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Abstract
Root system architecture (RSA) plays an important role in plant adaptation to drought stress. However, the genetic 
basis of RSA in sorghum has not been adequately elucidated. This study aimed to investigate the genetic bases of 
RSA traits through genome-wide association studies (GWAS) and determine genomic prediction (GP) accuracy in 
sorghum landraces at the seedling stage. Phenotypic data for nodal root angle (NRA), number of nodal roots (NNR), 
nodal root length (NRL), fresh shoot weight (FSW), dry shoot weight (DSW), and leaf area (LA) were collected from 
160 sorghum accessions grown in soil-based rhizotrons. The sorghum panel was genotyped with 5,000 single 
nucleotide polymorphism (SNP) markers for use in the current GWAS and GP studies. A multi-locus model, Fixed 
and random model Circulating Probability Unification (FarmCPU), was applied for GWAS analysis. For GP, ridge-
regression best linear unbiased prediction (RR-BLUP) and five different Bayesian models were applied. A total of 
17 SNP loci significantly associated with the studied traits were identified, of which nine are novel loci. Among 
the traits, the highest number of significant marker-trait associations (MTAs) was identified for nodal root angle on 
chromosomes 1, 3, 6, and 7. The SNP loci that explain the highest proportion of phenotypic variance (PVE) include 
sbi32853830 (PVE = 18.2%), sbi29954292 (PVE = 18.1%), sbi24668980 (PVE = 10.8%), sbi3022983 (PVE = 7%), sbi29897704 
(PVE = 6.4%) and sbi29897694 (PVE = 5.3%) for the traits NNR, LA, SDW, NRA, NRL and SFW, respectively. The genomic 
prediction accuracy estimated for the studied traits using five Bayesian models ranged from 0.30 to 0.63 while it 
ranged from 0.35 to 0.60 when the RR-BLUP model was used. The observed moderate to high prediction accuracy 
for each trait suggests that genomic selection could be a feasible approach to sorghum RSA-targeted selection and 
breeding. Overall, the present study provides insights into the genetic bases of RSA and offers an opportunity to 
speed up breeding for drought-tolerant sorghum varieties.
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Introduction
Sorghum (Sorghum bicolor (L.) Moench) is an annual 
C4 plant of the Poaceae (Gramineae) family, classified 
as a diploid species, with a genome of 732.2 Mega base 
pairs (Mb) [1]. In addition to being gluten-free and rich 
in starch and protein for adequate digestibility, it is rich 
in condensed health beneficial compounds [2, 3]. Sor-
ghum is the fifth most produced cereal crop, following 
maize, rice, wheat, and barley, with a global production 
of approximately 57.6 million metric tons [4]. It is one of 
most suitable crops for future climate change because of 
its ability to grow under harsh environmental conditions, 
such as drought, high salinity and high temperature [5].

Despite being generally drought tolerant and predomi-
nantly cultivated in dryland areas, drought remains a 
major challenge for sorghum production [6]. Several 
studies have been undertaken to investigate the genetic 
and physiological mechanisms that enhance drought tol-
erance in sorghum [7–11]. Among different physiological 
mechanisms, those involving root system architecture 
(RSA) are crucial for drought adaptation. Root traits, 
such as angle, number, length, surface area, density, and 
weight of roots play crucial roles in drought tolerance. 
These traits determine the soil area available for water 
and nutrient uptake and help anchor the plant system 
securely in the soil [12]. They are essential in nutrient 
and water uptake, resilience to environmental stresses, 
and overall plant performance. However, they received 
limited attention during germplasm screening and in 
breeding programs because root trait phenotyping is 
labor-intensive and technically demanding. In sorghum, 
the role of RSA in enhancing plants’ ability to extract 
water, thereby contributing to increased grain yield under 
drought-stress conditions has been documented [8, 9]. 
Therefore, characterizing the genetic basis of RSA traits 
is crucial to understanding the biological mechanisms 
governing RSA. This facilitates potential target identifi-
cation for marker-assisted selection (MAS) in breeding 
programs. Ultimately, this leads to its enhanced drought 
tolerance allowing increased and sustainable production.

Genome-wide association studies (GWAS) is a valuable 
tool to identify favorable alleles associated with desirable 
traits through the utilization of phenotypic and geno-
typic variations within a plant species [13]. Through this 
method, several genomic regions associated with differ-
ent agronomic traits have previously been identified in 
many crops, including wheat [14, 15], maize [16], rice 
[17], barley [18], turnip rape [19] and sorghum [20, 21]. 
The associations of molecular markers with RSA traits in 
sorghum have been investigated with both linkage map-
ping using recombinant inbred lines (RIL) [9, 22, 23] and 
association mapping using sorghum association panels 
[24–27]. However, there is a need for further research 
to shed more light on the genetic factors regulating RSA 

traits, which are crucial for enhancing sorghum’s resil-
ience to climate change. While GWAS has identified loci 
associated with RSA traits in sorghum, genomic predic-
tion (GP) offers a promising approach to estimate breed-
ing values for these complex traits based on genomic data 
alone.

