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A B S T R A C T

Reliable information on soil-forming parent materials is crucial for informed decision-making in infrastructure
planning, land-use management, environmental assessments, and geohazard mitigation. In the northern land-
scapes previously affected by glacial processes, these parent materials are predominantly Quaternary deposits.
This study explored the potential of machine learning to expedite soil parent material mapping in Sweden. Two
Extreme Gradient Boosting models were trained, one using terrain and hydrological indices derived from Light
Detection and Ranging data, and the other incorporating additional ancillary map data. Both models were
trained on 29,588 soil observations and evaluated against a separate hold-out set of 3500 observations. As a
baseline, the existing most detailed maps achieved a Matthews Correlation Coefficient of 0.36. The Extreme
Gradient Boosting models achieved higher MCC values of 0.45 and 0.56, respectively. To understand spatial
variations in model performance, the second model was evaluated across 28 physiographic regions in Sweden.
The results revealed that model performance varied across regions and deposit types, with till and peat exhibiting
better performance than sorted sediments. These findings underscore the need for region-specific analyses to
optimize the application of machine learning in digital soil mapping.

1. Introduction

Parent materials (PMs) are the initial state of the soil system (Jenny,
1994) and have a major influence on soil properties, which in turn affect
nutrient availability, hydrology, and land stability (Anderson, 1988;
Richter et al., 2019). Understanding the distribution of PMs is crucial for
land-use planning, infrastructure construction, resource exploration,
and geohazard recognition, as they carry significant environmental and
societal impacts (Bernknopf et al., 1983; McMillan, 2002; Häggquist and
Söderholm, 2015). PM can be broadly categorized as either primary in-
situ or secondary transported material, such as alluvium, colluvium,
aeolian, or glacial deposits (Gray and Murphy, 1999). In temperate re-
gions, most soils have developed on soft rocks, or on unconsolidated
sediments formed during the Quaternary period (the past 2.6 million
years) through processes like erosion and deposition (Anderson, 1988).
During glacial and postglacial times, these processes have created a
mosaic of deposits at the surface that are different from the underlying
bedrock geology (Lawley and Smith, 2008; Heung et al., 2014). The poor

representation of the near-surface materials in existing geological maps
often provide an erroneous view of soil PMs, further limiting their
usefulness for soil modeling (Lawley and Smith, 2008; Lemercier et al.,
2012). Producing PM maps (or often referred to as Quaternary Deposit
(QD) maps in previously glaciated regions) is a labor-intensive, iterative
process that often involves the collation and synthesis of diverse data
sources. This often includes digitizing hand-drawn maps, compiling
published and unpublished cartography or literature, and refining and
updating maps by integrating data from new geophysical or geochem-
ical investigations, with nationwide coverage typically achieved by
amalgamating maps from different regions across the country (Weerts
et al., 2005; Berg, 2009; Salazar Rincón et al., 2019).

The advent of Light Detection and Ranging (LiDAR) technology has
revolutionized geomorphological and geological mapping across Scan-
dinavia and beyond (Webster et al., 2006; Roering et al., 2013; Johnson
et al., 2015; Ganerød et al., 2023), largely because it facilitated access to
high-resolution Digital Elevation Models (DEMs), which have proven
invaluable for identifying landscape features (Eilertsen et al., 2015;
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Peterson et al., 2017; Goodship and Alexanderson, 2020). Prior to the
nationwide LiDAR scanning by the Swedish Land Survey (Lantmäteriet)
in 2009, the methods for national scale QD mapping by the Geological
Survey of Sweden (SGU) had remained unchanged for at least 15 years
(Dowling et al., 2013). Such mapping relied heavily on ground in-
vestigations, supplemented by stereoscopic 3D viewing of aerial pho-
tographs and other thematic maps. Due to the time and effort required
for manual mapping, priority has been given to areas of significant so-
cietal interest. As a result, while maps at a scale of 1:100,000 are
available for large parts of Sweden, the highest-quality 1:25,000 scale
maps are concentrated in the densely populated southern urban centers
and agriculturally important regions (The Geological Survey of Sweden,
2024a). The vast northern inland areas, in contrast, rely on
lower-resolution 1:1000,000 scale maps that depict generalized land-
forms (Fig. 1a) (The Geological Survey of Sweden, 2024b). Although QD
maps at scales smaller than 1:100,000 are not intended for detailed
planning and analysis, they are often the only resource available for
national-scale mapping efforts (e.g., National Land Cover Map by The
Swedish Environmental Protection Agency, 2020, Soil Moisture Map by
Ågren et al., 2021). The lack of systematically available, detailed maps
compromises the reliability of products derived from them - a problem
that is not unique to Sweden (Lawley and Smith, 2008). Currently, at
SGU, producing a 1:50,000 scale map for an area of 625 km2 typically
requires 250–350 h of work. This includes interpreting LiDAR and other
remotely sensed data, conducting fieldwork, and compiling the maps.
Given this approach, mapping the remaining areas of Sweden would
take an estimated 50–100 years (personal communication, Cecilia
Karlsson, Dec. 2024).

