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ABSTRACT: Recent biotechnological advancements in protein
production and development of biomimetic spinning procedures
make artificial spider silk a promising alternative to petroleum-
based fibers. To enhance the competitiveness of artificial silk in
terms of mechanical properties, refining the spinning techniques is
imperative. One potential strategy involves the integration of post-
spin stretching, known to improve fiber strength and stiffness while
potentially offering additional advantages. Here, we demonstrate
that post-spin stretching not only enhances the mechanical
properties of artificial silk fibers but also restores a higher and
more uniform alignment of the protein chains, leading to a higher fiber toughness. Additionally, fiber properties may be reduced by
processes, such as aging, that cause increased network entropy. Post-spin stretching was found to partially restore the initial
properties of fibers exposed aging. Finally, we propose to use the degree of necking as a simple measure of fiber quality in the
development of spinning procedures for biobased fibers.
KEYWORDS: wet-spinning, protein fibers, biobased fibers, polymeric fibers, polymeric materials

■ INTRODUCTION
The negative environmental impact of synthetic plastic-based
fibers underscores the urgent need for innovative, eco-friendly
materials with high mechanical performance for diverse
applications, such as the textile industry.1 In this context,
biomimetic artificial silk fibers obtained from the recombinant
spider silk protein NT2RepCT are promising since they are
produced under environmentally friendly conditions.2 More-
over, recent technological achievements made it possible to
produce these proteins and spin artificial silk fibers with
scalable methods that are commonly used in industrial
processes.3,4 However, the protocols for spinning fibers,
including artificial spider silk, are usually dependent on fine-
tuning several parameters to obtain a fiber with optimized
mechanical properties.5 In a recent report, we explored the
influence of 93 different spinning conditions on the mechanical
properties of the resulting fibers, suggesting that the
application of a post-spin stretch was the factor with the
greatest impact on tensile strength.6

Post-spin stretching (PSS) is a general method to improve
the mechanical properties of polymeric fibers, artificial silk
included7,8 (Figure 1a). This procedure involves controlled
deformation of the spun fibers to a certain strain level, thereby
inducing a higher orientation of the polymer chains in the
network9,10 (Figure 1b). For polymeric fibers and also for silk,
it is known that a high degree of orientation and alignment of
molecular chains is beneficial for enhancing intermolecular

interactions and improving mechanical properties, e.g.,
strength and Young’s modulus of fibers.10−15

The application of PSS to silk fibers can be done during or
immediately after fiber spinning, either in the presence or
absence of different solvents. Consequently, the effects of PSS
on fiber mechanical properties could differ according to the
specific protocol used.5,7,16−19 For this reason, understanding
how post-spin stretching affects the mechanical properties of
artificial silk fibers is of high interest.
While post-spin stretching may improve the mechanical

properties of artificial silk fibers, on the contrary, aging may
have a deteriorating effect due to an increased molecular
disorder in the polypeptide network and structural hetero-
geneity.20 In particular, aging induces a structural reorganiza-
tion within the fibers toward a more stable thermodynamic
state.21 In principle, the high level of disorder of polypeptide
chains established in aged fibers can be reversed by applying a
strain, i.e., stretching the fiber. If this applies also to silk fibers
is not known.
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The mechanical properties of polymeric fibers are not solely
defined by their numerical values but also by the shape of their
stress−strain curves. This is because the shape of these curves
directly reflects the internal structure of the polymer’s chain
network.22−24 For instance, in polymeric materials, the degree
of necking observed in engineering stress−strain curves can
signal the presence of structural or morphological hetero-
geneities, as well as mechanical defects within the fibers.9,25−27

Despite the fact that necking is frequently seen in wet-spun
fibers and could be a strong indication of their quality, it is
often underexplored and overlooked in research.16,18,19,28−34,36

In this study, we re-evaluate the data reported in Schmuck et
al.6 and compare it to PSS performed using different
conditions on freshly spun and aged wet-spun artificial silk
fibers. In particular, we show that PSS improved the strength
and Young’s modulus of this material, which is known to be a
direct consequence of the higher overall level of molecular
order. Furthermore, PSS can also be used to reduce structural
heterogeneities, which can act as defects, in the fiber. To assess
the presence of structural heterogeneities quantitatively, we
determined the degree of necking from the engineering stress−
strain curves since it reflects morphological and structural
heterogeneities. Finally, we show that PSS represents a
powerful approach for reverting the deteriorating effects that
aging has on artificial silk fibers.

