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Abstract 

Chemical pollution is a pervasive problem and is now considered the fastest-growing agent of global 

environmental change. Numerous pollutants are known to disrupt animal behaviour, alter ecological 

interactions, and shift evolutionary trajectories. Crucially, both chemical pollutants and individual 

organisms are non-randomly distributed throughout the environment. Despite this, the current 

evidence for chemical-induced impacts largely stems from tests that restrict organism movement and 

force homogenous exposures. While such approaches have provided pivotal ecotoxicological insights, 

they ignore the spatiotemporal dimension of wildlife–pollution interactions, which are key to 

accurately predicting the impacts of chemical pollutants on free-roaming wildlife. Indeed, the 

seemingly simple notion that pollutants and animals move non-randomly in the environment creates 

a complex of dynamic interactions, many of which have never been theoretically modelled or 

experimentally tested. Here, we conceptualise potential dynamic interactions between 

spatiotemporal variation in pollutants and individual organisms, and highlight how these processes 

could scale up to have substantial ecological and evolutionary impacts across populations, 

communities, and whole ecosystems. We conclude by outlining technological advancements and 

approaches that will facilitate the necessary spatiotemporal integration in ecotoxicology, and a three-

pronged approach—in silico modelling, laboratory approaches, and field approaches—to guide future 

research. 
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1. Introduction  

Chemical pollution is a globally pervasive problem. The contamination of ecosystems with synthetic 

chemicals is now considered the fastest-growing agent of global environmental change, with fears 

that humanity is currently outside the safe operating space for the planetary boundary for novel 

entities in the environment [1–3]. To date, over 350,000 chemicals (e.g. plastics, pesticides, 

pharmaceuticals) are registered for use worldwide [4], with an increasing number of these substances 

being routinely detected in the environment [5]. Importantly, many of these contaminants have been 

shown to disrupt wildlife behaviour, alter ecological interactions, and shift evolutionary trajectories 

[5,6]. Given their widespread presence and capacity to disturb key ecological processes, 

understanding how pollutants affect wildlife populations remains a critical topic of research.  

 Over the last several decades, increased environmental monitoring of contaminants has 

demonstrated that chemicals are often spatially and temporally structured within the environment 

[7,8]. In light of this, it has long been acknowledged that spatiotemporal information must be better 

integrated into ecotoxicology in order to accurately predict a species’ local exposure risk (e.g. 

‘landscape ecotoxicology’; [9–11]). However, our current knowledge of chemical pollution-induced 

effects on wildlife is largely based on tests performed under simplified laboratory conditions, where 

the potential impacts of a contaminant are often assessed using a single isolated individual, at one or 

more set dosages [12,13]. In most cases, these studies aim to achieve homogenous exposure 

conditions—both spatially and temporally—and restrict the physical space in which the study 

organisms can move. Consequently, there is an underlying assumption that the effects seen under 

these conditions would be reflective of exposures in the wild [10].  

Like pollutants, organisms are distributed non-randomly throughout their environment and 

their distribution can change over time. Recent high-resolution tracking studies on wild organisms 

have demonstrated that seemingly similar species, populations, and even individuals within those 

populations, often consistently differ in their movement, space use, and habitat selection [14–17], 

suggesting that organisms differ from one another in their likelihood of encountering pollutants. 

Furthermore, exposure to chemical pollutants has itself been shown to alter organismal behaviour 

and movement rates [6,12,18,19], generating the potential for dynamic feedback loops between 

spatiotemporally structured chemical pollutants and variation in animal movement [20]. Given that 

spatiotemporal dynamics are fundamental to all ecological and evolutionary processes, understanding 

how the spatial and temporal structuring of contaminants and organisms affects variation in exposure 

rates, subsequent organismal movement and how this may scale up to population-level processes is 

a vitally important area for future research. 