Similar to conventional soil mapping, in which soil surveyors or
pedologists seek to establish conceptual relationships between soils and
the landscape (Hudson, 1992), Digital Soil Mapping (DSM) techniques
generalize and formalize soil classes or properties with spatially refer-
enced environmental covariates for quantitative prediction (McBratney
et al., 2003). Globally, DSM has transitioned from the academic domain
to the operational stage (Arrouays et al., 2017; Zhang et al., 2017;
Richer-de-forges et al., 2022). Advances in computing power and data
storage, as well as the increasing availability of environmental datasets
and regional soil databases, have fueled the rapid adoption of Machine
Learning (ML) in DSM (Padarian et al., 2020; Wadoux et al., 2020). ML
algorithms can handle complex relationships between large numbers of
cross-correlated predictor variables and the target variable, a challenge
for traditional geostatistical methods (Wadoux et al., 2020). Though
DSM research covers a vast array of topics, its application to categorical
mapping is limited (Wadoux et al., 2020). Recent developments have
begun to expand this research area of multiclass mapping of soils over
large areas (Ramcharan et al., 2018; Heung et al., 2022; Minarik et al.,
2024, preprint). However, existing multiclass mapping studies of soil
PMs are still often restricted to relatively small geographical extents
(Lemercier et al., 2012; Latifovic et al., 2018), rely on limited field
samples (Bonfatti et al., 2020; Prince et al., 2020; Krutskikh, 2022), or
utilize synthetic training data (so-called ‘pseudopoints’) generated from
polygon maps to improve spatial resolution through map disaggregation
(Heung et al., 2014; Sorenson et al., 2023). In Sweden, DSM develop-
ment has largely remained within the research realm, with studies
typically conducted in specific regions (Söderström et al., 2016; Becher
et al., 2019; Piikki and Söderström, 2019; Adler et al., 2022). Given the
increasing demand for accurate and comprehensive QDmaps in Sweden,
especially for two-thirds of the country currently lacking detailed maps,
there has been a growing interest in integrating DSM andML techniques.
In this context, our study is the first, to our knowledge, to explore the
feasibility of generating wall-to-wall PM maps across a vast area
(470,000 km2) at a high resolution (4 m2). Since most soil PMs in
Sweden are QDs, we use the terms interchangeably to refer to the un-
consolidated materials at the surface that are the foundation for even-
tual soil formation. However, we have retained the term ‘QD maps’
when directly referring to the official map products from the SGU.

In this study, we utilized data from 33,088 field observations ob-
tained from extensive regional and national soil surveys for soil PM
mapping in Sweden. Two separate Extreme Gradient Boosting
(XGBoost) models were trained. The first model used exclusively terrain
and hydrological indices derived from high-resolution airborne LiDAR
data. A second model incorporating additional ancillary map data
alongside the LiDAR-derived indices was trained and evaluated across
Sweden’s 28 physiographic regions. Our nationwide case study aimed to
answer: (1) How do the ML-derived maps (using XGBoost) compare
statistically to the existing QD maps? (2) Are certain PMs easier or more
challenging to identify than others? (3) How do individual features
impact the overall model performance, and the classification of indi-
vidual PMs? and (4) Does the model performance exhibit spatial varia-
tion? Additionally, we provided a visual comparison between existing
QD maps and the ML-derived maps, highlighting key differences and
considerations for their application.

2. Material and methods

2.1. Study area

The study area spans most of Sweden, excluding the data-scarce
mountain regions in the northwest (Fig. 1). Situated between 55◦ N
and 70◦ N and 11◦ E and 25◦ E, Sweden covers an area of ca. 470,000
km2. The country exhibits a diverse geomorphology, ranging from
mountainous terrain in the northwest to lowland plains in the south.
Located within the boreal and nemoboreal zone of northern Europe,
Sweden’s landscape is predominantly forested (68 %), followed by open
mires and other open land uses (22 %) and arable land (7 %) (Statistics
Sweden, 2019). Exposed bedrock constitutes a minor portion of the
country’s surface, while large parts of the bedrock are covered by
Quaternary unconsolidated glacial deposits (glaciofluvium and till) and
postglacial deposits (clay, silt, and peat), formed and shaped by glaciers,
water, and to a lesser extent, wind (Donner and Donner, 2005). During
the post-glacial times, the retreat of the glacier border triggered a period
of rapid isostatic rebound and land uplift due to the release of pressure
from the overlying ice cap (Karlsson et al., 2014). The central lowlands
and areas around the coast that were submerged under the sea after
glaciation are now partially covered by glacial and post-glacial clays
(Agrell, 1979). With the land uplift, wave actions reworked till and
glaciofluvial deposits in these areas to form littoral sand and gravel
(Agrell, 1979) (Fig. 1b). The warmer humid climate, combined with a
high groundwater table, created favorable conditions for peat formation
(Franzén et al., 2012; Morris et al., 2018; Piilo et al., 2020). The country
is divided into 29 distinct physiographic regions based on climatic,
topographical, biological, and geomorphological factors (Helmfrid,
1996) (Fig. 1c).

2.2. Field data

For model training, we utilized field sampling data from (1) the
Swedish Forest Soil Inventory (SFSI) (Fig. 1d), and (2) the Swedish
Agricultural Soil Inventories (SASI) (Fig. 1e).

2.2.1. Swedish forest soil inventory (SFSI)
The Swedish Forest Soil Inventory (SFSI) consists of 19,650 geo-

referenced soil pits across 5 survey regions, excluding urban areas,
cultivated land, water bodies, and high mountain regions (Fig. 1d). We
utilized data collected during the sampling round from 2003 to 2012.
PM and grain size were determined with a probe to collect soil samples
from a minimum of 20 cm beneath the lower boundary of the humus
layer. The pits were georeferenced with a GPS measurement error of up
to 10 m. The SFSI classifies soil based on five PMs (well-sorted sedi-
ments, poorly sorted sediments, till, bedrock outcrops, and peat) and
eight texture classes (cobble and stone (20–200 mm), gravel (2–20 mm),
coarse-grained sand (0.6–2 mm), medium-grained sand (0.2–0.6 mm),
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Fig. 1. Spatial data of Sweden. (a) Coverage of the Quaternary deposit (QD) maps by the Geological Survey of Sweden as of spring 2024, reclassified into three
categories (source: the Geological Survey of Sweden). (b) The highest coastline is shown on a background map featuring a Digital Elevation Model (DEM). The blue
hatched areas were submerged beneath the sea before land uplift following deglaciation (source: Geological Survey of Sweden). (c) Sweden is divided into 29 distinct
physiographic regions based on geology, topography, and biology etc. See Fig. 5 for detailed legends (source: the National Atlas of Sweden). (d) Field sampling plots
from the Swedish Forest Soil Inventory (SFSI). Sampling density increases from I to V. (e) Field sampling plots from the Swedish Agricultural Soil Inventory (SASI).
Higher sampling density in the southern agricultural regions. (f) Distribution of the test set, constructed from (d) and (e).
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fine-grained sand (0.06–0.2 mm), coarse silt (0.02–0.06 mm), fine silt
(0.002–0.02 mm), clay (< 0.002 mm)) (The Swedish National Forest
Inventory, 2021). Readers can refer to the SFSI sampling protocol for
detailed instructions on PM and texture classification (The Swedish
National Forest Inventory, 2021).

