as a 
replicate and consisted of 25 seeds. Seeds were surface-
sterilized in 1% NaCl for 10  min, followed by washing 
with 70% ethanol for 30 s, and then immediately washed 
three times with distilled water. The parafilm-sealed Petri 
dishes were placed in a germinator for 8 days at 8/16 h 
of light/darkness, temperature 25 °C, and humidity 85%. 
The number of germinated seeds was counted after 72 h 
of incubation. Seeds were considered germinated after 
emergence of about 2 mm root. The germination rate was 
recorded daily until no further germinated seeds were 
observed for two consecutive counts. On the eighth day, 
root and shoot length (RL and ShL), plant length (PL, the 
sum of root and shoot length), the ratio of root to shoot 
length (ShL-RL), and seedling wet and dry weight (WW 
and DW) were measured. Several seed germination-
related indices were also calculated from the measure-
ments (Table 10).

The datasets derived from normal, moderate, and 
severe salinity conditions were analyzed using analy-
sis of variance (ANOVA) to score significant differences 
(P < 0.01) between landraces and varieties by SAS 9.4. 
SPSS Statistics 21.0 was used to calculate the descriptive 
statistics of phenotypic data.

Genotyping and SNP calling
Genotyping-by-sequencing (GBS) was employed to gen-
otype all 292 wheat accessions [37]. The GBS libraries 

were developed and sequenced as described by Alipour 
et al. [38]. Sequencing reads were qualified and trimmed 
by FastQC and Trimmomatic to 64  bp, respectively, 
and grouped into sequence tags. SNPs were explored 
by NCBI-BLAST in default settings, which permit mis-
matches up to 3 bp. To call SNPs, the UNEAK pipeline 
was used in TASSEL [39], which is a software package to 
uncover linkage disequilibrium, evolutionary patterns, 
and trait associations. To avoid false-positive SNPs origi-
nating from sequencing errors, SNPs with a missing rate 
> 10% across samples, a minor allele frequency (MAF) 
< 1%, and heterozygosity > 10% were excluded. Missing 
data were imputed using the LD KNNi method in TAS-
SEL [39]. For the SNP calling, we used the W7984 wheat 
genome as the reference genome [40].

Population genetic analysis
Population structure inference was performed using an 
admixture model implemented in Structure software 
[41]. The assumptive number of subpopulations (K) was 
regarded from K = 1 to K = 10 and 10 000 burn-in steps 
were followed by 10 0000 MCMC steps. The most likely 
K value was determined using the ΔK method in Struc-
ture Harvester [42]. The matrix of population structure, 
i.e. Q, was calculated for the whole population from the 
Structure analyses for the best value of K [39]. The kin-
ship matrix (K) was calculated with the EMMA algo-
rithm using the GAPIT package in R software [43]. A 
principal component analysis (PCA) was also performed 
using the Tidyverse package in R. A neighbor-joining tree 
was constructed based on a pairwise distance matrix by 
Jaccard index and visualized by Archaeopteryx to deter-
mine the relationship between landraces and cultivars. 
This software visualizes, analyzed, and edits potentially 
highly annotated and large phylogenetic trees [https:// 
www. phylo soft. org/ archa eopte ryx/].

Linkage disequilibrium
LD among SNPs was estimated based on the values of 
observed/expected allele frequencies in TASSEL V.5. The 
full matrix option was utilized for estimating the distri-
bution of LD for each subpopulation and in the whole 
association panel (WAP). The pairwise LD was deter-
mined using the squared correlation coefficient of alleles 
 (r2) as it is less sensitive to marginal allele frequencies. 
LD decay was also calculated for each chromosome and 
sub-genome based on the theoretical expectation of  r2 
(see [44] for details).

GWAS analysis
GLM and MLM single-locus models adopt a genome 
scan test with one SNP at a time while needing mul-
tiple corrections (e.g., Bonferroni) for managing false 

Table 10 Seed germination indexes and their calculation 
formula

n1,  n2,…,  n7 represent the number of germinated seeds after 1, 2,…, 7 days and 
N represents the total number of seeds

Index Calculation formula

Germination Energy GE =
nt4
N

× 100

Germination Index GI =
(7n1+6n2+5n3+4n4+3n5+2n6+1n7)

7×N

Seedling Vigor Index SI =
GP×LSh

100

Germination Rate
GR =

n1
t1

+
n2
t2

+
ni
ti

Germination Percentage GP =
n

N
× 100

https://www.phylosoft.org/archaeopteryx/
https://www.phylosoft.org/archaeopteryx/
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positives. This process is too conservative and may lead 
to loss of actual associations, which are fundamental for 
the traits of interest [45]. Moreover, single-locus models 
cannot simultaneously estimate all marker impacts, and 
thereby cannot present a proper model for genetic map-
ping the quantitative properties, which are modulated 
by the cumulative act of numerous genes [45]. To over-
come these challenges, a multi-locus mixed linear model 
(mrMLM) approach was adopted for detecting reliable 
associations.

Briefly, the mrMLM procedure was implemented in 
two steps. First, all potentially associated SNPs were 
included in a second model, where their effects were 
estimated using an empirical Bayes approach. Finally, 
a likelihood ratio test was adopted to evaluate all non-
zero marker effects. The multi-locus model was evalu-
ated using the mrMLM package in R [45]. We used a 
significance threshold (cut-off) of −  log10 (P-value) ≥ 3.0 
(P ≤ 0.001) for identifying significant associations in the 
model, as reported by many authors. All SNPs that met 
this cut-off value were categorized as significant MTAs. 
GWAS results were summarized using Manhattan plots 
for visualizing associations between genotypes and phe-
notypes using the GAPIT package [46]. In this plot, 
the x-axis and y-axis represent the genomic position of 
SNPs and the −  log10 (P-value) obtained from the F-test, 
respectively. A Q-Q plot was also performed to assess the 
distribution of p-values obtained from the GWAS analy-
ses [23].

Identification of candidate genes
Genome sequences surrounding all significantly associ-
ated SNPs were collected and used for gene annotation 
with BLAST against the IWGSC RefSeq v1.0 and the 
IRGSP 1.0 genome references for wheat and rice, respec-
tively [40, 47]. After alignment, genes exhibiting the high-
est blast score and identity percentage were selected. The 
molecular function and biological processes of putative 
genes were detected in Ensembl Plants [http:// plants. 
ensem bl. org/ Triti cum_ aesti vum/ Info/ Index]. The iden-
tification of putative candidate genes was evaluated 
according to the following two parameters: being located 
in the vicinity of the peak marker and having known 
functions and involvement in the studied traits in both 
wheat and rice. Moreover, the significant SNPs were uti-
lized in enrichment analysis of gene ontology via KOBAS 
version 2.0 for testing in the KEGG [48–50].
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