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A B S T R A C T

To cope with climate change-induced alterations, forest ecosystems’ conservation and restoration require models 
that are both capable to incorporate current local-scale dynamics but also to anticipate future changes. These 
requirements may be fulfilled by robust assessments of response (i.e., species data such as forest inventories) and 
predictor (e.g., climate) variables. The aim of this study is to predict current and future probability of occurrence 
for 22 tree species comparing inventory and climate data at different spatial scales and test for model perfor-
mance, reliability, and niche truncation.

We built species distribution models (SDMs) for 22 tree species of Piedmont, an Alpine administrative region 
of north-western Italy. We compared (i) a fine-scale model calibrated with a local forest inventory with a 250-m 
spatial resolution at the extent of Piedmont and a regional climate model calibrated on the Italian extent versus 
(ii) coarse-scale model calibrated with a pan-European forest inventory (EU-Forest) at 1-km resolution and a 
global climate dataset (CHELSA v1.2). Moreover, (iii) we developed a data pooling method by combining the 
species data and using CHELSA. We evaluated models using spatial-block cross-validation and external validation 
through several metrics. We predicted the probability of occurrence for current and future under RCP4.5 and 
RCP8.5 climate scenarios.

Models built with local species data performed better for the future than those incorporating broad species 
data and their current predictions reflected the realized distribution of species but they suffered from niche 
truncation while extrapolated to the future. Indeed, models calibrated at the local scale predicted greater 
magnitude of changes for future scenarios compared to coarse-scale models. Integrating species data at different 
extents and resolutions is a valid approach when both are available.

1. Introduction

It is well known that forest ecosystems provide essential ecosystem 
services such as biodiversity conservation, food and timber production, 
water regulation, and carbon sequestration (Mori et al., 2017). How-
ever, these ecosystems are increasingly affected by climate and land-use 
changes, which are reshaping the distribution, abundance, and 
phenology of forest species across various scales (Vitasse et al., 2021). 
These alterations have significant implications for the resilience of the 
human communities that depend on forest services (Forzieri et al., 2022; 

Smith et al., 2022). To address these challenges, it is essential to un-
derstand the past, present, and future dynamics of forest ecosystems to 
monitor and anticipate their responses to global changes across diverse 
spatiotemporal scales (Guisan et al., 2013; Albrich et al., 2020; McDo-
well et al., 2020). In response to these pressures, global forest policies 
have increasingly focused on conserving forest systems as a vital strat-
egy for mitigating climate change (Fagan et al., 2020; Begemann et al., 
2021). However, global forest governance is characterized by a complex 
cross-scale interaction of institutions (e.g., from the United Nations 
[UN] to sub-national levels), actors (e.g., public and private 
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stakeholders), targets (e.g., biodiversity, human rights, climate crisis), 
and norms (Begemann et al., 2021; Sharma et al., 2023). This intricate 
governance framework underscores the need for adaptive strategies that 
are informed by robust and predictive tools at different spatiotemporal 
scales. Predictive spatial modeling has emerged as a promising approach 
for guiding adaptive planning and management in forest ecosystems 
(Zurell et al., 2022). Quantitative predictions lie at the heart of informed 
decision-making and responsible management, predicting ecological 
shifts and preparing for necessary interventions such as assisted 
migration of animals and plants (Twardek et al., 2023; Xu and Prescott, 
2024) and ecological restoration. To maximize their utility and cope 
with the multiscale policy framework, ecologists and forest managers 
require models that are reliable and applicable across broad scales 
(regional to continental) and fine scales (landscape to regional). Such 
models play a crucial role in prioritizing spatial reserves and guiding 
restoration efforts (Wan et al., 2017; Mateo et al., 2019; Buenafe et al., 
2023), ensuring that conservation strategies are both targeted and 
effective.

Correlative species distribution models (SDMs) are the most common 
predictive tools for assessing potential range shifts of tree species under 
future scenarios (Franklin, 1995; Guisan et al., 2013; Zurell et al., 2020; 
2022). They work by establishing a relationship between the presence or 
abundance of a species and a suite of several socio-ecological covariates. 
These covariates include, but are not limited to, climate data, soil fea-
tures, topography, land use, and socioeconomic drivers (Franklin, 1995; 
Guisan et al., 2013). These models have been extensively used at several 
spatial and temporal scales to study the potential ecological impact of 
climate change on various plant and animal species worldwide 
(Newbold, 2018; Maréchaux et al., 2021; Chevalier et al., 2022; Zurell 
et al., 2022). Broad-extent and coarse-resolution models, primarily 
associated with climatic predictors, are more prevalent than local-extent 
and fine-resolution models, which however often reflect better the 
structure and characteristics of existing habitats (Araújo et al., 2019). 
However, regardless of the scale or resolution, the performance and 
reliability of predictions hinge on the source of response (i.e. species 
data such as ecological inventories) and predictor (e.g., climate) vari-
ables used in model calibration and validation (Bobrowski and Udo, 
2017; Araújo et al., 2019; Zurell et al., 2020). Decisions regarding the 
spatial scales – both resolution and extent – of such variables in SDMs 
have significant ecological consequences. It is indeed a complex task to 
capture local habitat heterogeneity and detailed species-environment 
interactions while aiming for robust extrapolation across broad con-
texts and changing climates. Alternatives to correlative SDMs at a 
regional to global scales exist in the form of mechanistic or hybrid 
models that incorporate, for example, tree demography (Macfadyen and 
Kriticos, 2012), phenology (Chapman et al., 2017), and biophysics 
(Briscoe et al., 2023). These alternative models are based on deeper 
ecological realism and the capacity to simulate species responses under 
conditions beyond their observed range, their application is mostly 
concentrated at the stand and landscape scales. However, their appli-
cation at broader, global scales – where one the main outputs of dynamic 
forest models are net primary production and carbon stock – is limited 
(Bugmann and Seidl, 2022). Despite the ecological reliability benefits 
resulting from the application of these models, their complexity often 
creates barriers for integration into policy and decision-making pro-
cesses. Policymakers and foresters may struggle with their technical 
demands and data requirements, which contrasts with the simplicity and 
accessibility of correlative SDMs.