2.2.2. Swedish agricultural soil inventories (SASI)
Due to their similar characteristics, we combined topsoil samples

(0–20 cm) from two national agricultural soil sampling campaigns:
12,599 topsoil samples (2011− 2012) were collected by the Swedish
Board of Agriculture (Jordbruksverket) from a more or less regular grid
with a density of approximately 1 sample km− 2 (Piikki and Söderström,
2019), and 5142 topsoil samples (1988–2017) collected by the Swedish
Environmental Protection Agency (Naturvårdsverket) (Fig. 1e). Agri-
cultural soil samples are concentrated in the south, reflecting the higher
prevalence of agricultural land in that region. The determination of
surface deposit types in our investigation was based on the percentage of
sand, clay, and silt content. We classified fine sediments as those with a
majority grain size ≤0.2 mm and coarse sediments as those with a ma-
jority grain size >0.2 mm. In total, the SASI dataset comprises 13,622
samples after data cleaning.

2.3. Data harmonization and partition

There are discrepancies in data collection methods and classification
schemes between QD maps and field surveys. The SFSI and the original
QD maps represent soil PMs at more comparable depths (SFSI at least 20
cm below the humus layer, QD maps 50 cm below the surface), while
SASI represents topsoil up to 20 cm below the surface. To facilitate
model training and comparison with the existing maps, a tailored
harmonization process was devised collaboratively with the experts
from the SGU where all 48 categories were reclassified into 7 more
general soil PM classes: till, rock outcrops, peat, and two types of sorted
sediments (coarse (fine sand-gravel) and fine (clay-silt)) from forest and
agriculture land use, respectively. We defined sorted sediments as pri-
marily transported and deposited by water, with a potential minor wind
contribution. Fine sediments (clay-silt) were defined as having a grain
size less than or equal to 0.2 mm, while coarse sediments (fine sand-
gravel) were larger than 0.2 mm. Till, in contrast, was glacially depos-
ited and generally unsorted. In Sweden, definitions of peat vary (at least
20 % organic material and minimum thickness of 30 cm, 40 cm, or 50
cm). In this study, we adopted the 50 cm threshold as defined by SGU
(Ågren et al., 2022).

We created a test set with uniform sampling density across our study
area (Fig. 1f), following simple random sampling principles (Brus et al.,
2011) to generate a random subset from our original samples. This
resulted in a test set totaling 3500 points (0.02 samples km− 2). The
remaining 29,588 points were used for model training (0.06 samples
km− 2). Further details regarding the harmonization procedure were
provided in the Supplementary Material Table. A.1, and sample counts
for all final classes in the training and evaluation sets were provided in
the Supplementary Material Table. A.2.

2.4. Environmental covariates

2.4.1. The quaternary deposit (QD) maps from the Geological Survey of
Sweden (SGU)

The QD maps from SGU provide a foundation for understanding
Sweden’s geology, surface deposit formation, and grain size composition
(Karlsson et al., 2021). These maps depict the base layer (geology), the
distribution of QDs 50 cm below the ground surface, and in some cases,
thin/discontinuous surface layers between 0 and 50 cm at the ground
surface. Specific landforms such as hummocky moraine and sand dunes
are detailed with additional line and point layers (Karlsson et al., 2021).
For this study, we classified the original QD map types into three cate-
gories based on their scale and cartographic methods. ‘Detailed maps’

(1:25,000 & 1:50,000) cover approximately 35.8 % of Sweden, pri-
marily concentrated in southern urban centers and regions with agri-
cultural importance (Fig. 1a). The 1:25,000 scale maps were created
through a combination of manual interpretation of LiDAR DEMs and
extensive field surveys. They are often an update from older 1: 50,000
maps. The 1: 50,000 scale maps were produced through extensive field
surveys with manual interpretation of aerial photographs, topographic
maps, and economic maps. ‘Intermediate scaled maps’ (1:100,000),
covering 41.7 % of the country, were created by interpreting aerial
photos and validated with less extensive field surveys. The remaining
22.5 % of the country, primarily in the northern inland, mostly rely on
the ‘overview maps’ (between 1:250,000 and 1:1000,000) created
partly based on aerial photograph interpretation with less intensive
fieldwork, or digitizing analog, hard-copy maps(The Geological Survey
of Sweden, 2018; 2024a; b; c; d). A nationwide QD map was provided in
Supplementary Material Fig. A.1. This map was created by combining
the highest-quality maps available for each region. For visualization on
static media, we chose the version with simplified classes for readability
without zooming possibilities. Readers can explore detailed, interactive
maps on SGU’s web map viewer at: https://apps.sgu.se/kartvisare/kart
visare-jordarter-25-100.html (for ‘detailed’ maps), or https://apps.sgu.
se/kartvisare/kartvisare-jordarter-1-miljon.html (for ‘overview’ maps).

2.4.2. Environmental features for machine learning models
Two main sources of environmental features were used to train the

ML models. Terrain and hydrological indices were derived from the
original 2-m LiDAR DEM (Table 1). These features captured landforms
and hydrological characteristics at various scales:

• 9 indices were derived directly from the high-resolution 2-m DEM for
fine-scale details.

• To encompass larger landscape features, we resampled the 2 m DEM
to 20m and 50m using the bilinear interpolation method to facilitate
the calculation of an additional 13 and 4 indices, respectively. For
detailed descriptions of these indices see the WhiteboxTools User
Manual (Lindsay, 2024).

We further integrated ancillary data from existing maps and satellite
imagery, including:

• Normalized Difference Vegetation Index (NDVI): Using cloud-free
(<20 % cover) Sentinel-2 satellite imagery, we computed the me-
dian NDVI for the growing seasons (June 1 to September 30) from
2017 to 2023.

• Original Quaternary Deposit (QD) Map (The Geological Survey of
Sweden, 2018; 2024a; b; c; d): This map was compiled from the best
available QD maps in 2020 (scales vary from 1:25,000 to 1:1000,
000).