Genomic prediction is an emerging method that uses 
predictive models trained on a population compris-
ing individuals with both phenotypic and genotypic 
data to estimate the breeding values of individual plants 
solely based on their genomic information [28, 29]. This 
method is particularly valuable for traits like RSA, which 
are difficult and time-consuming to phenotype. Genomic 
prediction has been applied in sorghum to predict breed-
ing values for agronomically important traits using dif-
ferent prediction models [30, 31]. However, it has not 
been applied on sorghum RSA traits to determine their 
genomic prediction accuracy. Therefore, the objectives 
of this study were to (1) identify genomic regions associ-
ated with RSA traits through GWAS and (2) determine 
genomic prediction accuracy for RSA traits in sorghum 
landraces.

Materials and methods
Plant materials
Among the 160 accessions, 121 were landrace accessions 
obtained from the Ethiopian Biodiversity Institute (EBI) 
representing diverse geographical regions in Ethiopia, 36 
landrace accessions were collected from farmers’ fields 
in drought-prone areas in Ethiopia [32], and 3 acces-
sions were improved sorghum varieties obtained from 
Melkassa Agricultural Research Center (MARC), Ethio-
pia. For the sake of simplicity, the accessions are referred 
to as genotypes from here on.

Phenotyping of root system architectural and shoot traits
The phenotypic data of RSA traits of sorghum genotypes 
characterized by Enyew et al. [33] using the soil-based 
root chamber phenotyping were further explored in this 
study. Briefly, the soil based-root chamber was built in 
two transparent perspex sheets with 4  mm thickness, 
60 cm height and 80 cm width. In each part of the cham-
ber, two sorghum seeds were planted at a depth of 3 cm 
with the embryo facing the transparent wall to allow 
root visibility as described by Enyew et al. [34]. One of 
the healthier plant was kept to grow following three days 
of germination. The experiment was done in a controlled 
greenhouse at a day/night temperature of 28/22°C and 
an average relative humidity of 70%. The experiment was 
laid out in a complete randomized design with three rep-
lications. Each of the three replicates was planted in three 
different dates. The phenotypic data for nodal root angles 
(NRA), number of nodal roots (NNR), nodal root length 
(NRL), fresh shoot weight (FSW), dry shoot weight 
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(DSW), and leaf area (LA) were collected after 21 days 
of planting at 5 to 6 leaf stages of the plants. Phenotypic 
analysis of variance and repeatability (H2) for each trait 
were conducted using R software. The META-R software 
package, version 6.0 (Alvarado et al., 2020) was used to 
estimate the Best Linear Unbiased Prediction (BLUP). 
The raw data and the BLUP values used for the GWAS 
and GP analysis are provided in Supplementary Table 1.

Genotyping and genome wide association study
The genotypic data used in the current study were previ-
ously published by Enyew et al. [20]. Briefly, genotyping 
of sorghum genotypes targeting 5000 SNP markers was 
conducted using SeqSNP, which is an advanced targeted 
genotyping by sequencing method. All markers were 
designed in a highly specific assay that prevents off-target 
hits with the sorghum reference genome, ensuring com-
plete coverage (with two oligo probes used for each tar-
get), as detailed in Enyew et al. [35].The targeted SNPs 
were sequenced using the Illumina NextSeq 500/550 v2 
system. The obtained data were filtered to obtain only 
loci with two alleles (bi-allelic), which resulted in 4,639 
SNP markers. Further filtering of the data to obtain loci 
with minor allele frequency (MAF) > 0.05, heterozygos-
ity < 13% and missing genotypes < 2% resulted in 2,950 
high-quality SNPs (Supplementary Table 2).

For GWAS, the Genome Association and Prediction 
Integrated Tool (GAPIT) R package, version 3.4 [36] 
was implemented in the R environment, version 4.0.3 
[37]. The GWAS was performed using 2,950 SNP mark-
ers along with the RSA traits of 160 sorghum genotypes. 
The pairwise genetic relationship (kinship matrix) was 
calculated according to VanRaden [38] using the pipe-
line implemented in GAPIT. Multi-locus GWAS model, 
FarmCPU was used to perform the marker-trait asso-
ciation (MTA) analysis [39]. The Bonferroni threshold 
adjusted for multiple marker tests at P ≤ 0.05 was imple-
mented to avoid potential false-positive MTAs. Man-
hattan and Quantile–quantile (QQ) plots were created 
through the qqman R package, Version: 0.1.9 [40]. Q–Q 
plots of p-values were used to visualize the performance 
of the GWAS model after accounting for population 
structure and familial relatedness. The physical map posi-
tions of all significantly associated SNPs were used to 
search and identify candidate genes in the sorghum SNP 
database SorGSD (http://sorgsd.big.ac.cn) [41], which is 
linked to the annotation on Phytozome v12.1 (www.phy-
tozome.net) sorghum genome database [42]. The func-
tional annotation of candidate genes, including Gene 
Ontology (GO) and KEGG pathway annotations were 
retrieved from the SorGSD database, which is linked to 
the Phytozome v12.1 sorghum genome database for fur-
ther pathway and functional insights.