We contend that accurately measuring and forecasting the risk of environmental 

contaminants on wildlife populations depends on (I) the spatiotemporal variation of pollutants, (II) the 

spatiotemporal variation of organisms, and (III) the relationship between the two. Here, we briefly 

examine how spatiotemporal variation in pollutants and individual organisms may result in differential 

exposure risk within populations. We then propose a series of dynamic interactions that could arise 

from these spatiotemporal processes and discuss how they may scale up to have substantial ecological 

and evolutionary effects. Finally, we outline promising directions for future research, emphasising 

recent advances in analytical chemistry, animal-tracking technologies, and computer-based modelling 

as a much-needed window into the spatiotemporal elements of environmental ecotoxicology. 

 

2. Pollutants are spatially and temporally structured within environments 

Chemical pollutants are not evenly distributed in the environment across space or time. First, the 

source of contamination plays a significant role in the spatial distribution of a pollutant. Some 

pollutants originate from localised point sources, such as wastewater or stormwater outflows, while 

others result from diffuse sources, such as large-scale agriculture spray-drift. In aquatic systems, 

factors like water flow patterns, river discharge, and precipitation levels can dilute/concentrate and 

transport these contaminants once they enter the environment (e.g. [21]). For example, the 

concentration of point-source contaminants typically decreases with distance from the discharge site 

[22]. Similar patterns are evident in terrestrial systems, with prior studies showing that contamination 

of dust and air with pesticides is highest near agricultural lands and is diluted further from the source 

[23]. However, it is important to note that this is not always the case, particularly when complex 

contaminant drift dynamics are involved [23,24]. Indeed, non-point source contaminants, such as 

agricultural runoff and atmospheric deposition, often show more varied spatial distributions [25]. 

  The matrix through which contaminants move (e.g. soil, water, or gas), as well as their 

physical, structural, and molecular properties of chemicals—such as hydrophobicity, functional 

groups, reactivity, and volatility—also determine their mobility, transformation, persistence, and 

subsequent distribution in the environment [25]. Additionally, habitat and environmental 

characteristics like UV exposure, temperature, precipitation, soil-sediment composition, prevailing 

wind direction, and ocean currents can influence the degradation and dispersal of contaminants 

[8,21,26]. Plants, microbes, and animals can further alter contaminant breakdown and distribution 

through uptake, biomagnification, and biotransformation. These processes can occur across the 



aquatic–terrestrial interface, where pollutants may transfer and even bio-magnify through trophic 

interactions between ecosystems [27,28].  

 Temporal changes to the spatial distribution of chemical contaminants are also common. For 

example, a known hotspot of wastewater-derived pharmaceuticals and other pollutants in Lake 

Geneva, Switzerland, dissipated with a change in thermal stratification in colder months, resulting in 

a more homogenous vertical distribution in the water column [8]. Similarly, seasonal variation in the 

concentration of pesticides and polycyclic aromatic hydrocarbons (PAHs) has been documented in the 

Henares River basin in central Spain, likely due to seasonality in agricultural practices and changes in 

sunlight intensity affecting chemical degradation [29]. Temporal changes can also occur on much 

shorter timescales. For example, concentrations of illicit drugs and their metabolites can increase in 

wastewater following public events [30,31]. In Lake Qingshan, China, organic pollutant concentrations 

spiked immediately following heavy rainfall events before eventually declining [32], whereas daily 

variations in the concentrations of organic and heavy metal pollutants in surface waters of the Mekong 

Delta, Vietnam, were linked to water mixing caused by tidal activity [22].  

The spatiotemporal variation in exposure to chemical pollutants has gained increasing attention 

[9,10]. For example, in the Athabasca Oil Sands Region of Canada, recent research integrating spatial 

geographic information systems with mercury bioaccumulation data—including from amphibians, 

bird eggs, plants, and terrestrial and aquatic mammals—has identified spatial ‘hotspots’ of mercury 

contamination near industrial facilities [33]. Further, in the Puget Sound Basin (Pacific Northwest of 

the United States), coho salmon (Oncorhynchus kisutch) mortality has been linked to nearby road 

density and traffic intensity, a finding attributed to tyre wear particle leachates in urban runoff [34,35]. 