Among the main sources of species data, ecological inventories as-
sume a pivotal role in understanding the status and trends of forest 
ecosystems and populations across different spatiotemporal scales 
(Tomppo et al., 2010; Tinkham et al., 2018). Their primary advantage 
lies in their statistical sampling scheme, which provides reliable infor-
mation on true presences and absences at a specific extent and resolution 
(Pecchi et al., 2019; Ellis-Soto et al., 2021). Forest inventories, for 
instance, often include multiple stand attributes (e.g., basal area) that 

allow for a comprehensive assessment of ecosystem resources and ser-
vices, and can inform decision-making for timber production, biodi-
versity conservation, and carbon sequestration (Tomppo et al., 2010). 
When it comes to climate predictors, limited-area high-resolution 
models (e.g., regional climate models, RCMs), serve as valuable tools for 
the dynamical downscaling of general circulation models (GCMs) to fine 
scales with very high resolution (VHR). This process offers detailed and 
reliable insights into the local variability of climate variables within 
specific local areas (Giorgi et al., 2009). Many studies have been 
exploring RCMs at the so-called convection-permitting, 
convection-resolving, convection-allowing, or kilometer-scale grid 
spacing (Kendon et al., 2014; Ban et al., 2014; Liu et al., 2017; Berthou 
et al., 2020; Fumière et al., 2020). The main characteristic of these types 
of simulations is the explicit resolution of deep convection at grid 
spacings below 4 km, without using any kind of parameterization. These 
studies demonstrate that kilometer-scale modeling offers significant 
advantages in representing climate, and the costs are justified when 
focusing on local to regional scales (Ban et al., 2021). The importance of 
VHR climate data has been recently increasing in several fields, 
including climate change research, environmental monitoring, agricul-
ture, and water resource management (Crespi et al., 2018; Mauri et al., 
2022).

Establishing robust standards for assessing the ecological reliability 
and statistical performance of species distribution models is essential, 
especially as the number of studies predicting current and future species 
distributions and habitat suitability continues to grow (Araújo et al., 
2019; Zurell et al., 2020). The accuracy, reliability, and transferability of 
these models are strongly influenced by the spatial resolution and extent 
of both predictor and response variables, which play a critical role in the 
calibration and evaluation processes of SDMs (e.g., Betts et al. 2006, 
Elith and Leathwick 2009, Patiño et al. 2023). In parallel, advances in 
climate modeling have improved the reliability of environmental pre-
dictors. Indeed, the dynamical downscaling of GCMs to RCMs increase 
their reliability within the calibration area by pairing the broad synoptic 
scale of GCM fields and the mesoscale resolution fields simulated by 
RCMs (Fumière et al., 2020; Ban et al., 2021; Mauri et al., 2022). This 
coupling ensures a better representation of climatic variability at the 
regional level, offering more precise data for SDM development and 
evaluation. At the same time, many projections of future species distri-
bution under climate change scenarios are based on SDMs that are built 
on a subset of species’ ecological niches (i.e., niche truncation; Mateo 
et al., 2019; Chevalier et al., 2021; 2022). This phenomenon is caused by 
truncating the full range of conditions that a species can tolerate, leading 
to extrapolation to conditions that were not used to calibrate the models. 
Several studies have compared modeling algorithms (e.g., Valavi et al. 
2022), response variables (e.g., Waldock et al. 2022), and predictors (e. 
g., Lembrechts et al. 2019a, Patiño et al. 2023) in SDMs. However, to our 
knowledge, very few (e.g., Simon et al. 2023) examine different com-
binations of predictors and response data at different scales to model 
current and future probability of occurrence of species at fine scales 
appropriate for regional and local planning and decision making and 
assess the impact of niche truncation.

Therefore, the aim of this paper was to predict current and future 
probability of occurrence for different tree species of Piedmont, an 
administrative region of the western Italian Alps, using different com-
binations of SDMs, from fine to coarse scale and data pooling methods. 
We defined fine scale as the combination of local species data (i.e., forest 
inventory for the Piedmont region) characterized by fine spatial reso-
lution and local extent with an RCM characterized by a local calibration 
area and extent (i.e., Italian peninsula). In contrast, we defined coarse 
scale as the combination of continental species data (i.e., harmonized 
European forest inventory) characterized by coarse spatial resolution 
and broad extent with a GCM characterized by coarse area of calibration 
and global extent. Finally, the data pooling methods was obtained by 
integrating the two species data and using the GCM climate model 
(Fig. 1). Our main research question was: how does the spatial scale of 
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response (i.e., species data) and predictor variables affect prediction 
success, reliability, and niche truncation in SDMs? To address this 
question, we compared SDM frameworks built using (i) a local forest 
inventory (250 m resolution at the extent of Piedmont, 25 387 km2) 
versus a broad European forest inventory (1 km resolution at the extent 
of the European Alp, 179 014 km2) and (ii) a local climate dataset based 
on an RCM versus a widely applied climate dataset based on GCM. Our 
final aim was to analyze future scenarios of climate change for the main 
tree species of Piedmont by comparing magnitude of change estimated 
from the different frameworks. We conclude by discussing the implica-
tions of local species data and predictors and their spatial scale within 
SDMs in ecology and forestry. The datasets produced by this study 
represent a comprehensive assessment of the current and future distri-
bution of tree species in Piedmont region. To the best of our knowledge, 
this is the first dataset specifically developed for this region that in-
tegrates such fine-grained forest inventory data with RCM-based climate 
predictors.

2. Materials and methods

2.1. Study area

Piedmont is an administrative region of north-western Italy covering 
25 387 km2 (Fig. 2). Around 43 % of its area (11 000 km2) lies in the 
montane belt, with two mountain regions; the western Alps and the 
northern Apennines. Piedmont hosts more than 1 billion trees belonging 
to 52 different species; its forests cover 9 770 km2 (38.5 % of the total 
surface area), but in mountain areas the forest cover increases to reach 
57 % (6 631 km2) (Camerano et al., 2017). The main tree species in the 
region are the sweet chestnut (Castanea sativa Mill., 22 % of the total 
forest area), European beech (Fagus sylvatica L., 15 %), black locust 
(Robinia pseudoacacia L., 12 %), and European larch (Larix decidua Mill., 
10 %) (Camerano et al., 2017). Like many areas in Europe, the millen-
nial history of human practices in the region (e.g., logging for timber and 
fuelwood, mining, and creation of semi-natural ecosystems) shaped the 
structure and composition of its forests since the Neolithic (Mietkiewicz 
et al., 2017; Zanon et al., 2018). For instance, in the subalpine elevation 
belt of the Alps, European larch has been favored over stone pine (Pinus 
cembra L.) and other competing species because of its suitability for 
wood pastures; indeed, its fast growth and timber quality make it a 