■ RESULTS AND DISCUSSION
Artificial silk fibers were collected from the spinning bath in an
automated process and dried on plastic frames as described
previously.6 To assess the effects of PSS, we reevaluated data
reported in Schmuck et al.,6 where the fibers were stretched in
air to different levels of strain (0.2, 0.4, 0.6, and 0.8), and
compared them with results from another mode of stretching.
Protocol I was used to obtain the PSS data described in
Schmuck et al.6 (Figure 2a), where the fibers were allowed to
rest for 10 min after PSS to ensure that residual stresses were
minimal (Figure S1), before being removed from the machine
and mounted on a new paper frame. After 1 day, these fibers
were subjected to a tensile test. Protocol I was also used to
generate new data, for the purpose of studying artificial silk
fibers that were aged for three months while being restrained
on the frames where they were originally collected. Since fibers
exposed to these conditions usually fractured at a stretching
factor of 0.6, we could only apply PSS up to this strain level. In
protocol II (Figure 2b), the fibers were subjected to PSS and
allowed to rest for 10 min, followed by a tensile test without
removing the fiber from the machine at any point. Thus, for
Protocol II the fibers were not relaxed to the same extent
compared to Protocol I.
The effect of both Protocol I and II is that the strain at break

of fresh fibers subjected to PSS decreased (Figure 2c,d),
consistent with observations for other polymeric materials.14,36

The strain at break of the aged fibers was significantly lower

Figure 1. (a) Scatter plot of the mean values of Young’s modulus, strength, strain at break, and toughness modulus of fibers produced from
regenerated Bombyx mori silk and recombinant spider silk proteins. The average of these mechanical properties (represented by dashed lines) are in
general higher for fibers that were subjected to post-spin stretch. The data was obtained from refs 3, 4, 14, 16−19, 29, 53, 55−80 (b) Schematic
illustration of the effects of post-spin stretching and aging of a network of polymer chains within a fiber. Aging tends to increase the state of disorder
within the fiber, whereas post-spin stretching tends to increase the level of molecular order. Highlighted red regions indicate higher intermolecular
interaction.
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compared to fresh control fibers (Figure 2e). Interestingly,
applying a small post-spin stretch factor (0.2) to aged fibers
significantly increased the strain at break. The improvement in
mechanical properties obtained by PSS suggests that protein
degradation is not the main contributing factor to the age
related effect. Instead, we speculate that an heterogeneous
organization of the proteins may lead to premature fracture

due to suboptimal load dissipation,9,37 and that stretching leads
to a more uniform organization. This is supported by the
enhanced brightness and uniformity of birefringence, and
increased birefringence index detected by polarized light
microscopy (Figure 3). Specifically, the birefringence index
of aged fibers was lower than that of fresh fibers (Figure 3b),
but when subjected to a 0.2 PSS the index was restored,

Figure 2. Different experimental protocols employed for applying post-spin stretching (PSS). (a) Protocol I consisted of applying a PSS to a fiber,
allowing it to rest for 10 min, followed by removing it from the tensile tester. This fiber was then remounted on a new paper frame and subjected to
a tensile test after 1 day. This data is shown in panels (c, f, i, and m) and were obtained from Schmuck et al.6 Protocol I was also employed for
fibers that were aged for three months in a humid environment. (b) Protocol II consisted of applying a PSS to a fiber, allowing it to rest for 10 min,
followed immediately by a tensile test without removing the fiber from the machine. (c−o) Mechanical properties of the fibers for different
maximum strain levels of PSS and for different protocols employed for applying PSS. Stars indicate that the difference is significant with p-value
<0.05 and the error bars are the standard deviations.
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indicating that the initial properties of fresh fibers can be
partially restored in aged fibers by means of PSS. Stretching
beyond the 0.2 PSS level, did not improve the strain at break
further but resulted in a small increase in strength (Figure
2e,h).
The strength of the fresh fibers subjected to PSS in air