However, much of this research has focused on relatively large spatial scales to identify how 

contaminant exposure varies between species or populations in different locations across time, with 

little attention paid to how the spatial structuring of these chemicals affects within-population 

differences in exposure rates, how exposure can subsequently feedback to alter animal movement 

and space use, and how this may influence broader ecological and evolutionary processes.  

 

3. Individuals are spatially and temporally distributed within environments  

It is well known that the distribution of organisms varies across both space and time. The movement 

of animals within their environment, for example, allows species to track changes in resources (e.g. 

food, breeding sites) and avoid unfavourable environmental conditions. This can occur at large spatial 



scales over long timeframes (e.g. seasonal shifts in distribution during long-distance migrations), as 

well as much smaller scales where organisms vary their within-environment space use over shorter 

timeframes. For example, Eurasian perch (Perca fluviatilis) displayed the highest activity rates and 

increased space use during the day [36], while large marine predators like Atlantic bluefin tuna 

(Thunnus thynnus) are also known to migrate hundreds of metres of vertical distance each day, 

traversing stratified layers of water with remarkably different abiotic profiles [37]. 

Individuals within populations also often differ in their space use and movement dynamics 

[38]. For instance, individual phenotypic traits (e.g. body size, body condition, sex, age) have been 

found to influence movement and space use in a variety of species [39–44]. Even when controlling for 

these factors, individuals within populations still often inherently differ from one another in their 

movement [15,45]. Indeed, a long-term (8-year) radio telemetry study tracking over 500 individual 

fish from 5 different species showed that inherent individual differences within populations accounted 

for more variation in movement dynamics than differences between the tested species [46]. This 

intraspecific variation can have key effects on organismal ecology, with previous research showing 

relationships between individual movement rates, dietary niche, and habitat selection [14,16,42]. 

Collectively, this research demonstrates that individuals within populations exhibit significant 

variation in space use and movement, which are closely linked to niche specialisation. Consequently, 

individual differences may lead to unique patterns of exposure to environmental challenges such as 

pollutants [47–50].  

 

4. Wildlife–pollution interactions in a spatiotemporal context 

Given that both pollutants and animals vary in their spatial and temporal distribution within the 

environment, an individual's movement patterns, habitat preference, and space use will directly 

influence its exposure to chemical pollutants. This has been demonstrated in species such as Chinook 

salmon (Oncorhynchus tshawytscha) [49], Pacific Bluefin tuna (Thunnus orientalis) [50], Pacific herring 

(Clupea pallasi) [48], and Striped bass (Morone saxatilis) [47]. In the wild, an individual’s ‘realised 

exposure’ is determined by the alignment between its spatiotemporal distribution and that of a 

pollutant, combined with individual bioaccumulation processes (i.e. the balance of uptake and loss). 

Importantly, pollutant exposure can also create feedback effects that influence future movement and 

decision-making, either by disrupting normal behaviours or by triggering avoidance, attraction, or 

conformity to polluted habitats [20,51–56]. Below, we conceptualise the dynamic feedback between 



the spatiotemporal distribution of contaminants and wildlife and discuss likely ecological and 

evolutionary consequences (Fig. 1). 

4.1 Pollutants impact the spatiotemporal distribution of organisms and the nature of their exposure 

i) Wildlife–pollutants repulsion-like interactions 

Organisms may actively avoid contaminated areas, with contaminants directly triggering sensorial 

repellence or by making environments less suitable for occupation (i.e. acting as habitat disrupters) 

[57,58]. Such effects can alter the duration and extent of individual exposure. For example, even at 

low concentrations, copper pollution has been shown to induce spatial repellence in numerous taxa 