• Depth to Bedrock Map (Daniels and Thunholm, 2014): This map
interpolates data from sources such as borehole drilling records,
hydrogeological explorations, and seismic profiles. It uses the QD
map as an input (assuming 0 m for rock outcrops).

• National Land Cover Map (The Swedish Environmental Protection
Agency, 2020): The 2018 National Land Cover Map incorporates
data from 41 sources, including the QD map, LiDAR DEM, Depth to
Bedrock map, Sentinel-2 imagery, and other geospatial layers,
resulting in a 10-m resolution map with 25 land cover classes
(Minimum Mapping Unit (MMU): 0.01 ha).

• Distance to Highest Coastline (The Geological Survey of Sweden,
2015): This feature identifies the distance to a critical reference point
– the highest coastline which indicates the maximum elevation
reached by the sea after deglaciation and land rebound (Fig. 1b).
Areas above this line are dominated by glacial deposits and peat,
while areas below have more diverse water-deposited sediments.
This feature is derived from data points in SGU and Geological Sur-
vey of Finland (GTK) databases.
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• Age from Deglaciation: Derived from DATED-1 time-slice recon-
struction of the evolution of the extent of the Eurasian ice sheets
25–10 ka (Hughes et al., 2016).

All covariate data layers were resampled to a common resolution (2
m) and aligned to the national projection system (SWEREF99 TM). We
utilized established open-source geospatial libraries for preprocessing
data. Terrain and hydrological indices were calculated using White-
boxTools (v2.3.0) (Lindsay, 2024). Other geospatial data manipulation,

including resampling and raster value extraction, was facilitated by
GDAL/OGR (v3.9.1) (GDAL/OGR contributors 2024) and Rasterio
(v1.3.10) (Gillies, 2019) Python package. Sentinel-2 satellite imagery
was accessed and processed through Google Earth Engine (GEE)
(Gorelick et al., 2017) and its Python API geemap (v0.33.1) (Wu, 2020).

2.5. Extreme gradient boosting (XGBoost) model training

The Extreme Gradient Boosting (XGBoost) algorithm was employed

Table 1
Feature layers used XGBoost model training. Each entry details the name, scale, specific settings in processing if applicable (such as search area or filter kernel size),
data median, and range. All layers were resampled to 2 m resolution. Features indicated with an asterisk (*) were incorporated in the production of the National Land
Cover Map. (a) LiDAR-derived indices. (b) Ancillary map data.

(a)

LiDAR derived digital terrain indices

Feature Scale
/Resolution

Specific Settings Raster value median (range)
/Number of classes

Source

Digital Elevation Model (DEM)* 2 m 110.94 (− 2.07–863.65) (The Swedish Land Survey,
2022)

Elevation above stream from a 1 ha stream
network

2 m 2.0 (0.0–154.0) (Lindsay, 2024)

Elevation above stream from a 10-ha stream
network

2 m 4.0 (0.0–246.0) Ibid.

Downslope index with 2 m drop 2 m 124.45 (2.0–31,250.0) Ibid.
Downslope index with 2 m drop 20 m 0.07 (0.0–176.6) Ibid.
Circular variance of aspect 2 m 3 0.05 (0.0–0.99) Ibid.
Circular variance of aspect 20 m 5 0.21 (0.0–0.99) Ibid.
Circular variance of aspect 50 m 11 0.28 (0.0–0.99) Ibid.
Standard deviation of Slope 2 m 3 0.67 (0.02–21.93) Ibid.
Deviation from mean elevation 2 m 7 − 0.02 (− 3.09–3.58) Ibid.
Terrain ruggedness index 2 m 0.1 (0.0–4.14) Ibid.
Average normal vector angular deviation 20 m 15 2.40 (0.11–56.0) Ibid.
Multi-Scale roughness magnitude 2 m Min_scale = 1, max_scale = 10, step = 2 1.98 (0.2–45.58) Ibid.
Maximum Elevation deviation 2 m Min_scale = 50, max_scale = 500, step =

50
− 0.37 (− 4.49–8.15) Ibid.

Maximum Elevation deviation 20 m Min_scale = 20, max_scale = 200, step =

11
0.0 (− 5.55–3.42) Ibid.

Maximum Elevation deviation 50 m Min_scale = 50, max_scale = 500, step =

50
− 0.49 (− 4.92–7.8) Ibid.

Max downslope elevation change 20 m 1.36 (0.21–3975.46) Ibid.
Topographic Wetness Index 20 m 7.32 (− 1.49–21.24) Ibid.
Slope 20 m 20 2.58 (0.01–89.35) Ibid.
Slope 50 m 50 1.53 (0.01–40.35) Ibid.
Relative topographic positions 20 m x = 11, y = 11 0.04 (− 0.99–1.0) Ibid.
Maximal curvature 20 m 20 m 0.0 (− 0.02–0.19) Ibid.
Maximal curvature 50 m 50 m 0.0 (− 0.0–0.08) Ibid.
Minimal curvature 20 m 20 m − 0.0 (− 0.27–0.04) Ibid.
Directional relief 20 m 278.43

(− 44,738,810.1–1359.53)
Ibid.

Geomorphons 20 m 50 9 classes Ibid.
Profile curvature 20 m (− 1.2–0.14) Ibid.

(b)

Feature Scale
/Resolution

Specific
Settings

Raster value median (range)
/Number of classes

Source

Ancillary Map Data
SGU Quaternary Deposit Map base layer up to 0.5 m
below surface*

1:25,000 to 1:
1000,000

12 classes (Karlsson et al., 2021)

National land cover map 10 m 23 classes (The Swedish Environmental Protection
Agency, 2020)

Age from deglaciation ? 11.51 (10.0–17.28) (Hughes et al., 2016)
Distance to the highest coastline 1:100,000–1:200000 8.0 (0.0–255.0) (The Geological Survey of Sweden, 2015)
Depth to bedrock* 10 m 7.43 (0–179.64) (The Geological Survey of Sweden, 2023)
Normalized difference vegetation index (NDVI)
(Sentinel 2) *

400 m 0.41 (− 0.04–0.91)

Coordinates
Easting 2 m 568,679 (280795–913,007)
Northing 2 m 6,920,018

(6141258–7,608,074)
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due to its efficiency in handling large datasets through optimized data
structures and parallelization techniques (Chen and Guestrin, 2016). It is
a tree ensemble model, but unlike Random Forest, which builds trees
independently and derives the final prediction by majority voting
(classification) or averaging (regression), XGBoost builds trees sequen-
tially and corrects errors from the previous ones using gradient updates.
It is less prone to overfitting due to built-in L1 and L2 regularization. For
classification problems, the final prediction of XGBoost is assigned to the
class with the highest probability. Its robustness has been demonstrated
in national-scale applications in Sweden (Ågren et al., 2021; Ågren and
Lin, 2024).