Genomic prediction and cross-validation analysis
The phenotypic and genotypic datasets used for GWAS 
were also utilized for genomic prediction (GP). Six dif-
ferent genomic prediction models were evaluated for the 
studied RSA traits. The rrBLUP package, version 4.6.3 
[43] within the R environment was used to implement 
the RR-BLUP model, fitting the basic linear mixed model:

 Y = β + Zµ + ε

where Y represents the N × 1 vector of adjusted pheno-
typic means (BLUPs) for each of the studied RSA traits. 
β is the intercept, and Z is the N × Nm matrix of SNP 
markers where N refers to the number of genotypes, and 
Nm represents the number of SNP markers. The random 
SNP effects (µ), represented as the Nm × 1 vector, were 
obtained using the “mixed.solve” function, assuming 
µ~N(0, I), where I is the identity matrix, and µ represents 
the genetic variance contributed by each SNP and ε is the 
N × 1 vector of residual effects.

Five Bayesian-based models from the BGLR package, 
version1.1.3 [44] were used to further evaluate the pre-
dictability of the studied RAS traits. These models vary 
in how they handle marker effects, with most assuming 
unequal genetic variance across chromosomes to account 
for major QTL effects. Different prior assumptions in 
these models influence the type of shrinkage or variable 
selection applied to marker effect estimates. The Bayes-
ian ridge regression (BRR) model uses a Gaussian prior, 
shrinking marker effects uniformly. BayesA [45] and 
Bayesian LASSO (BL) models use priors (scaled-t and 
Laplace) with more mass at zero and thicker tails, result-
ing in effect-size-dependent shrinkage [46]. BayesC and 
BayesB models apply finite mixture priors: BayesC uses 
a mix of a point mass at zero and a Gaussian slab, while 
BayesB uses a mix of a point mass at zero and a scaled-t 
slab [45].

All BGLR analyses were conducted with a Markov 
Chain Monte Carlo sampler for 12,000 iterations, with a 
thinning interval of 10 and a burn-in of 2,000 iterations.

The accuracy of GP was determined by using cross-
validation, where 80% of the genotypes were randomly 
selected for a training set while the remaining 20% were 
used as a test set. The cross-validation analysis was 
repeated 500 times for the RR-BLUP models and the 
five Bayesian models. The predictive abilities of models 
were evaluated by examining the correlation between 
the GEBVs of individuals in the test set and their BLUP 
values derived from the phenotypic data. The prediction 
accuracy was calculated by dividing the predictive ability 
by the square root of the broad-sense heritability of the 
traits, as described by previous studies Legarra et al. and 
Alemu et al. [47, 48].

http://sorgsd.big.ac.cn
http://www.phytozome.net
http://www.phytozome.net
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Results
Phenotypic variation and heritability
The analysis of variance (ANOVA) revealed highly signif-
icant (p < 0.001) variation among genotypes for all stud-
ied RSA and shoot traits (Supplementary Table 3). The 
phenotypic variation of traits appeared to be normally 
distributed (Fig.  1). The repeatability (H²) of the RSA 
traits was high for LA (61%), NRA (63%), DSW (70%), 
FSW (74%), and NNR (85%), except for NRL (48.4%), 
which was moderate (Supplementary Table 3).

Identification of candidate genes for root system 
architecture and shoot traits in sorghum via genome-wide 
association studies
A genome-wide association study (GWAS) was per-
formed to identify genetic loci associated with the six 
RSA traits evaluated in the diverse sorghum panel. A total 
of 2,950 high-quality SNP markers were used to estimate 
kinship within the panel using the VanRaden method. 
This method produces a matrix with values ranging from 
0 to 2, where “0” indicates no genetic relatedness and 
“2” shows complete genetic relatedness (individuals are 
genetically identical) (Fig. 2). The distribution of the coef-
ficients from the kinship analysis of the 160 genotypes 
shows weak genetic relatedness within the panel.