increased, consistent with many observations for silk and
synthetic polymer fibers10−15 (Figure 2f−g). This increase in
mechanical strength can be ascribed to the higher degree of
orientation of the polypeptide chains after PSS (Figure 3b),
which is commonly observed for polymeric materials including
silk.9,10,15 As expected, we observed also a decrease in fiber
diameter of the stretched fibers (Figure S2).6,15,29,38 The fibers
that were subjected to PSS with Protocol II displayed lower
strength than those that were allowed to relax after PSS
(Protocol I). This difference could potentially be explained by
the assumption that stretched polymers, when allowed to relax,
can partially restore interactions (i.e., self-healing) that were
lost during stretching.39−41 The strength of the fibers that were
aged for 3 months was significantly lower than that of fresh
fibers reported in our previous work.6 As for other polymeric
materials, this is probably due to that aging induced increased
conformational disorder, which leads to suboptimal load
distribution capacity of the protein network.21,42

The modulus of toughness describes how much energy a
material can absorb before rupturing and is defined by the area
under the stress−strain curve. Here, the experimentally
observed variations of strength and strain at break as a
function of the strain applied during PSS resulted in the
occurrence of an optimum (maximum) toughness modulus at
a 0.2 strain applied during PSS with Protocol I (Figure 2i). An
optimum was observed also for aged fibers subjected to PSS,
and in this case, the optimum was at a strain level of 0.4. This
is not the case for the fibers that were PSS using Protocol II
(Figure 2j) which displayed a constant decrease in toughness
modulus with the level of strain applied with PSS.

Figure 3. (a) Representative polarized light images (sample between
crossed polarizers) of a NT2RepCT fiber at different levels of PSS.
From these images, it is possible to see that PSS increases the
birefringence of fiber. Before PSS (PSS = 0 means as spun fibers), the
birefringence intensity is rather low and not uniform along the fiber
demonstrating heterogeneities in the orientation of polymer chains.
Scale bars are 100 μm. (b) Birefringence index measured for fresh and
aged fibers at different level of PSS (Protocol I). PSS of 0.8 mm/mm
could not be applied to aged fibers because they broke at lower levels
of strain. Stars indicate that the difference is significant with p-value
<0.05 and the error bars are the standard deviations.

Figure 4. (a) Illustration showing how necking is quantified (degree of necking = “decrease in stress from yield stress”/“yield stress”). Necking
values of the fibers at different levels of PSS for (b) protocol I, (c) protocol I on aged fibers, and (d) protocol II. The error bars are the standard
deviations.
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The Young’s modulus of the fresh fibers subjected to PSS
with both Protocol I and II increased with the level of
stretching (Figure 2m,n). Again, this is in agreement with what
has been observed for many polymeric materials and can be
explained by the higher orientation of the polymer chains in
the network induced by PSS.9,10,14,36 The fibers that were aged
displayed a much higher Young’s modulus compared to the
freshly spun fibers (Figure 2o). The observed improvement in
Young’s modulus serves as another indication that protein
degradation does not play a major role during fiber aging for
three months. Instead the increased Young’s modulus can be
explained by the assumption that protein chain relaxation
occurring in the course of aging results in increased disorder in
the network, which increases the number of topological
constraints among the protein chains.21,43 When a strain is
applied to the chain network, the topological interaction of the
chains leads to a local stress concentration, which could make
the initial mechanical response of the material stiffer.22,44−46

This also agrees with the general observation that aging makes
most polymer materials stiffer, including native spider silk.47−49