In this study, two XGBoost models were trained using the Python
libraries scikit-learn (v1.5.1) (Pedregosa et al., 2011) and XGBoost
(v2.1.1) (Chen and Guestrin, 2016). The first model utilized only
LiDAR-derived indices as input features. The second model incorporated
the same LiDAR features and additional maps (Table 1). To optimize
hyperparameters, we employed the Tree-structured Parzen Estimator
(TPE) sampler (Watanabe, 2023) implemented in Optuna (v3.6.1)
(Akiba et al., 2019). The objective function was to maximize the mean
Matthews Correlation Coefficient (MCC) (Matthews, 1975) across
five-fold cross-validation on the training set (n= 29,588) over 100 trials.
Each XGBoost model was trained with 100 fixed random states to ensure
deterministic behavior and allow for a fair comparison of their perfor-
mance. Throughout this study, all computations were performed on a
Linux system (Ubuntu 22.04.2) with an AMD Ryzen ThreadRipper
3990× processor (64 cores, 2.9 GHz, 256 MB cache) and 256 GB of
DDR4 RAM.

2.6. Model evaluation

2.6.1. Evaluation metrics
We evaluated model performance on the unseen hold-out set (n =

3500) using the following metrics: MCC (Matthews, 1975) for overall
performance, and F1 score (harmonic mean of precision and recall) for
class-specific performance. The precision, recall, and F1 scores of the
best-performing XGBoost models (LiDAR-only and all features) based on
MCC from 100 iterations were reported. Additionally, SHAP values were
employed to identify the key features using the Python package SHAP (v
0.39.0) (Lundberg and Lee, 2017). A global measure was calculated by
taking the mean of the absolute SHAP value for each feature across all
instances in the hold-out test set. We computed MCC values across
physiographic regions using the test set for the best-performing XGBoost
model (all features). Only physiographic regions with a minimum of 80
field observations were selected to ensure sufficient data for reliable
metric calculation. This approach provides a more nuanced under-
standing of the spatial variation in model performance and its applica-
bility, particularly in regions lacking detailed QD map coverage.

2.6.2. Visual comparison of maps
To facilitate visual comparison, we focused on a peat-rich region in

northern Sweden (64◦23′N, 19◦78′E). This area, well-known to the au-
thors through decades of extensive research and established local
knowledge (Laudon et al., 2013, 2021), provides a reliable basis for
ground-truthing. Moreover, a high-quality QDmap (1:25,000) produced
by the SGU was available for this area. This map was created through
extensive field investigations and the use of high-density LiDAR data (20
points m− 2), significantly exceeding the national average of 1–2 points
m− 2. Four spatial representations of peat were presented: 1) an existing
‘overview’ QD map (1:1000,000), 2) a high-quality ‘detailed’ QD map
(1:25,000), 3) an XGBoost (LiDAR only)-inferredmap and 4) an XGBoost
(all features)-inferred map. By displaying the ‘overview’ QD map, we
aimed to exemplify the challenges faced by areas lacking high-resolution
‘detailed’ maps.

3. Results and discussion

3.1. Evaluation of existing QD maps and XGBoost model performance

To establish a baseline for assessing the performance of the XGBoost
models, we evaluated the existing QD maps across scales using the hold-
out test set (n = 3500) (Fig. 1f). On a country level, the ‘overview’ maps
(1:250,000–1:1000,000) achieved a low level of agreement with the
field data with an MCC of 0.18, followed by ‘intermediate scale’ maps
(1:100,000) at 0.19. The highest agreement with the field plots was
found with the ‘detailed’ maps (1:25,000–1:50,000) at an MCC of 0.36
(Table 2). Knight and Lunetta (2003) found a positive correlation be-
tween MinimumMapping Units (MMU) size and accuracy metrics, up to
the threshold of 6.4 ha, beyond which improvements plateaued. In
contrast, our study revealed an opposite trend, with the evaluation
metric MCC improving as MMU size decreased. However, a similar
plateau effect was observed between ‘intermediate-scale’ maps (MMU:
2500–10,000 m2) and ‘overview’ maps (MMU: 40000–1000,000 m2)
(Table 2) as the MMU sizes reached a comparable threshold to that
identified in the aforementioned study (64,000 m2). The trend in our
study could be due to the fundamental differences in map-making
methods and the classification details between different map types, as
opposed to resampling raster maps to different MMUs in the study by
Knight and Lunetta (2003). The ‘detailed’ maps were produced using
rigorous methods, including interpreting LiDARDEM and extensive field
validation, enabled the identification of a more comprehensive range of
surface deposit types. With smaller MMU of 625 m2 for 1: 25,000 and
2500 m2 for 1: 50,000 scales, the ‘detailed’ maps achieved average
location errors (location of delineation between different QDs) between
25 and 100 m (Table 2). In contrast, ‘overview’ maps were created with
a fixed display scale of 1:250,000 to 1:1000,000 where only large-scale
QDs were identified. Their digitization was based on broader assump-
tions and generalizations, resulting in larger location errors (200 to
1000 m) (Table 2).

The XGBoost (LiDAR only) model achieved a mean MCC of 0.45
(Table 2), surpassing the MCC of 0.36 obtained by the ‘detailed’ maps.
However, this result pertains to our 7-class ML model, which lacks the
level of detail of the original 48-class QD maps (Supplementary Material
Table. A.1). Although the relatively low MCC values of the QD maps
raised concerns about potential error propagation into the ML process,
the inclusion of them improved model performance, with XGBoost (all
features) achieving an MCC of 0.56 (Table 2). This improvement can be
attributed to the pedological expertise and insights captured in the
original maps, in combination with the ability of ML techniques to filter
out noise and capture underlying soil-environmental relationships (Teng
et al., 2018; Liu et al., 2022). Another possible explanation could lie in
the support (n), defined by volume, size, shape, and spatial orientation

Table 2
Evaluation of Quaternary Deposit Maps using Matthews Correlation Coefficient
(MCC). Note that the number of data points within each map type may vary. A
detailed breakdown of the precision, recall, F1 scores, and support (n) was
provided in Supplementary Material Table. A.3.