Fig. 1. Combinations of response (local versus broad species data) and climate (regional climate model, RCM, versus general circulation model, GCM) data according 
to the spatial resolution and spatial extent (for response) and area of calibration and spatial extent (for climate). We defined fine scale as the combination of local 
species data (fine resolution and local [Piedmont region] extent forest inventory) and a regional climate model (fine area of calibration and local [Italy] extent). We 
defined coarse scale as the combination of continental species data (coarse resolution and broad [European Alps] extent forest inventory) and a general circulation 
model (coarse area of calibration and broad [global] extent). We defined as hybrid scales the other combinations between response and climate data. In particular, 
Hybrid 1 is the combination of local species data and GCM, Hybrid 2 is the combination of broad species data and RCM, and Hybrid 3 is the combination of broad 
species data at the local extent and GCM. We defined a gradient from the fine to the coarse scale and placed the hybrid combinations along it.
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target species for timber production while its light canopy allows forage 
grass to grow underneath (Garbarino et al., 2011). At lower elevations, 
sweet chestnut cultivation was introduced by the Romans and then 
expanded in Medieval times (A.D. 100 to A.D. 600) in areas naturally 
occupied by oak stands (Quercus spp.) (Conedera et al., 2004). Due to 
socio-economic changes that led to land abandonment starting from the 
Industrial Revolution, forests are expanding to the detriment of former 
croplands, vineyards, and grasslands (Batzing et al., 1996; Plieninger 
et al., 2016; Anselmetto et al., 2024).

2.2. SDM framework overview

Below we describe the SDM framework according to the ODMAP 
(Overview, Data, Model, Assessment, and Prediction) protocol for Spe-
cies Distribution Models (Zurell et al., 2020; see Supplementary Material 
Table A.1 for further details). We assumed that the distribution of our 22 
focal tree species is mostly driven by climate, topography, and soil 
characteristics. We know that human legacy has had a major role in 
current distribution, but we did not include those variables in our 
models due to a lack of spatially explicit data at a regional scale. We also 
assumed that (i) species are at (pseudo-) equilibrium with the environ-
ment (i.e., the species has reached all suitable habitats), (ii) inventory 
sampling is adequate and representative, with negligible detection er-
rors, (iii) in forest inventories, tree individuals below a certain diameter 
at breast height are not recorded, and we assume that this procedure 
does not bias species identification, and (v) the current distribution’s 
delimiting factors will also form the niche of the species in the future (i. 
e., niche conservatism).

All the analyses were conducted in R version 4.2.3 (R Core Team, 
2023) (See Supplementary Table A.2 for R packages used in the 
analyses).

2.3. Species occurrence data

For model calibration, we applied a local forest inventory led by IPLA 
(Istituto per le Piante da Legno e l’Ambiente; Camerano et al., 2017) in 
the early 2000s for the Piedmont region for management implications 
(informing forest plans known as Piani Forestali Territoriali, PFT; 
Camerano et al., 2017) and a broad inventory that comes from a 

harmonization of national forest inventories at the European scale called 
EU-Forest (Mauri et al., 2017). We cropped EU-Forest to the rectangular 
extent (i.e., a rectangle defined by coordinate extremes of easting and 
northing) of the Alpine Convention Perimeter (PASC, 2020).

The local species data encompasses 36 species and 14 164 occurrence 
points at a spatial resolution of 250 m. The EU-Forest project emerged 
from a collaboration between JRC (Joint European Research Center) and 
21 European Countries. This dataset is the result of merge and harmo-
nization of National forest inventories and pre-existing European data-
sets, and it collects occurrence (presence/absence) data of 242 tree 
species and a total of 1 000 525 occurrence records. EU-Forest has a 
spatial resolution of 1 km and is aligned to the European INSPIRE- 
compliant 1 km x 1 km grid (European Parliament, 2007). We also 
compared models trained with the broad species data clipped on the 
extent of the Piedmont Region (i.e., Hybrid 3) to the broad species data 
at the extent of the entire Alps to evaluate the utility of broad inventories 
in local contexts. We did this to account for different spatial (i.e., 
geographical range) and ecological (i.e., niche) extents for a 
coarse-resolution species dataset. Finally, we developed a data pooling 
method by integrating local and broad species data for model calibra-
tion. Our hypothesis was that coarse-resolution species data clipped to a 
smaller extent before model calibration will suffer of niche truncation 
even more than fine-scale models with species data characterized by 
finer spatial resolution. We selected 22 species that were common be-
tween the two datasets and with at least 150 occurrences (Table 1). Both 
datasets were re-projected to the coordinate reference system ETRS89 / 
LAEA Europe (EPSG: 3035). To address uneven sampling intensity and 
spatial clustering of points, we applied a spatial filter to the presence 
points using a custom function written in R. A minimum distance of 500 
m was set between points to ensure a consistent sampling intensity be-
tween presence and absence data. We included the abundance (i.e., 
relative basal area) of species in each observation point as weights in the 
model algorithm for the local species data. This approach was not 
possible for the broad species data as the basal area is not available.

2.4. Environmental predictors for SDMs

2.4.1. Climate data
We tested two different climate datasets in the calibration of the 

Fig. 2. Maps of the (a) Alps and (b) Piedmont Region with occurrences of the local (Camerano et al., 2017) and broad inventory (EU-Forest; Mauri et al., 2017).
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SDMs (Table 2). First, we applied VHR (Very High Resolution) climate 
data from the Euro-Mediterranean Center on Climate Change (CMCC) 
for the Piedmont region available from the Highlander project 
(https://highlanderproject.eu/). The dataset was based on a dynamic 
downscaling of current (1989–2013) ERA5 reanalysis (Hersbach et al., 
2020), originally available at ~31 km spatial resolution, to obtain a final 
resolution of ~2.2 km through a regional climate model called COSMO 
(Raffa et al., 2021). We identified this climate dataset as the local 
climate dataset. For the future period (2041–2060) we utilized another 
climate dataset developed within the Highlander project through a dy-
namic downscaling of CMCC-CM global model to 0.02◦ (~2.2 km) 
spatial resolution according to IPCC scenarios RCP8.5 (Raffa et al., 
2023) and RCP4.5 (Raffa and Mercogliano, 2022). The dynamical 
downscaling makes use of the same RCM (COSMO–CLM) used for 
ERA5. Pre-processing on this dataset consisted of a bias-correction 
procedure to remove overestimation or underestimation of the model 
in comparison to the observed data, for every timestep (every day) and 
every grid point, due to systematic errors originated (Watanabe et al., 
2012). We applied a simple pixel-based additive bias correction method 
for temperatures and a multiplicative one for precipitation. Climate data 
are part of the project Highlander and are available at https://dds-dev. 
highlander.cineca.it/app/datasets. We used the local climate data for 
the calibration of the fine-scale framework and the model “Hybrid 2″.