In this context, when a PSS is applied to the aged fiber,
disordered regions probably become more ordered, which
partially restore the initial level of order and thus the fiber
became less stiff (Young’s modulus was decreased from 6.3 to
2.6 GPa, Figure 4o).
The mechanical qualities of fibers are defined by the strain at

break, strength, Young’s modulus, and toughness modulus.
Furthermore, the shape and characteristic features of the
associated stress−strain curves can reflect structural organ-
ization and changes induced by stretching.22−24 Of particular
interest is necking, which is a phenomenon that can be
observed as a reduction in stress after the yield point in the
engineering stress−strain graphs (Figures 4a and S3−S5).
Necking is a consequence of plastic instability and a
nonuniform deformation of the material,9,50,51 and in
polymers, the phenomenon indicates the presence of regions
of mechanical weakness or heterogeneous structures at all
scales. Thus, fibers that do not display necking are in principle
more uniform with respect to fibers that display necking. For
polymeric fibers, artificial silk included, necking is commonly
observed but seldom discussed in a quantitative and detailed
way.16,18,19,28−35 We observed that for the artificial spider silk
fibers, the degree of necking consistently decreased when PSS
was applied, regardless of the protocol used (Figure 4b−d).
This is in agreement with previously published qualitative
observations.36,38,52 In particular, for fresh fibers subjected to
Protocol I at strains of 0.6 and 0.8, no necking was observed
(Figure 4b). At a PSS strain of 0.4, 40% of the fibers did not

show necking while 60% of the investigated fibers showed a
minor degree of necking. Interestingly, the amount of necking
was on average higher for fibers undergoing protocol II (Figure
4d), again probably due to insufficient relaxation (compared to
Protocol I) after PSS.36 Notably, for aged fibers (Figure 4c),
necking was highest, confirming the notion that aging increases
the molecular disorder. By applying post-spin stretching to
aged fibers, we were able to significantly reduce the level of
necking from 27% to approximately 6%. However, even at a
PSS level of 0.6, we observed that 70% of the aged fibers still
exhibited necking, whereas necking was absent in fresh fibers
subjected to the same level of PSS.
To summarize the effects of PSS and aging on our artificial

silk fibers, we have created an Ashby plot containing the values
of Young’s modulus and strength obtained from the artificial
silk fibers described in Schmuck et al.6 and tested after
exposure to different treatments (Figure 5). In general, aging
increases the level of molecular disorder and makes the fiber
Young’s modulus higher and fiber strength lower. To reverse
these effects, PSS can be applied to increase the level of order
in the protein chain network, and thereby increase the strength
and Young’s modulus of the fibers.

■ CONCLUSIONS
In this paper, we analyze the effects of PSS on the mechanical
properties of wet-spun artificial silk fibers. We conclude that in
addition to improving the strength and Young’s modulus of
wet-spun fibers, PSS can restore the alignment of the
polypeptide chains and partially revert the negative effects of
aging. Finally, we propose that quantitative determination of
necking can be used to assess polymeric fibers quality.

■ MATERIALS AND METHODS
Spinning Artificial Spider Silk. The biomimetic artificial spider

silk fibers were spun following an optimized protocol described in
Schmuck et al.6 Briefly, the proteins (33 kDa in molecular weight,
called NT2RepCT) were expressed in E. coli purified with
immobilized metal ion chromatography in native conditions, also as
previously described.3 To make the spinning dope, NT2RepCT
stored in 20 mM Tris (pH 8) was concentrated to 300 mg/mL with
an Amicon Ultra-15 centrifugal filter unit (Merck-Millipore) at 4000g
and 4 °C with a 10 kDa cutoff membrane. The dope was then
transferred to a 1 mL syringe which was connected to a pulled glass
capillary having an orifice diameter of 42 ± 4 μm54. The spinning
dope was then extruded at 17 μL/min into the spinning bath
containing 4 L of a 750 mM acetate (Na) buffer at pH 5. The fibers
were collected by a motored wheel spinning at 58 cm/s at the end of
the 80 cm long spinning bath.