Map type (scale) MCC n Average location
error (Karlsson
et al., 2021)

Minimum mapping
unit

‘Overview’ maps (1:
250,000–1:
1000,000)

0.18 934 200–1000 m 40,000–1000,000
m2

‘Intermediate scale’
maps (1: 100,000)

0.19 1522 100–200 m 2500–10,000 m2

‘Detailed’ maps (1:
25,000–1: 50,000)

0.36 987 25–100 m 625 & 2500 m2

XGBoost (LiDAR
only) (2 m)

0.45 3500 10 m 4 m2

XGBoost (all
features) (2 m)

0.56 3500 10–1000 m 4 m2
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(Gotway and Young, 2002). Point-based support usually presents the
worst-case scenario, potentially leading to an underestimation of the
true accuracy (Bishop et al., 2015). The actual quality of the QD maps
might exceed the level indicated by this point-based evaluation.
Nevertheless, spatially explicit comparisons between raster and vector
datasets are challenging due to spatial and categorical mismatches
(Wulder et al., 2006). Additionally, the GPS positioning errors of up to
10 m of the field samples can also undermine the reliability of the
evaluation. Despite these uncertainties, the higher MCCs for the

XGBoost models indicate the feasibility of using ML to automatically
generate high-resolution future maps based on laser data and/or ancil-
lary map data.

3.2. Visual comparison of maps

Waterbody polygons from the Swedish Property map (1:12,500)
retrieved from the Swedish Land Survey were overlaid on all maps to aid
visual interpretation. The limitation of using ‘overview’ maps for

Fig. 2. Visual comparison of peat deposit distributions. (a) Quaternary Deposit (QD) map (1:1000,000) exemplifies the limitations of the ‘overview’ maps. (b)
‘Detailed’ QD map (1:25,000). (c) XGB (LiDAR only)-inferred map (2 m) and (d) XGB (all features)-inferred map (2 m). (e) and (f) zoom in to areas within panels (b)
and (c), providing a closer look at the delineation of peat and till boundaries. The dashed lines in figures (e) and (f) indicate our interpreted border between till and
peat based on the digital elevation model (DEM) and field visits.
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detailed analysis is evident in Fig. 2a, where the peatland area was
entirely omitted due to polygon map generalization. This process,
commonly employed to enhance polygon map legibility at small scales,
involves the elimination of certain small polygon features, smoothing of
contours, and aggregation of closely spaced features (Smirnoff et al.,
2012; Sayidov et al., 2020). While ‘overview’ QD maps (scales
<1:100,000) are acceptable for national-level visualization, their use in
other contexts such as GIS analyses, detailed planning, and decision-
making requires caution (The Geological Survey of Sweden, 2024b).
Conversely, the ‘detailed’ QD map (Fig. 2b), the XGBoost (LiDAR only)
(Fig. 2c), and the XGBoost (all features) (Fig. 2d) exhibit similar spatial
patterns for the peat extent. However, discrepancies were apparent
when zooming in on specific areas within the ‘detailed’ QD map and the
XGBoost (LiDAR only) map (Fig. 2e& f). The high-resolution raster maps
also exhibit uncertainties, as demonstrated by the green pixels (coarse
sorted sediments) in the XGBoost (LiDAR only) maps (Fig. 2c & f),
known as the ‘salt-and-pepper’ effect (Blaschke et al., 2000, 2014;
Whiteside et al., 2011). The isolated pixels are likely artifacts, as most
landscape features need to be represented by areas larger than the size of
an individual pixel (Whiteside et al., 2011). Various post-processing
techniques to filter out noise could be applied to mitigate the visual
clutter arising from undergeneralization in Fig. 2c-f. The harmonization
process integrating materials from postglacial, glacial, and glaciofluvial
processes (Supplementary Material Table A.1) further complicates the
distinction between noise and actual landscape features based solely on
model output. This also highlights the importance of expert knowledge
when implementing DSM with ML during the model training process
and for interpreting model outputs (Rossiter et al., 2022). The XGBoost
(all features) map benefited from the high spatial resolution of a raster
map, allowing for a detailed depiction of small landscape features, while
incorporating existing QD maps during training prevented the genera-
tion of isolated pixels as observed in the XGBoost (LiDAR only) model.
For practical purposes, the XGBoost (all features) might be the best
model for application.

3.3. Predictive capability for different soil parent material classes

Our training data originates from two landscapes: forest (SFSI) and
agricultural (SASI). To aid the visualization in Fig. 3, shapes were
employed to represent ‘detailed’ QD maps (triangles), XGBoost (LiDAR-
only) model (crosses), and XGBoost (all-features) model (circles). We
used marker styles to differentiate PM types, with full markers repre-
senting PMs in forest land use, and half markers for those occurred in
agricultural land use. Further color coding was applied (Fig. 3). Both
XGBoost models excelled at classifying till, the dominant soil PM,
achieving F1 scores of 0.82 (all features) and 0.80 (LiDAR only), while
the ‘detailed’QDmaps achieved an F1 score of 0.60. This could be due to
the slight discrepancies in the definition of till in the original QD maps
and field sampling, where the QD maps can contain well-sorted sedi-
ments whereas field sampling defines till strictly as unsorted glacial
deposits. XGBoost also demonstrated an improvement in peat classifi-
cation, achieving F1 scores of 0.76 (all features) and 0.65 (LiDAR only)
compared to 0.30 of ‘detailed’ QD maps (Fig. 3). This aligns with pre-
vious peat-specific DSM studies globally and in Sweden (Artz et al.,
2019; DeLancey et al., 2019; Karlson et al., 2019; O’Leary et al., 2022;
Rimondini et al., 2023). The multiclass nature of the XGBoost models
offers more efficiency compared to managing multiple single-class
models. The high-resolution models also have the potential to identify
smaller or otherwise unmapped peatlands, which is valuable for peat-
land management and conservation efforts (Ågren et al., 2022).