(including invertebrates, fish, and amphibians) [59–62], and can act as a chemical barrier preventing 

recolonisation of suitable habitats and potentially isolating populations [63]. Organisms may also 

employ temporal avoidance strategies, especially when displacement is impossible, such as delaying 

colonisation—exemplified by deterred oviposition in polluted habitats [64,65]—or entering dormant 

stages [66]. These avoidance behaviours have been demonstrated in laboratory-based, 

multicompartmental exposure systems [67,68], and are influenced by the organism’s ability to detect 

the pollutant (sensory physiology), its capacity to escape (e.g. sessile versus mobile stage, pollutant-

induced locomotion impairment), and also environmental features such as resource availability, 

interspecific interactions, and the characteristics of the chemical exposure (e.g. chemical properties, 

concentration, and duration) [69]. An important aspect to consider when evaluating risk is that the 

repellent nature of a substance may not be directly correlated with its toxicity, meaning that a highly 

repellent contaminant could have low toxicity and vice versa [70]. Moreover, because pollutant-

induced spatial avoidance occurs at sub-lethal concentrations or concentrations too low to produce 

detectable physiological effects, environmental risk assessments based solely on these measures may 

overlook important shifts in population and community dynamics (see Section 4.2).  

ii) Wildlife–pollutant attraction-like interactions 

While many chemical contaminants are expected to be repellents, some compounds can attract 

wildlife by interfering with sensory systems or by altering environmental cues used for habitat 

selection [71]. This can result in ‘sink habitats’ or even ‘ecological traps’, whereby organisms select 

suboptimal habitats where their exposure to harmful substances is heightened, and their fitness is 

consequently reduced. Some pesticides, for example, resemble insect pheromones, leading insects to 

mistake these chemicals for mating signals [72]. Similarly, heavy metal pollutants can disrupt sensory 

system function, preventing organisms from detecting olfactory signals that might otherwise be 



avoided (e.g. predator cues) [73]. Furthermore, contaminated areas can be associated with modified 

local habitat characteristics (e.g. temperature, nutrient availability, sediment type), inadvertently 

making them more attractive to certain species. Wastewater effluents, for example, may attract fish 

due to nutrient-rich discharge and warmer temperatures, increasing their exposure to harmful 

contaminants [74,75]. 

iii) Wildlife–pollutant indirect interactions 

In addition to repulsion from, or attraction to contaminated sites, chemical pollutants may also alter 

the spatial distribution of organisms and their subsequent exposure via indirect effects on organismal 

behaviour (i.e. without a spatially explicit response to the contaminant). Small- and large-scale 

movement patterns are sensitive to contaminants that affect neurological function, metabolism and 

endocrine regulation, such as psychoactive pharmaceutical pollutants [51,54,55,76], endocrine-

disrupting chemicals [52,53,77,78], and pesticides [53,79,80]. As a small-scale example, chemicals can 

disrupt biological rhythms of exposed organisms, altering normal day-night activity cycles [81,82]. As 

a larger-scale example, contaminants can alter travel distances, migration timing, and stopover 

durations [83,84]. Contaminant-induced shifts in movement can, in turn, lead to altered subsequent 

exposures to the same or other pollutants (i.e. positive or negative feedback loops), by affecting the 

likelihood of encountering pollutants as well as the duration of exposure. Further, contaminants-

induced effects on other behavioural traits may also indirectly influence the spatial distribution of 

organisms and their probability of future exposures. As an example, risk landscapes [85] and social 

resistance (e.g. territoriality, within-group preferences) [86] are known to be major barriers to 

movement in many species, and there is evidence that many chemical contaminants can modify 

behaviours that generate these barriers, such as territoriality, risk-taking, aggression, and social 

behaviours [53,78,87–89]. 



 

Fig. 1 | (A) Spatial layers that will influence the exposure risk and outcomes for wildlife. (B) Broad spatiotemporal 

wildlife-pollutant interactions and possible effects on the individual movement of fish from a hypothetical 

population. (C) Dynamic feedback between spatiotemporal variation in pollutants and animals. 

 

iv) Individual-specific effects 



Trait variation among individuals within a population may also determine the nature of individual 

exposure. For instance, several demographic characteristics (e.g. age, sex, body condition, 

reproductive status) are known to influence the spatial distribution of organisms in the environment 

(see section 3). Similarly, individual differences in personality (e.g. foraging propensity, risk-taking 

behaviour, sociality) and experience within populations can also mediate movement rates, space use, 

and habitat selection [15,90,91], suggesting that some individuals may be more likely to encounter 

contaminants than other individuals in the population.  