Figure 5. (a) Ashby plot of the Young’s modulus and strength of fresh and aged NT2RepCT artificial silk fibers that were PSS using Protocol I. (b)
Ashby plot of the necking level and strength of fresh and aged NT2RepCT artificial silk fibers that underwent PSS using Protocol I. The graphs
highlight the effects that aging and stretching have on fiber mechanical properties. The data from the fresh fibers were obtained from Schmuck et
al.6
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Application of Post-spin Stretching and Tensile Tests. The
application of a post-spin stretch was done in different ways
(Protocols I and II) (Figure 2). The data for stretching fresh
NT2RepCT fibers according to protocol I were obtained from
Schmuck et al.6 and reanalyzed in this study. Briefly, in protocol I
freshly spun fibers were mounted on paper frames with a 10 × 10 mm
square window. Then, the samples were mounted on an 5943 tensile
tester (Instron) and stretched in air at 6 mm/min up to different
levels of strain (0.2, 0.4, 0.6, and 0.8, respectively). The fibers were
allowed to rest at the desired level of strain for 10 min. Subsequently,
they were removed from the tensile tester and remounted on new
paper frames with a square window of 10 × 10 mm. The fibers were
then allowed to rest for 1 day while mounted in the new paper frame.
The diameter of the fibers was measured before and after the
application of PSS, as described below. Finally, tensile tests on these
fibers at 6 mm/min fibers were performed with the same Instron
machine. Protocol I was also used for applying PSS to fibers that were
aged for three months over the summer in the laboratory (humidity
range 35−90% RH). In this case, however, PSS could not reach a
strain level of 0.8 because fibers broke already around 0.6. For
Protocol II, freshly spun fibers were mounted on paper frames with a
10 × 10 mm square window. Then, the samples were mounted on a
Modular Stage Force (Linkam) device. These fibers were post-spin
stretched in air up to different levels of strain (0.2, 0.4, 0.6, and 0.8,
respectively) and allowed to rest for 10 min at the desired strain level.
Then, without removing the fiber from the machine, the diameter was
measured again, followed immediately by performing a tensile test on
these fibers at 6 mm/min. Protocol II was used because it allowed the
measurement of the diameter directly on the machine, which was not
possible to do with Protocol I. The engineering stress was calculated
by dividing the recorded load by the cross-sectional area (assumed to
be circular) of the fibers. The engineering strain was calculated using
the final (after post-spin stretching) gauge length, about 1 cm, and the
measured displacement. Young’s modulus was obtained from the
slope of the initial linear elastic part of the stress−strain curve. The
toughness modulus was obtained by integrating the area under the
stress−strain curves. Stress−strain curves were also recorded during
PSS. All tensile tests, at least in ten replicates, were carried out at RH
< 35% at room temperature.
Measurement of the Fiber Diameters. The diameters of the

fibers were measured at 5 different locations and then averaged. The
diameters were measured before the tensile testing, employing light
microscopy. For Protocol I, measurements were done using a Eclipse
Ts2R-FL inverted microscope (Nikon) with a DFKNME33UX264 5
MP camera and a CFI Plan Fluor DL-10× objective. For Protocol II,
the measurements were done as described previously using a Eclipse
TE300 inverted microscope (Nikon) equipped with a DFK
DFKNME33UX264 2.3 MP camera and a CFI Plan Fluor DL-10×
objective.54 The fibers here analyzed did not show a uniform circular
cross section. Thus, the average diameter was used to calculate the
cross sectional area, assumed to be circular, which is a common
practice in the silk field to obtain comparable results.20

Measurement of the Birefringence Index. To measure
birefringence index, we used a Microscope Axioscope 5/7 KMAT
(Zeiss) equipped with a polarizer and a tilting Berek compensator
(5λ). The birefringence index of the fibers was obtained by dividing
the retardation of the polarized light by the thickness of the fiber
(here represented by the diameter). This measurement was
performed on the fibers that were subjected to PSS using protocol I.
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