Both XGBoost models struggled to differentiate between coarse and
fine forest sorted sediments (Fig. 3), an issue noted in other multiclass
DSM studies (Mulder et al., 2016; Ramcharan et al., 2018). Chen et al.
(2022) highlighted the challenges in predicting coarse sediments due to
their high spatial variability and recommended increasing field sam-
pling as a potential strategy. McBratney et al. (2003) proposed

simplifying legends, reducing resolution, or conducting targeted sam-
pling in regions with poor predictability. Similarly, Loiseau et al. (2021)
recommended a threshold sampling density of about 1 sample 2 km− 2

for clay, silt, and sand contents to avoid a substantial decrease in per-
formance accuracy. Coarse and fine sorted sediments on agricultural
lands, formed through simpler water deposition processes, had signifi-
cantly more training samples (Supplementary Material Table. A.3).
These soil PM types were effectively classified by XGBoost (all features),
with F1 scores exceeding 0.72, which may suggest that increasing
sampling density enhances model performance.

Rock outcrops on ‘detailed’ QD maps had high recall (0.63) but low
precision (0.19) (Fig. 3, Supplementary Material Table. A.3), indicating
frequent misclassification of other QDs as rock outcrops. This may be a
result from the over-exaggeration of rock outcrop boundaries on poly-
gon maps. In contrast, both XGBoost models demonstrated higher pre-
cision but lower recall, suggesting that while they often miss true rock
outcrops, those identified as rock outcrops are typically accurate. This
may be attributed to the limited availability of rock outcrop training
samples (Supplementary Material Table A.2), as similarly observed with
sorted sediments in forest landscapes. Additionally, the varying
appearance of rock outcrops on LiDAR DEM could have presented
further challenges. Several studies have highlighted the potential ben-
efits of data resampling techniques, such as SMOTE (Synthetic Minority
Oversampling Technique), to address imbalanced class distributions
(Sharififar et al., 2019; Mirzaei et al., 2024). Thus, exploring class
balancing techniques could be a promising strategy for enhancing model
performance for minority classes.

3.4. Feature importance and the impact of LiDAR indices

SHAP values provided insights into the relative contributions of
different features in the predictions of both XGBoost models (Fig. 4,
showing only the top 15 most important features). The length of each
bar in the SHAP plot represents the feature’s overall importance as

Fig. 3. The figure illustrates the performance of the ‘detailed’ Quaternary
Deposit (QD) maps (triangles), XGBoost model trained with only LiDAR
(crosses), and XGBoost model trained with all features (circles) for identifying
different soil parent materials (PMs). Isolines represent F1 scores, the harmonic
mean of precision (correctly identified) and recall (identification complete-
ness). Half-filled markers denote PMs on agricultural land, while full markers
represent forest land. Points under the 1:1 line are over-predicted and points
above the line are under-predicted.

Y. Lin et al. Geoderma Regional 40 (2025) e00905 

8 



determined by the model. In the XGBoost (LiDAR only) model, the
original 2 m DEM was the most critical feature, particularly for identi-
fying peat, till, and agricultural sediments (Fig. 4a). This finding un-
derscores the capability of LiDAR in capturing high-resolution surface
characteristics crucial for these classifications. The Circular Variation of
Aspect (measures surface shape complexity, or texture) and Elevation
above Stream (represents the relative vertical distance to drainage,
measured along the downslope flow path) from a 1 ha stream network
also contributed significantly to the prediction of peat (Fig. 4a). The
characteristic flatness and poor drainage of peatlands were likely re-
flected in these indices, while a low flow accumulation threshold (1 ha)
for Elevation above Stream captured areas with poor local drainage,
which are favorable for peat development (Ehnvall et al., 2023). Simi-
larly, Heung et al. (2014) found that aspect, distance to nearest stream,
convergence index, and distance to nearest river to be the most impor-
tant features for predicting parent material in the Canadian west coast,
while slope, plan curvature, and profile curvature were the least
important.

The most important feature for XGBoost (all features) to predict
surface deposits was the National Land Cover Map (Fig. 4b). This map

was crucial for identifying most surface deposit types, especially agri-
cultural sorted sediments, likely due to the ‘arable land’ category within
the map and the overrepresentation training data from the SASI dataset.
For peat delineation, the original QD map was the most important
(Fig. 4b), replacing Elevation above Stream as a key feature. The Dis-
tance to the Highest Coastline was crucial for identifying agricultural
fine sediments, while Northing (latitude) and Age from Deglaciation
significantly impacted the delineation of agricultural coarse sediments.
These indices reflect the glacial history and post-glacial land rebound in
the Bothnian Bay region (Stroeven et al., 2016; Nordman et al., 2020),
which directly influenced the spatial distribution of sorted sediments.
Rock outcrops were primarily identified based on Depth to Bedrock,
which contains similar information as the original QD maps. The
importance of Multiscale Roughness Magnitude diminished relative to
other LiDAR-derived features (Fig. 4a) when additional ancillary map
data were incorporated (Fig. 4b). This suggests that information from
the QD Maps and Depth to Bedrock might have assumed the role pre-
viously played by Multiscale Roughness Magnitude in identifying rock
outcrops for the XGBoost (LiDAR only) model.