Moreover, even when organisms are exposed to the same contaminant concentrations for the 

same duration, individual responses may still differ. Genetic and physiological differences can 

influence individual sensitivity to pollutants and their subsequent behavioural response. For instance, 

exposure to environmental levels of an antidepressant over two years homogenised movement 

behaviour among individual male guppies (Poecilia reticulata), but no shift in the variation of female 

movement phenotypes was observed [92]. Variation in metabolic rate, enzyme activity, and hormone 

regulation can also affect how contaminants are processed and detoxified, influencing the stress 

signals perceived by organisms and leading to the avoidance of, or attraction to, certain areas [93]. 

Other traits have also been shown to influence the sensitivity of organisms to pollutants. Indeed, 

independent of body mass, social status influenced the bioaccumulation of the psychoactive 

pharmaceutical oxazepam and subsequent aggressive behaviour in exposed brown trout (Salmo 

trutta) [94]. Taken together, this research highlights that where pollutants are spatially structured 

within an environment, individual differences in phenotypic traits (e.g. body condition, physiology, 

personality) likely mediate the nature and extent of exposure in the wild, and that this exposure can 

subsequently feedback to affect these same phenotypic traits. To our knowledge, the potential for 

individual phenotypic traits to influence exposure risk, moderate individual sensitivities, and feedback 

to influence those same phylotypic traits has not been empirically assessed. 

4.2 Ecological and evolutionary consequences 

Below, we illustrate several potential ecological and evolutionary consequences of spatiotemporal 

interactions between pollutants and organismal movement at the individual, meta-population, and 

community levels. This overview is not intended to be exhaustive but instead highlights several key 

outcomes of spatiotemporal wildlife–pollution interactions that are seldom considered in 

ecotoxicology. It is also worth noting that many of the highlighted consequences likely have effects 

across multiple biological and spatial scales, which, for simplicity, we have not specifically illustrated 

here. While we have focused on movement, space use, and behaviour, we acknowledge that many 

pollutants may exert a variety of ecological and evolutionary effects via other mechanisms (e.g. direct 



mortality, disrupted organismal development, reproductive changes) [95], which can also contribute 

to potentially adverse outcomes for wildlife populations.  

i) Individual-level outcomes: 

Likely consequences of pollution-induced changes in animal movement and space use are alterations 

in the rate and nature of conspecific encounters (i.e. intra-specific interactions). For example, 

pollutants that act as repellents or attractants may decrease or increase intraspecific encounter rates, 

respectively, via changes in local population density. Likewise, pollutants that increase movement 

rates may similarly heighten the likelihood of encountering conspecifics (and vice versa). Changes in 

encounter rates and local population densities could lead to shifts in the strength/direction of both 

natural and sexual selection within the population via changes in resource (e.g. food and shelter) 

competition, disease, and social information transmission, as well as altered mating dynamics (e.g. 

inter- and intra-sexual competition). For example, in brown trout, methamphetamine (a common 

psychoactive pollutant) has been reported to cause a spatial attraction of individuals to 

methamphetamine-polluted zones [96], while also reducing individual movement [96,97] and 

increasing conspecific aggression [98], in combination creating conditions that would likely disrupt the 

local ecological interactions of brown trout populations. In addition, pollution-induced changes in 

wildlife movement and space use could alter interspecific interactions, including changes in predation 

[99], pollination [100], and parasitism. For example, mummichog killifish (Fundulus heteroclitus) from 

metal-contaminated environments exhibit slower movement rates, resulting in a decreased ability to 

capture prey and an increased susceptibility to predation themselves [99].  