The Bonferroni threshold for multiple markers test 
with 5% probability of type I error was estimated as 
0.05/2950 = 1.69 × 10− 5. The whole list of identified SNP 
loci associated with studied traits above the Bonferroni 
threshold is presented in Table  1 and graphically dis-
played in Manhattan plots (Fig. 1). In total, 17 SNP loci 
were identified for the studied traits (Table  1) and the 
favorable allele distribution of significant SNPs across 
accessions is provided in Supplementary Table 4. Only a 
single SNP marker was identified associated with two dif-
ferent traits (Table 1). Quantile–Quantile plots indicated 
an exact alignment between the expected and observed 
-log10 p-values under the null hypothesis at the start of 
the plot (Fig. 1). Toward the right end, there is a devia-
tion of observed values from the null hypothesis, suggest-
ing a true positive association between the SNPs and the 
traits (Fig. 1). Thus, the GWAS model used in this study 
effectively controls the cofounding effects, making the 
results reliable and reducing the likelihood of reporting 
false negatives. The candidate genes comprising the SNPs 
showing a significant association with studied traits were 
identified and their putative functions were characterized 
by searching the map position of the significant SNPs in 
sorghum SNP database (SorGSD) (Table 2).

Fig. 1 Histogram of the frequency distributions of Best Linear Unbiased Prediction (BLUP) values of six RSA traits targeted in this study. NRA = nodal root 
angle, NNR = number of nodal roots, NRL = nodal root length, FSW = fresh shoot weight, DSW = dry shoot weight, and LA = leaf area
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Genetic dissection of the root system architecture traits
In the present study, the highest number of significant 
marker-trait associations was identified for nodal root 
angle. In total, five SNP loci were identified significantly 
associated with nodal root angle on chromosomes 1, 3, 
6, and 7 (Table  1and Fig.  3). Two of these SNP mark-
ers, sbi3022983 and sbi7781202 on chromosomes 1 and 
3 had the highest percentage of explained phenotypic 
variance with 6.97 and 5.35%, respectively (Table 1). The 
effects of the marker sbi20340807 alleles on nodal root 

angle significantly grouped studied sorghum genotype 
(P < 9.04 × 10− 8 (Fig. 4).

All identified SNP markers significantly associated 
with nodal root angle were located within different genes 
(Table 2). Two SNP loci, sbi3022983 and sbi7781202 that 
had the largest effects on nodal root angle, on chromo-
some 1 at 73.7  Mb (PVE = 6.87%) and on chromosome 
3 at 11  Mb (PVE = 5.35%) (Table  1) were found within 
the genes, Sobic.001G462500 and Sobic.003G121200, 
respectively. The gene Sobic.001G462500 encodes 

Fig. 2 A kinship matrix presented as a heatmap, with red representing the highest correlation between genotype pairs and yellow indicating the lowest 
correlation. A hierarchical tree of individuals is shown based on their kinship relationships
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natural resistance-associated macrophage that play 
transporting a wide range of divalent metal ions while 
Sobic.003G121200 encodes PPR repeat containing pro-
tein that plays a key role in physiological processes con-
tributing to plant growth and development. Among the 
markers significantly associated with nodal root angle, 
sbi20340807 on chromosome 6 (47.6 Mb) is the most sig-
nificant (P < 9.04 × 10− 8), and is located within the gene 
Sobic.006G106200 which encodes a NAP domain con-
taining protein. This protein plays a major role in regulat-
ing leaf senescence. Additionally, the Sobic.007G193200 
gene was identified close to a SNP marker significantly 

associated with nodal root length. This gene encodes 
MTA/SAH nucleosidase, a crucial metabolite involved 
in biosynthetic pathways and the biosynthesis of eth-
ylene and polyamines, which play critical roles in plant 
physiology.

The GWAS analyses detected two significantly asso-
ciated SNPs with NNR (Table  1and Fig.  3). These SNP 
markers, sbi29649877 and sbi29954292 were identified 
on chromosome 9 at positions 45.2  Mb and 51.1  Mb, 
respectively. Sbi29954292 accounted for the high-
est phenotypic variation (18.07%) while sbi29649877 
explained 2.37% of the phenotypic variation in NNR. 

Table 1 List of SNPs significantly associated with the studied traits and their descriptions
Trait SNP ID Alleles Chr Position MAF P-value Effect PVE
NRA sbi7781202 A/G 3 11,053,605 0.14 5.64 × 10− 6 2.20 5.35

sbi20340807 G/T 6 47,614,312 0.38 9.04 × 10− 8 2.26 1.84
sbi24257982 G/C 7 62,580,069 0.09 1.44 × 10− 6 3.43 4.66
sbi2946469 C/A 1 71,747,223 0.29 8.97 × 10− 6 2.00 2.21
sbi3022983 G/A 1 73,690,076 0.09 1.52 × 10− 6 3.80 6.97

NNR sbi29649877 C/G 9 45,256,800 0.36 3.12 × 10− 6 -0.48 2.37
sbi29954292 C/T 9 51,147,626 0.41 9.45 × 10− 7 -0.61 18.07

NRL sbi29897704 T/G 9 50,101,376 0.31 2.20 × 10− 8 18.47 1.66
sbi29939092 G/C 9 50,893,174 0.36 1.34 × 10− 5 13.31 6.40