Overall, conventional maps were more important than LiDAR-

Fig. 4. SHAP (SHapley Additive exPlanations) values represent the relative importance of each feature in the XGBoost models’ prediction of soil parent materials
(PMs), with higher values indicating greater contribution. (a) SHAP summary plot for XGBoost (LiDAR only). (b) SHAP summary plot for XGBoost (all features).
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derived indices in the XGBoost (all features) model. The inclusion of
some conventional maps in the production of the National Land Cover
map (marked with * in Table 1) may confound the interpretation of
feature importance. Class imbalance within the training dataset can
influence feature importance (Mirzaei et al., 2024). It is likely that
applying resampling techniques to our training set, as discussed in
Section 3.3, would have altered the feature importance rankings. Recent
DSM studies found that though in general finer resolutions yield better
performance in heterogeneous landscapes, and coarser resolution data is
more effective in homogeneous landscapes; their effectiveness is highly
dependent on the specific soil class or properties of interest, local
environmental characteristics, and the geographical extent under
consideration (Cavazzi et al., 2013; Larson et al., 2022; Piedallu et al.,
2022). We calculated terrain and hydrological indices at different res-
olutions, examining the impact of scale on model performance, how-
ever, is beyond the scope of this study. A study conducted in eastern
Canada using only four LiDAR-derived terrain indices achieved high
overall performance in mapping parent materials, with Cohen’s Kappa
of 0.76 (Prince et al., 2020). Considering the recent trend towards uti-
lizing high-dimensional and high-resolution data in DSM studies, it is
imperative to conduct a meticulous feature selection process to ensure
scale appropriateness and minimize model complexity.

3.5. Model performance across physiographic regions

This spatial analysis was only applied to XGBoost (all features) model
due to its higher overall MCC. A spatial trend across Sweden’s physio-
graphic regions could be observed, where the northern inland regions
(30–34), dominated by till and peat, generally achieved slightly higher
MCCs compared to southern and coastal regions (11–29) (Fig. 5). As an
exception, region 24 exhibited good model performance, which could be
due to the high-quality QD map for this area. Till and fine-grained
agricultural sediments were consistently overpredicted across the
country (Fig. 5), likely owing to their overrepresentation in the training
dataset (Supplementary Material Table A.2). In contrast, forest sedi-
ments were generally underpredicted. Peat and agricultural coarse
sediments demonstrated more variable performance: peat was typically
underpredicted in central Sweden (regions 24–26) but overpredicted in
the north and south, while agricultural coarse sediments were over-
predicted in the far south (regions 11–21) and underpredicted in south-
central Sweden (regions 22–28). A closer examination of the class-wise
training data distribution by region is necessary to determine if these
patterns reflect data availability. Given that the model performs better
in the northern inland areas, where only ‘overview’ and ‘intermediate-
scale’ QD maps are available (Fig. 1a), there is great potential for using

Fig. 5. Spatial variation in model performance across physiographic regions. Only regions with a minimum of 80 field observations were included in the analysis to
ensure reliable Matthews Correlation Coefficient (MCC) calculation. The upper bars represent the predicted parent material (PM) class distribution for each region by
the XGBoost (all features) model, while the lower bars represent the corresponding distribution of field-observed PM class. The proportion was scaled to sample
counts to assist visual comparison.
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the XGBoost (all features) model as a complementary tool to accelerate
the mapping process in these northern regions.

With the increasing availability of legacy data and open soil data-
bases, future studies are expected to rely more on these resources as a
cost-efficient way of soil mapping (Hendriks et al., 2019). However, a
key challenge in point-based DSM modeling remains: reconciling the
pixel-based nature and the underlying pedogenetic and geomorphic
processes of the actual soil landscapes (Rossiter et al., 2022). Although
we incorporated features like Distance to the Highest Coastline to
indirectly account for the glacial and postglacial processes, a more
comprehensive approach may be warranted. Deep learning models, like
Unets trained with raster image data may offer a promising avenue by
incorporating the contextual information from neighboring cells and
extracting multi-scale information automatically (Latifovic et al., 2018;
Padarian et al., 2020; Taghizadeh-Mehrjardi et al., 2020), potentially
leading to a more physically sound understanding of spatial prediction.

4. Conclusion

This study investigated the potential of Machine Learning (ML) for
mapping soil parent materials (PMs) in Sweden, utilizing high-
resolution airborne LiDAR data and ancillary maps. Our findings indi-
cated that XGBoost models achieved higher Matthews Correlation Co-
efficients (MCCs) ranging from 0.45 to 0.56, in contrast to the existing
polygon-based Quaternary Deposit (QD) maps, which showed MCCs
between 0.18 and 0.36. The high-resolution maps generated by ML
approach have the potential to identify previously unmapped smaller
PM features. With adequate training data, the XGBoost algorithm suc-
cessfully extracted valuable insights from the LiDAR data, effectively
identifying till and peat. However, its performance decreased for PMs
exhibiting high variability in grain size and composition. Regional an-
alyses are crucial for capturing spatial variations in model performance
and identifying areas where Digital Soil Mapping (DSM) can comple-
ment and enhance conventional mapping methods. Despite these ad-
vancements, expertise in soil-landscape relationships remains vital for
interpreting model outputs and addressing potential discrepancies with
landscape realities.
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methods for predicting regolith thickness in previously glaciated terrain, Stockholm,
Sweden. Geoderma 226–227, 116–129. https://doi.org/10.1016/j.
geoderma.2014.03.003.

Karlsson, C., Sohlenius, G., Becher, G.P., 2021. Handledning för jordartsgeologiska kartor
och databaser över Sverige. (2021:17). The Geological Survey of Sweden.

Knight, J.F., Lunetta, R.S., 2003. An experimental assessment of minimum mapping unit
size. IEEE Trans. Geosci. Remote Sens. 41 (9), 2132–2134. https://doi.org/10.1109/
TGRS.2003.816587.

Krutskikh, N., 2022. Mapping of the loose sediments of glacial and periglacial formations
in areas with boreal vegetation using remote sensing. J. Appl. Remote. Sens. 16,
034528. https://doi.org/10.1117/1.JRS.16.034528].

Larson, J., Lidberg, W., Ågren, A.M., Laudon, H., 2022. Predicting soil moisture
conditions across a heterogeneous boreal catchment using terrain indices. Hydrol.
Earth Syst. Sci. 26 (19), 4837–4851. https://doi.org/10.5194/hess-26-4837-2022.

Latifovic, R., Pouliot, D., Campbell, J., 2018. Assessment of convolution neural networks
for surficial geology mapping in the South Rae geological region, Northwest
Territories, Canada. Remote Sens. 10 (2), 307. https://doi.org/10.3390/
rs10020307.

Laudon, H., Taberman, I., Ågren, A., Futter, M., Ottosson-Löfvenius, M., Bishop, K., 2013.
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