These interactions may be further complicated where individuals differ in their response to the 

pollutant, thus altering the distribution of movement phenotypes within the population. Where such 

traits are associated with fitness (e.g. via predation susceptibility), this will reduce the variation 

available for selection to act upon within the population. However, variation in pollutant sensitivity is 

not necessarily fixed; selection on toxicity-mediating genes can result in populations evolving 

tolerance (or resistance) to chemical pollutants [101,102]. It may seem like an overwhelming challenge 

for ecotoxicology to incorporate these complex interactions between individual physiological 

sensitivity, pollution-induced changes in movement traits, organismal fitness, and adaptive tolerance 

in spatially and temporally dynamic environments; but in many ways, it is necessary if we are to 

accurately predict and assess the impacts of pollution on wildlife.  

ii) (Meta)population-level outcomes:  



Pollutant-induced changes in movement and space use also have clear consequences for the eco-

evolutionary dynamics of (meta)populations. While avoiding exposure can be individually a more 

advantageous strategy than enduring the costs of chemical toxicity and depuration [103], avoidance 

behaviour also acts as a barrier to movement, resulting in habitat fragmentation, potentially affecting 

gene flow and population connectivity [57,63]. Even in the absence of direct avoidance, where 

pollutants alter dispersal-related traits—as seen in freshwater isopods (Asellus aquaticus) following 

sub-lethal insecticide exposure [104]—there are likely changes in population growth rates via 

emigration and immigration and subsequent gene flow. For several bat star (Patiria miniate) 

populations, pollution from stormwater runoff and wastewater effluent have been shown to act as 

barriers to dispersal and gene flow, leading to reduced genetic diversity at highly contaminated sites 

[105]. 

Differential sensitivity to pollutants may also influence gene flow between populations via specific 

changes in allele frequencies, rather than changes in the absolute number of migrants. Research in 

alpine whitefish (Coregonus sp.) and marine invertebrates (Peramphithoe parmerong) has 

demonstrated genetic variation in tolerance to pollution for endocrine-disrupting pollutants [106] and 

copper pollution [107], respectively. In cases where tolerance and avoidance of pollutants are 

genotype-dependent, this may lead to pollutant-induced spatial sorting of genotypes (and 

phenotypes). For instance, chemical pollutants were found to serve as genotype-dependent dispersal 

barriers in Mediterranean mussels (Mytilus galloprovincialis), leading to substantial population 

genetic differences over short distances. Conversely, shifts in space use due to preferences (either 

direct or indirect) for highly contaminated sites (e.g. [74,75]) or avoidance of polluted areas (e.g. [8]) 

could also increase interbreeding and hybridisation between previously isolated groups, resulting in 

greater genetic diversity within populations.  

iii) Community-level outcomes: 

Pollutant-induced changes in movement and space use at the individual level can scale up to impact 

community and ecosystem dynamics. For example, shifts in predator–prey interactions caused by 

chemical pollutants (e.g. [54,99]) have been shown to restructure food webs [108]. Contaminants can 

also transfer through trophic interactions and even biomagnify, leading to complex exposure patterns 

for species across ecosystems [109,110]. Furthermore, species often exhibit varying sensitivities to 

chemical pollutants (e.g. [111]), and in some cases, community composition may moderate responses 

to contaminant exposure [111,112]. For instance, zebrafish (Danio rerio) and freshwater shrimp 

(Atyaephyra desmarestii) demonstrated different spatial avoidance behaviours when tested 

independently versus together in response to copper pollution [112]. 



 

5. Ways forward  

Predicting the outcome of dynamic interactions between pollutants and organisms across different 

scales of biological complexity is inherently challenging and requires detailed knowledge of both 

organism- and environment-specific factors. Nevertheless, it is imperative to advance research on 

spatiotemporal exposure risks to accurately predict the ecological and evolutionary impacts of 

chemical pollution. While ecotoxicology has a relatively long history of conducting laboratory-based 

contaminant attraction/avoidance studies [113–115], spatial and temporal variation are still not 

widely incorporated, and the scope of these studies has often been limited. For instance, few studies 

have investigated whether individual variation within populations in behavioural and movement traits 

predicts an organisms’ level of attraction to, or avoidance of, contamination.  