The second dataset derived from CHELSA (Climate at high resolution 

for the Earth’s land surface areas) v1.2 (Karger et al., 2017, 2018). 
CHELSA consists of downscaled general circulation models output 
temperature and precipitation estimates at a horizontal resolution of 
30 arc sec (~1 km at the Alps latitude). The temperature downscaling 
algorithm is based on statistical downscaling of atmospheric tempera-
tures from ERA-Interim using a temperature lapse rate based on eleva-
tion. The precipitation downscaling algorithm includes orographic 
predictors such as wind, valley exposition, and boundary layer height. 

Table 1 
List of the 22 tree forest species assessed in this study and their prevalence 
(presence/total number of occurrences) according to the local and broad in-
ventories for both the local (Piedmont) and broad (Alpine) extent.

Common 
species name

Scientific 
species name

Forest 
type

Prevalence

Local 
spec. 
data

Broad 
spec. 
data 
Local 
ext.

Broad 
spec. 
data 
Broad 
ext.

Silver fir Abies alba Conifer 0.056 0.051 0.201
Black alder Alnus glutinosa Broadleaf 0.016 0.057 0.019
Sycamore Acer 

pseudoplatanus
Broadleaf 0.087 0.102 0.086

Field maple Acer campestre Broadleaf 0.024 0.046 0.044
European 

birch
Betula pendula Broadleaf 0.034 0.091 0.039

European 
hornbeam

Carpinus betulus Broadleaf 0.034 0.016 0.059

Sweet 
chestnut

Castanea sativa Broadleaf 0.371 0.199 0.025

European ash Fraxinus 
excelsior

Broadleaf 0.139 0.027 0.024

Manna ash Fraxinus ornus Broadleaf 0.054 0.040 0.011
European 

beech
Fagus sylvatica Broadleaf 0.246 0.080 0.135

European 
larch

Larix decidua Conifer 0.153 0.072 0.048

Norway 
spruce

Picea abies Conifer 0.064 0.011 0.124

Swiss stone 
pine

Pinus cembra Conifer 0.013 0.002 0.004

Black pine Pinus nigra Conifer 0.008 0.010 0.014
Scots pine Pinus sylvestris Conifer 0.067 0.022 0.032
Common 

aspen
Populus tremula Broadleaf 0.038 0.003 0.001

Wild cherry Prunus avium Broadleaf 0.165 0.021 0.002
Pedunculate 

oak
Quercus robur Broadleaf 0.086 0.011 0.004

Downy oak Quercus 
pubescens

Broadleaf 0.070 0.002 0.017

Sessile oak Quercus petraea Broadleaf 0.130 0.016 0.006
Black locust Robinia 

pseudoacacia
Broadleaf 0.197 0.019 0.002

Rowan Sorbus 
aucuparia

Broadleaf 0.042 0.002 0.000

Table 2 
Environmental predictors resulting from the variable pre- selection based on the 
correlation between variables and the variance inflation factor (VIF) used for 
SDMs calibration. Information about all the variables (comprising those 
excluded by the variable selection), and the resampling strategies can be found 
in Table A4.

Group Variable Data source Native 
spatial 
resolution

Refs.

Topography Elevation 
(median)

MERIT DEM 3′’ (~90 m) Yamazaki 
et al. (2017)

 Slope (median, 
standard 
deviation)

MERIT DEM 3′’ (~90 m)

 Heat load index 
(median, standard 
deviation)

MERIT DEM 3′’ (~90 m)

 Topographic 
position index 
(median, standard 
deviation)

MERIT DEM 3′’ (~90 m)

Climate Monthly 
precipitation (Jan, 
Mar, Apr, May, 
Jun, Sep, Oct)

CHELSA 
timeseries

1 km Karger et al. 
(2017, 
2018)

 COSMO 0.02◦

(~2.2 km)
Raffa et al. 
(2021, 
2023)

 Mean diurnal 
range

CHELSA 
timeseries

1 km 

 COSMO 0.02◦

(~2.2 km)


 Isothermality CHELSA 
timeseries

1 km 

 COSMO 0.02◦

(~2.2 km)


 Temperature 
seasonality

CHELSA 
timeseries

1 km 

 COSMO 0.02◦

(~2.2 km)


 Temperature 
annual range

CHELSA 
timeseries

1 km 

 COSMO 0.02◦

(~2.2 km)


 Mean temperature 
of wettest quarter

CHELSA 
timeseries

1 km 

 COSMO 0.02◦

(~2.2 km)


 Mean temperature 
of driest quarter

CHELSA 
timeseries

1 km 

 COSMO 0.02◦

(~2.2 km)


 Precipitation of 
wettest month

CHELSA 
timeseries

1 km 

 COSMO 0.02◦

(~2.2 km)


 Precipitation of 
driest month

CHELSA 
timeseries

1 km 

 COSMO 0.02◦

(~2.2 km)


 Precipitation 
seasonality

CHELSA 
timeseries

1 km 

 COSMO 0.02◦

(~2.2 km)


Soil pH (0–15 cm) SoilGrid250m 250 m Hengl et al. 
(2017) Soil organic 

Carbon (0–15 cm)
SoilGrid250m 250 m
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Final data consist of monthly temperature and precipitation and derived 
parameters. We cropped the gridded variables at the extent of the Alps, 
and we identified this dataset as broad climate dataset. The future 
climate data were derived from downscaled CMIP5 climatologies 
(Karger et al., 2017, 2018, 2020). We selected six different models 
(CESM1-CAM5, CMCC–CM, CNRM-CM5, CSIRO-Mk3.6.0, GISS-E2-H, 
HadGEM2-AO) based on the quality of current prediction on the Alps 
and Europe (Zubler et al., 2016) but also considering dissimilarities 
between models to capture uncertainties in modeling future climate 
scenarios (Knutti et al., 2013; Sanderson et al., 2015). We used the broad 
climate data for the calibration of the fine-scale framework and the 
models “Hybrid 1″, “Hybrid 3″ and the data pooling method.