FSW sbi3632542 A/G 2 6,203,646 0.38 1.56 × 10− 6 0.34 3.87
sbi29897694 C/T 9 50,101,247 0.32 8.25 × 10− 16 -0.74 5.28
sbi30071808 C/T 9 53,885,817 0.21 6.00 × 10− 7 0.31 0.88
sbi20839691 G/A 6 58,860,779 0.21 3.50 × 10− 6 0.43 1.54

DSW sbi24668980 G/A 8 5,053,406 0.08 2.24 × 10− 7 0.09 10.76
sbi3632542 A/G 2 6,203,646 0.37 1.92 × 10− 8 0.05 4.25
sbi29939008 C/T 9 50,892,152 0.31 2.33 × 10− 8 -0.06 7.51

LA sbi32853830 T/C 10 51,473,805 0.17 5.47 × 10− 8 1.10 18.22
NRA = nodal root angle, NNR = number of nodal roots, NRL = nodal root length, FSW = fresh shoot weight, DSW = dry shoot weight, and LA = leaf area. 
Chr = Chromosome, PVE = Proportion of phenotypic variance, MAF = Minor allele frequency, Favorable allele highlighted in bold

Table 2 Descriptions of candidate genes associated with significant marker-trait associations, including their annotated functions
Trait SNP ID Allele Chr Position Gene name Candidate gene description
NRA sbi2946469 C/A 1 71,747,223 Sobic.001G439400 glycosyl hydrolase family 10 protein

sbi3022983 G/A 1 73,690,076 Sobic.001G462500 natural resistance-associated macrophage
sbi7781202 A/G 3 11,053,605 Sobic.003G121200 PPR repeat containing protein
sbi20340807 G/T 6 47,614,312 Sobic.006G106200 NAP domain containing protein
sbi24257982 G/C 7 62,580,069 Sobic.007G193200 MTA/SAH nucleosidase

NNR sbi29649877 C/G 9 45,256,800 Sobic.009G112500 lipase
sbi29954292 C/T 9 51,147,626 Sobic.009G154800 syntaxin 6, N-terminal domain containing protein

NRL sbi29897704 T/G 9 50,101,376 Sobic.009G143700 NAC103
sbi29939092 G/C 9 50,893,174 Sobic.009G153101 zinc finger, C3HC4 type domain containing protein

FSW sbi3632542 A/G 2 6,203,646 Sobic.002G063600 Leucine Rich Repeat family protein
sbi20839691 G/A 6 58,860,779 Sobic.006G249200 Uncharacterized protein
sbi29897694 C/T 9 50,101,247 Sobic.009G143700 no apical meristem protein
sbi30071808 C/T 9 53,885,817 Sobic.009G185700 mutS domain V family protein

DSW sbi3632542 A/G 2 5,053,406 Sobic.002G063600 Leucine Rich Repeat family protein
sbi24668980 G/A 8 6,203,646 Sobic.008G050800 Uncharacterized protein
sbi29939008 C/T 9 50,892,152 Sobic.009G152400 glutamine cyclotransferase precursor

LA sbi32853830 T/C 10 51,473,805 Sobic.010G176800 ABC transporter, ATP-binding protein, putative
NRA = nodal root angle, NNR = number of nodal roots, NRL = nodal root length, FSW = fresh shoot weight, DSW = dry shoot weight, LA = leaf area, Chr = Chromosome
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Fig. 3 The Manhattan and Quantile–quantile (QQ) plots showing the significant SNPs across the 10 sorghum chromosomes identified by the current 
GWAS analysis for (A) the nodal root angle (NRA), (B) number of nodal roots (NNR), (C) nodal root length (NRL), (D) fresh shoot weight (FSW), (E) dry shoot 
weight (DSW) and (F) leaf area (LA) at seedling stage
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These markers are located within the coding sequences 
of the genes Sobic.009G112500 (encoding lipase) and 
Sobic.009G154800 (encoding syntaxin 6, N-terminal 
domain containing protein), respectively (Table 2).

GWAS identified two SNPs significantly associ-
ated with nodal root length (Table  1). These SNPs are 
located on chromosomes 9. The sbi29939092 marker, 

on chromosome 9, explained the highest phenotypic 
variation (6.4%) for NRL was located 46  kb upstream 
of the gene Sobic.009G153101 that encodes zinc finger, 
C3HC4 type domain containing protein. The other SNP 
marker sbi29897704 (50.1  Mb) is located within a gene 
Sobic.009G143700. Sobic.009G143700 encodes NAC103 

Fig. 4 Boxplots of the most significant SNPs sbi20340807, sbi29954292, sbi29897704, sbi29897694, sbi3632542 and sbi32853830 with their allelic effects on 
nodal root angle (NRA), number of nodal roots (NNR), nodal root length (NRL), fresh shoot weight (FSW), dry shoot weight (DSW), and leaf area (LA), re-
spectively. Statistical significance for differences between allele effects was determined using Tukey’s HSD (honestly significant difference) test. Different 
letters in the same box indicate significant phenotypic differences among plants with corresponding genotypes at that locus (P < 0.05)
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regulates ABA response during seed germination and 
seedling growth in Arabidopsis (Table 2).