To advance this field, it is necessary to incorporate the spatiotemporal variability of pollutants 

and the movement patterns of wildlife into existing research frameworks, as well as increasing 

crosstalk between related disciplines. In this regard, recent methodological and technological 

advancements in ecotoxicology, analytical chemistry, animal tracking, and computational modelling 

provide unprecedented opportunities to address these complexities (Fig. 2). Using these recent 

advancements, we outline a three-pronged approach to guide future research in this area: in silico 

modelling, laboratory experiments, and semi-field and field studies. 



 
Figure 2. Recently developed and established methodological and technological approaches that can 

facilitate the study of the spatiotemporal dynamics of wildlife–pollution interactions. Wildlife–

pollutant positioning [67,116–118]; Pollutant positioning [119–122]; Pollutant modelling [123–125]; 

Modelling [126]; Wildlife modelling [127,128]; Wildlife positioning [129–131]. 

 

i) In silico tools 

 

While verbal and conceptual models are a key first step in describing dynamic interactions between 

contaminants and organisms (Fig. 1), computational approaches are required to predict the outcomes 

of such interactions over time.  

Agent-based modelling (ABM) is a key tool to investigate how wildlife will respond to changing 

environmental conditions—including contaminants—given that these models are able to incorporate 

the adaptive movement ecology of animals inhabiting a changing landscape [132]. As an example, 

ABM approaches incorporating individual movement and life-history traits in combination with 



pesticide application schedules have been used to predict spatial patterns of pesticide exposure, as 

well as subsequent population dynamics [133]. Despite their utility, ABMs have rarely been applied to 

understand complex interactions and feedback between spatiotemporally dynamic contaminants and 

animal movement, particularly in terms of within-population variation in movement. Such approaches 

are increasingly feasible given the increase in modern computing power and the development and 

refinement of contaminant fate models [125]. Integrating spatial and temporal information on 

contaminant concentrations at a local scale into ABM approaches will be critical in predicting how 

individual variability in movement and behaviour affects exposure to contaminants, providing insights 

into the potential long-term effects on population dynamics.  

However, these ABMs need to be parametrised and validated based on empirical data, 

emphasising a need for more research into the spatiotemporal variation of contaminants in natural 

systems. To this end, in silico tools, such as supervised machine learning algorithms, molecular 

networking, chromatographic retention time prediction have been developed to help identify 

thousands of potential contaminants that are detected in environmental and biological matrices using 

high-resolution mass spectrometry (HRMS) [134–136]. With such approaches, concentration [137], 

toxicity [138], and endocrine-disrupting activity [139] can be derived from the chemical structure 

[134,140]. Feature-based molecular networking (FBMN) is a high-throughput tool that can identify 

related chemicals in a sample, indicating potential transformation or degradation pathways of labile 

substances [141]. These in silico analytical chemistry tools, coupled with high sensitivity profiling 

methods, will be essential if we wish to determine the spatial and temporal scale of pollution at a high 

resolution. 

 

ii) Laboratory experiments 

 

Conventional studies in ecotoxicology typically expose organisms to contaminants within spatially 

restricted compartments (e.g. containers, aquaria) and/or under temporally consistent exposure 

conditions (acute exposure: 24 to 96 h; chronic exposure: several days to months [12,13]). While 

useful for testing the toxicity and concentration thresholds of different chemicals, this approach limits 

the organisms’ ability to exhibit their full range of behaviours, such as the capacity to move away from 

contaminated areas. Many laboratory studies have demonstrated that animals actively avoid 

contaminated habitats when given the option [142–144].  

To overcome these limitations, multi-compartmental arenas [68,113] and steep gradient assays 

[145] offer effective alternative designs. These designs incorporate ecological complexity into 



laboratory experiments while allowing for more spatial and temporal heterogeneity in exposure 

conditions [146]. By combining these experimental designs with consumer-grade video cameras and 

freely available animal tracking software, researchers can obtain high-resolution (spatial and 

temporal) measurements of individual and group behaviours—see Bertram et al. [12] for a list of 

tracking software options. This approach also allows for the quantification of individual variation in 

movement and within-population variation in exposure risks under different ecological and chemical 

contaminants scenarios, which are ideally informed by spatially explicit field sampling (see Section 5 

iii). 