For each of the two climate datasets, we calculated monthly average 
values for the current (1989–2013) and future (2041–2060) periods and 
the 19 bioclimatic predictors (Hijmans et al., 2005; Table A.3). We 
considered 1989–2013 as the current since it was the common temporal 
extent of both local and broad climate datasets. We assessed two 
different future IPCC RCPs (RCP4.5 and RCP8.5) for the 2041–2060 
period. The RCPs – acronym for Representative Concentration Pathways 
– are four scenarios developed by IPCC and included in the IPCC fifth 
assessment report (AR5; IPCC, 2014). The numbers in the RCP names 
indicate the increase in the radiative forcing [W m− 2] expected at the 
end of the 21st century relative to pre-industrial conditions. Among 
those four scenarios, RCP4.5 is considered an intermediate scenario, 
with peak of emissions in 2040 and then a decrease, while RCP8.5 is 
considered the worst-case scenario, with emissions increasing 
throughout the century. Climate data were resampled through a nearest 
neighbor method to 250 m. That means that they operated at the native 
resolution (1 km and ~2.2 km for the broad and the local dataset, 
respectively). To test for correlation between the variables of the two 
climate data sets, the centroids of every cell were extracted and exam-
ined using Pearson’s correlation. To visualize geographical discordance 
between the two climate data sets, variables were intersected perform-
ing cell by cell subtraction of broad climate minus local climate. We also 
tested current (1989–2013) seasonal trends and spatial patterns with a 
regional gridded dataset derived from weather stations and available at 
~16-km resolution (https://www.arpa.piemonte.it/scheda-informativa 
/dataset-griglia-nwioi).

2.4.2. Other environmental predictors
We derived topography from the Multi-Error Removed Improved- 

Terrain (MERIT) digital elevation model (DEM; Table 2). The MERIT 
DEM is available at 3 sec spatial resolution (~90 m at the equator). This 
dataset derives from multiple satellite data and several filtering tech-
niques used for the bias correction of height error components from 
previous spaceborne DEMs (Yamazaki et al., 2017). We derived the 
median and standard deviation of five topographic metrics from MERIT 
DEM resampled at 250 m. We calculated the elevation, slope, heat load 
index (HLI) or the incident radiation of the sun according to the aspect 
(McCune et al., 2002), topographic position index (TPI), indicating the 
position of a cell according to its 8 surrounding cells neighbors, and 
terrain ruggedness index (TRI), that expresses the amount of elevation 
difference between adjacent cells of a DEM (Riley et al., 1999) (Table 2). 
Topographic predictors do not directly represent resource variables for 
plants, but they have an indirect impact on plant distribution through 
altering the distribution of temperature, moisture, nutrients and light 
(Mod et al., 2016). Moreover, incorporating these topographic pre-
dictors in SDMs proved to improve model reliability and performance as 
they refine macroclimate conditions, which are decoupled from meso-
scale terrain variations (Slavich et al., 2014). We included soil pH and 
organic carbon content (OCC) for the 0–15 cm depth at 250-m spatial 
resolution derived from SoilGrids250 m (Table 2; Hengl et al., 2017).

2.5. SDMs architecture, assessment, and predictions

2.5.1. SDM architecture
We built species distribution models using Bayesian additive 

regression trees (BART) through the embarcadero R package v1.2.0 
(Carlson, 2020). BART is a machine learning modeling procedure based 
on an ensemble of trees, similar to boosted regression trees and random 
forest. In addition, BART employs a sum-of-trees model within a 
Bayesian framework; trees are first constrained as weak learners by 
priors, then updated through an iterative Bayesian backfitting Markov 
Chain Monte Carlo (MCMC) algorithm which generates a posteriori 
distribution of predicted classification probabilities instead of a single 
estimate (Chipman et al., 2010; Carlson, 2020). Overfitting results are 
lower than other similar methods, and several studies showed the better 
predictive power of this model compared to ensemble models with 
multiple algorithms (e.g., Baquero et al. 2021, Konowalik and Nosol 
2021). We used BART’s default settings (Table A.1).

We reduced the number of initial variables through a variable pre- 
selection based on the correlation between variables and the variance 
inflation factor (VIF) through the function vifcor of the usdm package 
(Naimi et al., 2014; Figs. B.3–B.5). The function first pairs variables with 
a linear correlation higher than a pre-selected threshold and excludes 
the one with a greater VIF. The procedure is iterated until no pair of 
variables with a high correlation remains. We used a Pearson’s corre-
lation of 0.9 as the threshold at which one of a correlated pair was 
excluded. Our aim was to avoid highly correlated variables and speed-up 
the computation time even if BART is considered to be robust against 
multicollinearity. We performed this variable selection once, therefore 
all the species were trained with the same 25 variables described in 
Table 2. We assessed spatial autocorrelation using automatic variograms 
through the R package automap (Hiemstra et al., 2009).

2.5.2. SDMs assessment
We assessed models performance, calibration, and realism. The 

former was statistically tested through internal (5-fold spatial block 
cross-validation) and external validation on a fully independent dataset 
(GBIF + LUCAS; Mauri et al., 2022). We determined the block-size 
dimension by constructing empirical variograms for measuring spatial 
autocorrelation. When the mean range of spatial autocorrelation was >
15 000 m, we used 10 000 m as block-size dimension. We retrieved 
several performance metrics such as the Area Under the receiving 
operator Curve (AUC), True Skill Statistic (TSS), Sensitivity, Specificity, 
and the F1 score. The AUC is a threshold-independent metric that shows 
the relationship between false-positive and true-positive rates. The TSS 
and F1 score are threshold-dependent metrics that depend on the 
sensitivity and specificity of the models. TSS values > 0.6 are considered 
to be useful to excellent, AUC scores > 0.8 are considered to be good to 
excellent. We assessed the calibration (i.e., the agreement between 
predicted probabilities of occurrence and observation of presence and 
absence) and generalizability of the models through Pearson’s correla-
tion coefficient (COR). We calculated the correlation between the 
observation (presence/absence dichotomous variable) and the pre-
dictions (range of probabilities). COR is therefore a 
threshold-independent metric similar to AUC, but it accounts for the 
distance between the prediction and the observation (Elith et al., 2006). 
Realism was assessed from an ecological point of view through variable 
importance (vimp) and a visual comparison of the spatial predictions for 
the current time to the European geographic range of different species 
developed by the Joint Research Center (JRC) of the European Union 
(Caudullo et al., 2017) and the EU-Trees4F dataset (Mauri et al., 2022). 
We ran generalized linear mixed models (GLMMs) on performance 
(AUC, TSS, F1) and calibration (COR) results to test for significant dif-
ferences among species data (i.e., local species data, broad species data, 
or a combination of the two), climate (i.e., local dataset or global 
dataset), and frameworks (i.e., the six combinations showed in Fig. 1) 
using the species as a random effect. We transformed the variables to 
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meet normality, checked among different families of distributions, and 
inspected model residuals. More information on the transformation and 
families can be found in Table B.1.