Genetic control of shoot fresh and dry weight and leaf area
In this study, four SNP markers significantly associated 
with FSW were identified on chromosomes 2, 6, and 9 
(Table  1). The most significant (P < 8.25 × 10− 16) marker 
sbi29897694 (50.1  Mb), on chromosome 9, explained 
5.3% of the total phenotypic variation in FSW. This SNP 
marker is located within the Sobic.009G143700 gene 
that encodes no apical meristem protein, which plays a 
role in plant development and is critical for proper leaf 
and flower patterning. The other identified genes linked 
to FSW-associated SNP markers were Sobic.002G063600 
and Sobic.009G185700. Sobic.002G063600 encodes Leu-
cine Rich Repeat family protein while Sobic.009G185700 
encodes mutS domain V family protein, which are known 
for their roles in cell wall developmental processes and 
DNA repair and recombination (Table 2).

The GWAS analyses detected three SNP markers sig-
nificantly associated with DSW (Table  1). These three 
SNPs, sbi3632542, sbi24668980 and sbi29939008 located 
on chromosomes 2, 8 and 9 explained 4.25, 10.8, and 
7.51% of the total phenotypic variance respectively. 
Sobic.002G063600 (Leucine Rich Repeat family pro-
tein), Sobic.008G050800 (Uncharacterized protein), and 
Sobic.009G152400 (encoding glutamine cyclotransferase 
precursor) genes were associated with these SNP mark-
ers in that order (Table 2).

A single SNP marker was significantly associated with 
LA (Table  1). This marker sbi32853830 is located on 
chromosome 10 at position 51.5  Mb, which accounted 
for a phenotypic variation of 18.22%. The SNP is within 
the gene Sobic.010G176800 encoding ABC transporter 
and ATP-binding protein (Table  2). This gene plays a 

critical role in most aspects of cell physiology, including 
nutrient uptake and energy generation.

Genomic prediction of root system architecture traits
Genomic prediction for the studied traits was conducted 
via 80–20% training-test set cross-validation analysis 
with six different prediction models (Fig.  5 and Supple-
mentary Table 5). The five Bayesian models and the RR-
BLUP model produced genomic estimated breeding 
values (GEBVs) with small differences in prediction accu-
racy across all traits (Fig. 5 and Supplementary Table 5). 
The prediction accuracy with the five Bayesian models 
ranged from 0.30 to 0.63 while with the RR-BLUP model 
it ranged from 0.34 to 0.60 across the studied traits. The 
traits with the lowest and highest prediction accuracy 
were FSW and NRL as revealed by both the RR-BLUP 
and Bayesian models (Fig. 5and Supplementary Table 5).

Discussion
Genetic control of root system architecture traits
Crop tolerance to abiotic stresses has been achieved 
through improving shoot and root traits, thereby increas-
ing agricultural productivity [5, 49]. The RSA traits are 
among the most important traits for extracting water 
and nutrients deep in the soil that help the plant adapt 
to harsh environmental conditions [6, 8, 9]. A deep and 
comprehensive understanding of the genetic basis of RSA 
traits could aid in enhancing the root systems of sor-
ghum varieties under water and/or nutrient stress condi-
tions. GWAS provides opportunities to understand the 
genetic basis of complex quantitative traits such as RSA 
by analyzing high-throughput phenotypic and geno-
typic data. In the present study, novel and previously 
reported genomic regions associated with RSA traits 
were identified. Previously reported loci associated with 
RSA traits in sorghum [9, 22–27, 50, 51] are summarized 

Fig. 5 The genomic prediction (GP) accuracy of five Bayesian models and the Ridge-regression best linear unbiased prediction (RR-BLUP) model for the 
nodal root angle (NRA), number of nodal roots (NNR), nodal root length (NRL), fresh shoot weight (FSW), dry shoot weight (DSW), and leaf area (LA) in 
sorghum at seedling stage
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in Supplementary Table 6. The differences between the 
genomic regions detected in the present study and those 
identified in previous studies are discussed in more detail 
below.