To further refine these experiments, integrating environmental variables that mimic real-world 

conditions is crucial. For example, creating gradient-based exposure scenarios that simulate the 

gradual increase or decrease of contaminant concentrations across a landscape can reveal how 

animals detect and respond to changing contamination levels [63]. Similarly, incorporating dynamic 

elements such as fluctuating contaminant levels or introducing other ecological pressures (e.g. 

predation risk) can offer insights into how animals balance their responses to multiple stressors, 

providing a more realistic prediction of their responses in natural environments [68,147]. Further, 

incorporating mixture exposures based on observed environmental (co)occurrences would more 

accurately reflect environmental conditions and could elucidate the potential interactive effects of 

different contaminants.  

 

iii) Field studies 

 

Laboratory studies are invaluable for understanding the underlying mechanisms of contaminant 

effects and for rapidly generating predictions that can be applied to real-world scenarios. However, 

the outcomes of laboratory experiments often diverge from field observations due to the inherent 

limitations of replicating the complexity of natural systems within controlled environments [148–150]. 

Thus, spatially explicit water sampling and field studies are necessary for characterising complex 

exposure scenarios and monitoring the spatial and temporal overlap of chemical contaminants and 

animal populations. 

 Continually expanding mass spectrometry libraries and improving computational tools 

enhance the identification of these compounds, facilitating more accurate and comprehensive 

environmental monitoring [123]. These tools allow researchers to capture the intricate variability of 

contamination across spatial and temporal scales, offering a more precise and comprehensive 

understanding of the true exposure risks to wildlife populations. With that being said, the process of 

field-validated ecotoxicological experiments is costly, in terms of financial commitment and personnel 



time. Therefore, the careful selection and prioritisation of chemicals that are predicted to have 

environmental implications is key to reducing these costs. As mentioned above, in silico modelling can 

be used to help select chemicals with predicted toxicity and to highlight transformation products that 

may also contribute to the overall risk to environmental health. To elucidate potentially harmful 

substances from complex environmental matrices, effects-directed analysis is a powerful technique 

that has benefited by improved HRMS techniques to simultaneously identify chemicals and perform 

in vitro toxicity tests [151]. 

Moreover, advances in remote-sensing technologies, such as acoustic telemetry and global 

positioning systems (GPS), have revolutionised our ability to quantify the behaviour and movement of 

animals in their natural habitats [17]. These tools, when combined with spatially explicit field sampling, 

enable researchers to map the spatial distribution of animal populations, track their movements, and 

assess their potential exposure to contaminants. Targeted exposure devices, such as slow-release 

implants, are another emerging tool that can be used to study exposure under field-realistic settings 

[117]. Targeted exposure devices can be used to isolate chemical exposure to specific individuals in 

the field, while holding spatial exposure elements constant (i.e. the animal remains homogenously 

exposed while still moving freely) to disentangle complex wildlife–pollutant spatial interactions [117]. 

In combination, such an approach offers unprecedented opportunities to understand the impacts of 

contaminants on (meta)populations and community-level processes by delivering near-continuous 

data on individual movements and ecological interactions (e.g. social dynamics, predator–prey 

relationships) [152–154]. 

 

6. Conclusion  

Here, we categorise pollutant–animal spatial interactions and conceptualise a simple dynamic 

feedback model that may result from such interactions. We identify potential ecological and 

evolutionary consequences and highlighted key areas of uncertainty. We recognise that incorporating 

these spatial interactions in experimental and observational work generates logistical challenges but 

highlight that it is becoming ever more achievable, with advances in in silico modelling and prediction 

techniques, laboratory- and field-based animal-tracking technologies, as well as the rapid advances in 

high-throughput and sensitive analytical chemistry approaches. We contend that considering and 

incorporating wildlife–pollutant spatiotemporal interactions in ecotoxicology will improve our ability 

to assess and predict the risk of contaminants to wildlife.  
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