2.5.3. SDMs predictions
The main output of the modeling consisted of predictions of relative 

probability of occurrence. To obtain future predictions of occurrence, 
we averaged climate conditions from the six models according to the two 
climate scenarios (i.e., RCP4.5 and RCP8.5) using the so-called climate 
ensemble (e.g., Mauri et al. 2022). This approach speeds up the 
computation but may average out climate extremes coming from 
different climate models. We also derived the uncertainty based on the 
5th and 95th percentile of the probability distribution obtained through 
the Bayesian approach. We converted continuous probability maps into 
binary maps for ecological assessment and quantification of species 
range shifts. The threshold selection for binary maps is a crucial step in 
species distribution mapping (Hintze et al., 2021). Therefore, we tested 
three different widely applied thresholds; minimum training presence 
(MTP, sometimes also called lowest presence threshold), 10th percentile 
of the predicted values (P10), and maximum of TSS (maxTSS). We chose 
the latter since it was the most conservative approach.

2.5.4. Post-processing analysis
We post-processed models output using Corine Land Cover (CLC; 

European Commission, 1994) to mask out unvegetated areas (i.e., urban 
areas, rocks, and water). We assessed changes in terms of probability of 
occurrence of the different tree species between each one of the two 
future climate scenarios (RCP4.5 and RCP8.5 for 2041–2060) and the 
current. Finally, we created probability-based richness (i.e., the sum of 
the predicted probability for each species) maps for the current and 
future scenarios according to the different modeling frameworks. We 
chose this approach over the threshold-based (i.e., sum of the binary 
maps) as it proved to better predict the observed species richness of an 
area whatever levels of habitat saturation (Grenié et al., 2020).

3. Results

3.1. Climate data comparison

We compared the spatial distribution and seasonal trends of mean 
temperature (Fig. 3a, c) and precipitation (Fig. 3b, d) to characterize 
differences among the two climate datasets. The broad climate dataset 
was colder than the local one for all months except for the winter ones 

Fig. 3. Spatial (a, b) and temporal (c, d) distribution of mean temperature (a, c) and precipitation (b, d) of the two climate datasets (local climate = COSMO–CLM 
and broad climate = CHELSA v1.2) for the period 1989–2013. The broad climate dataset was consistently cooler than the local, but with similar seasonal trends. 
Differences in precipitation patterns seemed to be more related to continentality.
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(min difference = − 5.76 ◦C, mean difference = − 0.78 ◦C, max difference 
= 5.47 ◦C; Fig. 3a, c). Compared to the regional climate grid produced by 
an Optimal Interpolation (OI; Gandin, 1963) of the existing weather 
stations of the regional weather agency (ARPA), both datasets showed 
higher summer mean temperatures and lower winter mean tempera-
tures, but the seasonal trend was well represented (Fig. A.1). Values 
showed similar left-skewed distributions, with lower values associated 
with upper elevations (Fig. 3c). Spatial differences in temperature were 
scattered, especially in mountain areas with complex terrains, while in 
the Po Valley the average difference was − 0.82 ± 0.69 ◦C and the local 
climate dataset was consistently hotter than the broad one (Fig. 3a). 
Differences in precipitation patterns decreased with elevation (R2 =

0.53, slope = − 3 mm every 100 m of elevation gain), with the broad 
climate dataset showing lower values in the mountains (>800 m), with 
average differences of − 45.5 ± 30.9 (mean ± standard deviation) and 
8.6 ± 22.6 in the flat areas of the Po Valley (Fig. 3b). Patterns of dif-
ferences in precipitation appeared to be also related to continentality; 
dry continental sectors, like the inner Alps (e.g., upper Susa Valley) and 
Po Valley, exhibited higher values in the broad dataset, while wetter 
sectors such as Cuneoprovince (South of Piedmont) and Ossola (the 
Northern extremity of Piedmont) showed higher values in the local 
climate dataset. The seasonal trends of precipitation was well depicted 
by both datasets (Fig. A.1), but spatially the local climate dataset per-
formed better in representing observed climate conditions of the region 
(Fig. A.2).

We assessed spatial and temporal trends for the two future scenarios 
(Fig. B.1 for RCP4.5 and Fig. B.2 for RCP8.5). We derived average values 
of monthly temperatures and precipitation between the six CMIP5 
models included within the broad climate dataset. We observed a higher 
degree of similarity in temperature spatial patterns and seasonal trends 
(monthly local ~ monthly broad with intercept = − 0.42, slope = 1.13, 
and R2 = 0.99 for RCP4.5; intercept = − 0.74, slope = 1.12, and R2 =

0.99 for RCP8.5), but lower correspondence for precipitation (intercept 
= − 33.2, slope = 1.88, and R2 = 0.34 for RCP4.5; intercept = − 34.9, 
slope = 1.77, and R2 = 0.65 for RCP8.5). Similarly to the current time, 
also for future scenarios the local climate dataset was hotter than the 
broad one during summer, but colder than or equal to in winter. Sea-
sonal trends of precipitation showed differences between the two RCPs, 

especially for the local climate data.

3.2. Model performance and predictions

We compared model performance in terms of performance and 
calibration for different frameworks based on different responses (local 
species data versus broad species data) and predictors (local climate 
versus broad climate). From the spatial cross-validation procedure, 
models trained with local inventories showed significantly better per-
formance of those calibrated with broad species data in terms of AUC, 
F1, and COR (Fig. 4a). No significance emerged for the independent 
validation but for AUC metrics related to species data, with local data 
having slightly better performance (p = 0.02) than broad species data 
and data pooling (Fig. 4b and Table B.1). Most models trained with local 
species data had an AUC >0.8 and a TSS >0.6, showing good model 
performance; the fine-scale model had an average AUC of 0.84 ± 0.09. 
Similar values were observed for the Hybrid 1 model (local species data 
and broad climate dataset) and for the data pooling model. The COR 
metric of these three models was on average ~ 0.40, showing good 
calibration. The only significant difference we observed when validating 
against an external dataset (i.e., GBIF, LUCAS) was in terms of the AUC 
between models calibrated with different species data (Fig. 4b). We did 
not observe significant differences in performance between models 
based on different sets of climate datasets.