Genomic regions associated with nodal root angle in 
sorghum have been previously reported [24, 26]. In this 
study, five SNP loci significantly associated with nodal 
root angle were identified on chromosomes 1, 3, 6, and 
7. Among these loci, three were co-located with previ-
ously reported QTL regions. For instance, a SNP locus 
on chromosome 6 (sbi20340807) at position 47.6  Mb is 
co-located with QTL regions identified in previous stud-
ies on Ethiopian sorghum landraces [24, 26]. This SNP is 
a missense mutation within a gene Sobic.006G106200, 
which encodes NAP domain containing protein and plays 
an important role in regulating leaf senescence by pro-
moting chlorophyll degradation through ABA Biosynthe-
sis [52]. Transgenic plants having an altered level of NAP 
protein display delayed leaf senescence relative to a non-
transgenic plant and improved yield [53]. The delay in 
leaf senescence (stay-green) is associated with increased 
water availability, possibly via greater water and nutri-
ent absorption through RSA traits. Genotypes with nar-
row root angles displayed higher drought tolerance and 
stay-green properties [9] and improved yield in sorghum 
[8]. This is due to the fact that plants with deeper roots 
and narrow root angles extract water and nitrogen more 
effectively [9, 54–56]. Therefore, Sobic.006G106200 could 
be a gene involved in controlling the nodal root angel 
variation explained by the marker sbi20340807 in this 
study.

Lopez et al. [22] identified a QTL for nodal root angle 
on chromosome 3 at the physical position 4.6 Mb using a 
bi-parental mapping population and this QTL is located 
about 6.4 Mb away from the SNP locus sbi7781202 iden-
tified on the same chromosome at 11.0 Mb in the present 
study. This marker is within the Sobic.003G121200 gene 
and it explained 5.35% of the total phenotypic variation. 
The gene encodes a PPR repeat containing protein that 
plays a key role in physiological processes contributing to 
plant growth and development. The marker sbi2393610 
at position 62.6  Mb on chromosome 7 is located about 
8.7  Mb away from the previously detected locus for 
nodal root angle [57]. This SNP is located within the 
Sobic.007G193200 gene encoding MTA/SAH nucleo-
sidase, crucial metabolites involved in the biosynthe-
sis of ethylene and polyamines, which play critical roles 
in plant physiology. The remaining two loci located on 
chromosome 1 (sbi2946469 and sbi3022983) are likely to 
be novel loci associated with the nodal root angle of sor-
ghum. The SNP marker, sbi3022983 on chromosome 1 at 
73.7  Mb was located within the sobic.001G462500 gene 
encoding a natural resistance-associated macrophage 

that plays a role in transporting a wide range of divalent 
metal ions.

Previous association mapping studies identified marker 
trait associations for root number in sorghum on chro-
mosomes 1, 2, 4, 6, 7, 8 and 9 [23, 24, 26]. In the pres-
ent study, the two SNP loci sbi29649877 and sbi29954292 
significantly associated with nodal root number are 
located at positions 45.2  Mb and 51.1  Mb, respectively, 
on chromosome 9, which are in close proximity with 
a root number associated locus reported by Menamo 
et al. [26]. The Sbi29954292 locus explained the high-
est phenotypic variation (18.07% of the total variation) 
among the significant markers identified in this study. 
This SNP is located within the coding sequence of the 
gene Sobic.009G112500 that encodes lipase. Whereas, 
sbi29649877 is located within the Sobic.009G154800 
gene, which encodes syntaxin 6, N-terminal domain-con-
taining protein.

In the present study, GWAS identified two SNPs that 
were significantly associated with NRL. Previous asso-
ciation mapping studies on sorghum detected quantita-
tive trait loci (QTLs) for root length on chromosomes 
1, 2, 3, 4, 5, 6 and 9 [24–27]. However, none of them are 
located close to the SNP loci on chromosomes 9 sig-
nificantly associated with NRL in the present study. The 
sbi29939092 locus is located near the upstream gene, 
Sobic.009G153101 that encodes zinc finger C3HC4 type 
domain-containing protein. The C3HC4 zinc finger pro-
teins have been well studied in Arabidopsis reporting 
their role in various abiotic stresses, such as drought, 
salt, cold and heat [58–61]. Besides their role in vari-
ous abiotic stresses, they also function in the develop-
ment and signaling processes linked to various stress 
processes like light perception, and peroxisome forma-
tion during root and seed development [62, 63]. The 
other locus, sbi29897704 (50.1  Mb) on chromosome 9 
is located within the genes Sobic.009G143700. The gene 
Sobic.009G143700 encodes NAC103 that regulates ABA 
response during seed germination and seedling growth in 
Arabidopsis.

Genetic control of shoot fresh and dry weight and leaf area
In the present study, four SNP markers significantly asso-
ciated with FSW were identified on chromosomes 2, 6, 
and 9. Among these loci, only the sbi20839691 locus on 
chromosome 6 at position 58.9 Mb is located close to a 
previously reported QTL (at position 57.2  Mb) associ-
ated with FSW [50]. The other three markers appeared to 
be novel markers associated with FSW. The SNP marker 
sbi29897694 (P < 8.25 × 10− 16) on chromosome 9 at posi-
tion 50.1 Mb is located within Sobic.009G143700, a gene 
that encodes no apical meristem protein and plays a role 
in plant development and is critical for proper leaf and 
flower patterning [64–66]. The remaining two identified 
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genes, Sobic.002G063600 (encoding Leucine Rich Repeat 
family protein), and Sobic.009G185700 (encoding mutS 
domain V family protein), are known for their role in cell 
wall developmental processes and roles in DNA repair 
and recombination.