The 5th and 95th percentiles were 0.63 and 0.95 for AUC (mean =
0.81, median = 0.82), 0.24 and 0.84 for TSS (mean = 0.54, median =
0.57), 0.05 and 0.68 for F1 (mean = 0.31, median = 0.31), and 0.04 and 
0.64 for COR (mean = 0.32, median = 0.31). On average across the 
frameworks, we observed the best model performances for Swiss stone 
pine (AUC = 0.98, COR = 0.48), European larch (AUC = 0.92, COR =
0.67), and manna ash (AUC = 0.92, COR = 0.40), while the worst were 
European aspen (AUC = 0.58, 0.05), sycamore (AUC = 0.71, COR =
0.20), and field maple (AUC = 0.72, COR = 0.13), despite large differ-
ences can be observed relatively to the modeling framework. When 
comparing AUC (accuracy) and COR (calibration), local-scale models 
performed better than coarse-scale ones especially for sessile oak (Δ 
AUC = 0.27 and Δ COR = 0.34), European aspen (Δ AUC = 0.21), and 
silver fir (Δ AUC = 0.18 and Δ COR = 0.24). Details and p-values of 

Fig. 4. Validation results from (a) internal 5-fold spatial block cross-validation and (b) external validation on a fully independent dataset for performance (AUC, TSS, 
and F1 score) and calibration (COR). Letters represent the results of significant generalized linear mixed models (Table B1). Decreasing the scale detail (from fine to 
coarse with all the combinations in between) leads to a decrease in model performance for some metrics. Hybrid1 refers to the combination of local species data and 
GCM, Hybrid2 is the combination of broad species data and RCM, and Hybrid3 is the combination of broad species data at the local extent and GCM.
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generalized models for performance and calibration can be found in 
Table B1.

We assessed the ecological reliability of model outputs, and we 
observed individualistic patterns in terms of spatial predictions (Figs. 5, 
B.6–B.8), variable importance (Figs. B.9–B.11), and correlation between 
spatial predictions (Table B.2). Coarse-scale models for sweet chestnut 
overestimated the current occurrence of the species and was more 
related to potential climate distribution (Fig. 5). Patterns of over- and 
underestimation for European beech (Fig. B.6), European larch 
(Fig. B.7), and Scots pine (Fig. B.8) were more difficult to decipher. 
Variable importance was similar among models for species such as black 
alder, sweet chestnut, European larch, black pine, and downy oak 
(Figs. B.9–B.11). Correlation between spatial predictions ranged be-
tween − 0.01 (sessile oak, RCP8.5) and 0.88 (European larch) with a 
mean value of 0.47, a median value of 0.49, and a standard deviation of 
0.22 (Table B.2).

3.3. Current and future probability of occurrence of tree species and 
species richness

The species showed individualistic responses between the fine-scale 
and coarse-scale models for current and future (2041–2060) both in 
spatial predictions (Figs. 6, B.12–B.14) and estimated changes in prob-
ability of occurrence (Fig. 7, B.15 and B.16, Tables B.3 and B.4). Coarse- 
scale models generally exhibited changes in the probability of occur-
rence closer to zero (median = 0.002), while models calibrated with 
local species data (i.e., fine-scale, hybrid 1, and partially also data 
pooling models) showed more significant positive or negative values 
(Fig. 7). For several species, the data pooling models had a response that 
was somewhere between the fine- and the coarse-scale models but closer 

to the former (e.g., see Fig. B.18 for overall trends).
Sweet chestnut (Figs. 5, 6a), oaks (Fig. B.14), and silver fir 

(Fig. B.12a) showed discrepancies in terms of spatial prediction patterns 
between the models, while European beech (Fig. 6b), European larch 
(Fig. 6c), and Scots pine (Fig. 6d) displayed consistency. In terms of 
absolute changes in probability of occurrence, models consistently 
indicated decreasing probabilities for sweet chestnut, Scots pine and 
black locust (except for the hybrid 2 model in all cases) and increasing 
probabilities for four broadleaf species such as black alder, European 
hornbeam, and European birch.

European beech showed differing predictions, increasing in models 
calibrated with the local species data and remaining stable according to 
the other models (Figs. 6b, 7). Norway spruce and pedunculate oak 
followed an inverse pattern, with the fine-scale, hybrid 1, and data 
pooling models predicting a median net loss and the others predicting 
stability or slight increase. The probability of occurrence of European 
larch was predicted to decrease according to all the models but the 
coarse scale and the data pooling (Figs. 6c, 7).

Among the fine-scale models, we observed the highest expected gain 
for European beech (median =+0.18 and +0.22 for RCP4.5 and RCP8.5, 
respectively) and sessile oak (median = +0.14 and +0.17 for RCP4.5 
and RCP8.5, respectively) and the highest loss for black locust (median 
= − 0.18 and − 0.14 for RCP4.5 and RCP8.5, respectively) and sweet 
chestnut (median = − 0.14 and − 0.08 for RCP4.5 and RCP8.5, 
respectively).

Species richness exhibited a general increase according to models 
calibrated with local species data such as the fine-scale and hybrid 1 
models and models calibrated at the extent of the Piedmont Region 
(Figs. 8, B.17, Table B.5). Models calibrated at the extent of the Alps had 
changes in species richness below (i.e., data pooling model) or close to 

Fig. 5. Comparison between the current potential suitable range of sweet chestnut Castanea sativa expressed by the two scales (Fine = local species data + local 
climate in blue and coarse scale = broad species data + broad climate at the extent of the Alpine region in pink). The two outputs were compared to the Piedmont 
Forest Map of 2016 (filtered only for the selected forest type, in orange) and the geographic range for Europe (light blue polygons) derived from Caudullo et al. 
(2017). Panel (a) shows an overview of the entire administrative area, panels (b) and (c) show two closeups corresponding to the Northern (b) and Southern 
Piedmont (c). Coarse-scale models seemed to overpredict the distribution of sweet chestnut, especially compared to the main stands of the species within Piedmont.
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(i.e., coarse-scale model) zero, with the data pooling showing greater 
variation. The hybrid 1 model was the only one with a different response 
to climate scenarios, while the hybrid 2 was the one with a higher in-
crease in species richness, which was spatially distributed across the 
region (Fig. 8d and k). The fine-scale model foresaw increases in species 
richness in the low mountain areas, while the data pooling model 
showed different patterns of changes in species richness in the mountain 
areas of Piedmont (Figs. 8g and n, B.17). Species richness was more 
stable in lowland and alpine areas according to the fine-scale, coarse- 
scale, and data pooling models, while the largest variations were 
observed at medium altitudes. A different pattern was observed for the 
hybrid models, where richness change was inversely related to 
elevation.