Among the three SNP markers that were signifi-
cantly associated with DSW in the present study, two 
(sbi3632542 and sbi29939008) are located in close prox-
imity with previously reported genomic regions on chro-
mosomes 2 and 9, respectively, in sorghum [27]. They 
are located within the genes Sobic.002G063600 (Leu-
cine Rich Repeat family protein), and Sobic.009G152400 
(encoding glutamine cyclotransferase precursor), respec-
tively. The third one, sbi24668980, is a novel SNP locus 
identified on chromosome 8, which explained 10.76% of 
the total phenotypic variance of DSW. It is located within 
the Sobic.008G050800 gene that encodes a protein with 
no currently known function.

In the present study, only one novel SNP marker was 
significantly associated with LA. Previous association 
mapping studies in sorghum detected QTLs for LA 
on all chromosomes except chromosomes 3, 5 and 10 
[9, 25, 51]. The significant SNP identified in this study, 
sbi32853830, is located on chromosome 10 at posi-
tion 51.5  Mb. It is associated with a major QTL, which 
accounted for 18.2% of the total phenotypic variation in 
LA. This SNP is located within a gene Sobic.010G176800 
encoding ABC transporter and ATP-binding protein. 
Sobic.010G176800 plays a critical role in most aspects 
of cell physiology, including the uptake of nutrients and 
energy generation. Additionally, it was reported to be 
essential for the retention of leaf water in wild barley and 
rice [67]. Therefore, this locus could be a novel locus that 
control leaf area variation in sorghum.

Genomic prediction of root system architecture traits
Genomic prediction is an effective technique for speed-
ing up genetic gains in plant breeding [68]. It estimates 
the breeding values of individuals for traits of interest by 
considering all contributing QTLs based on their com-
prehensive marker information [45]. This method is par-
ticularly valuable for developing varieties with desirable 
traits, such as root system architecture that are multi-
genic and difficult to measure. The usefulness of genomic 
prediction in sorghum has been investigated in several 
studies [30, 31]. However, there were no genomic predic-
tion studies on sorghum RSA traits.

In the present study, the genomic estimated breeding 
values of 20% of 160 sorghum genotypes for RSA traits 
were estimated through five Bayesian models and RR-
BLUP model. The tested models predicted the genomic 
estimated breeding values with similar prediction accu-
racy for all traits. This is in agreement with previous 
studies that have reported similar prediction accuracy 

[69–72]. The prediction accuracy of the five Bayesian 
models ranged from 0.30 to 0.63 while that of the RR-
BLUP model ranged from 0.34 to 0.60 across the stud-
ied traits. These values are similar to previously reported 
accuracy for RSA traits in other crops [28, 73, 74]. The 
lowest prediction accuracy with both the Bayesian mod-
els and the RR-BLUP model was observed in FSW, while 
the highest was in NRL. Given the moderate to high pre-
diction accuracy and the challenges associated with phe-
notyping RSA traits, genomic selection may be a viable 
approach for breeding sorghum to improve these traits.

The present study was conducted using 160 sorghum 
genotypes grown in a controlled greenhouse environ-
ment, with 2,950 SNPs selected after quality control. 
While the study provides valuable insights into the 
genetic architecture of RSA-related traits in sorghum, it 
has some limitations. Root phenotyping presents chal-
lenges both in controlled environments and in the field, 
and this study did not include multiple environments, 
locations, or seasons. We acknowledge the importance of 
these factors in incorporating environmental influences 
on RSA traits. In future research, we plan to include 
accessions from multiple regions and countries to ensure 
greater genetic diversity and enhance the applicability of 
our findings. Additionally, we aim to explore gene-envi-
ronment interactions to better understand how environ-
mental factors impact RSA trait expression. Validating 
the identified candidate genes in future studies will also 
be a priority. Finally, expanding the number of genotypes 
and utilizing denser marker sets will improve the resolu-
tion of our findings and the accuracy of trait association 
studies.

Conclusion
In this study, both novel and previously reported loci sig-
nificantly associated with RSA traits were identified in 
the Ethiopian sorghum genotype at the seedling stage. 
The majority of the SNPs were located within candidate 
genes that have key roles in essential biological func-
tions many of which contribute to drought-stress toler-
ance. These findings offer valuable genetic insights that 
could aid the development of sorghum cultivars bet-
ter equipped to withstand water-limited environments. 
Additionally, the genomic prediction analysis using five 
Bayesian models and the RR-BLUP model demonstrated 
small differences in prediction accuracy across all traits. 
The moderate to high prediction accuracies observed 
reinforce the potential of genomic selection as an effec-
tive strategy for selecting and improving sorghum with 
desirable RSA traits.
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