4. Discussion

Species Distribution Models (SDMs) along with future scenarios of 
climate and land use have the potential to be a fundamental part of 
spatially explicit landscape conservation and restoration for numerous 
species (Guisan et al., 2013; Mateo et al., 2019; Zurell et al., 2022). 
However, most predictive SDMs are typically conducted at coarse spatial 
scales (i.e., continental to global extent and kilometers resolution), 
which is hardly useful for reserve selection at fine scales, or in 

considering where to move organisms in assisted migration. On the 
other hand, locally calibrated models suffer of niche truncation, over-
looking environmental conditions that a species may withstand and are 
therefore potentially incorrect when extrapolated to new conditions 
such as changing climates. Therefore, the aim of this study was to 
evaluate the role of spatial scales in local planning and management and 
the ecological consequences of modeling decisions.

4.1. The role of spatial scale in SDMs

Our study demonstrates that SDMs built at different scales yield 
different spatial predictions and performance. Models trained with local 
species data (i.e., fine-scale, hybrid1, and data pooling models) per-
formed better than coarse-scale and hybrid-scale models based on a 
broad European species data for current times (EU-Forest inventory; 
Mauri et al., 2017). This performance was especially evident in the in-
ternal spatial-block cross-validation. In the independent validation, 
models trained with local data only showed a better AUC than the 
others, and the patterns of performance were more complex. Our results 
highlight the distinctive characteristics of different scales of response 
and predictor variables (Anderson and Raza, 2010; Mateo et al., 2019). 
Fine-scale models can better capture local conditions, benefiting from 
dynamically downscaled RCM climate data and finer spatial resolution 

Fig. 6. Probability of occurrence of four species (sweet chestnut, European beech, European larch, and Scots pine) for current and future (RCP4.5 and RCP8.5) 
scenarios for fine-scale (local species data + local climate, upper rows) and coarse-scale (broad species data + broad climate at the alpine extent, lower rows) models. 
Very different patterns emerged between species in terms of current and future probability of occurrence.

N. Anselmetto et al.                                                                                                                                                                                                                            Agricultural and Forest Meteorology 362 (2025) 110361 

10 



and higher density of points of species data (i.e., inventories). Never-
theless, models fitted with species data from a partial section of a spe-
cies’ ecological niche suffer from niche truncation and express truncated 
response curves (Sánchez-Fernández et al., 2011; Chevalier et al., 2021; 
2022). Conversely, coarse-scale models, while encompassing a broader 
portion of the species niche, can lead to higher commission errors due to 
increased false positives (see for instance sweet chestnut within our 
study; Fig. 5), but are less sensitive to extrapolation problems to new 
conditions, as revealed by the results of species richness for future times. 
These behaviors were evident also when comparing future expected 
changes in probability of occurrence and species richness (Figs. 6, 7, 
B.12–17 Supplementary Materials), where coarse-scale models 

predicted a magnitude of changes in probability closer to zero and 
fine-scale models predicted higher negative values. Hybrid and data 
pooling models showed more individualistic responses. The latter pre-
dicted changes in the probability of occurrence of different species that 
were closer to fine-scale models, but changes in species richness that 
were closer to coarse-scale models.

While our study found that climate data did not significantly affect 
model performance, spatial patterns and expected changes in species 
richness were affected by the type of climate dataset. Indeed, the char-
acteristics of climate data can impact spatial outcomes in terms of 
probability of occurrence and binary maps (Bobrowski and Udo, 2017; 
Patiño et al., 2023). Patiño et al. (2023) showed the potential of 

Fig. 7. Boxplots representing the change in probability of occurrence of thirteen species according to the two climate scenarios (RCP4.5 and RCP8.5) and the input 
dataset (fine = local species data + local climate, coarse = broad species data + broad climate at the extent of the Alps). Delta between − 0.05 and 0.05 were removed 
to enhance differences between the frameworks. Models calibrated at the broad extent generally predicted fewer changes.
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finer-resolution climate data in detecting warming trends and meso-
refugia by comparing CHELSA with its downscaling version for Canary 
Islands (~100 m) even if their performance did not show significant 
difference. For this reason, it is recommended to account for climate 
uncertainty by using ensembles of multiple dissimilar regional climate 
models when projecting into the future (Knutti et al., 2013). For 
instance, a recent pan-European study on tree species distributions 
applied 11 different RCMs at ~10 km resolution to project future change 
scenarios (Mauri et al., 2022). However, in our study, we used data from 
a single climate model for future local climate, which may be a 
limitation.

The choice of scale in SDMs is a critical factor, and in our study fine- 
scale models performed better in capturing local conditions and the 
current distribution of species. Nevertheless, when fine-scale response 
data are not accessible, coarse-scale data can still offer valuable insights, 
especially for certain species. Given the absence of consistent improve-
ment patterns across different extents of broad inventories, we recom-
mend that researchers opt for broader extents to mitigate the risk of 
niche truncation in such cases, especially when predicting future con-
ditions. Data pooling can partially address this issue by including broad 

species data encompassing, which cover a large part of the niche, but 
also local species data, which reflect the peculiar conditions at the local 
scale. Furthermore, hierarchical approaches integrating variables at 
different scales have been proposed as a solution to address spatial 
mismatches in SDMs predictions (Pearson et al., 2004; Mateo et al., 
2019; Simon et al., 2023). However, it is worth mentioning that hier-
archical modeling has not shown consistent predictions improvement 
compared to common approaches, especially because of challenges in 
their validation (El-Gabbas and Dormann, 2018; Simon et al., 2023).

Our choice of using Bayesian Additive Regression Trees (BART) was 
supported by preliminary tests, which demonstrated comparable per-
formance to ensemble models, as highlighted by previous studies (e.g., 
Baquero et al. 2021, Konowalik and Nosol 2021). We also experimented 
with different subsets of predictor variables (no filtering, principal 
components, VIF and correlation filter) and chose a variable reduction 
approach based on variable importance, as it offered faster computation 
and facilitated ecological assessment.

Fig. 8. Expected changes in probability-based species richness according to the different climate scenarios (a–g = RCP4.5, h–n = RCP8.5) and modeling frameworks 
both in terms of values (a, h) and spatial patterns across Piedmont Region (b–g and i–n). Models calibrated at the broad extent had changes in species richness closer 
to zero than models calibrated at the local extent.
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4.2. Current and future probability of occurrence of the main tree species 
and species richness: insights on niche truncation

Our study provides insights into the reliability of different tree spe-
cies’ predictions under various frameworks. Comparisons with local 
forest maps, European geographic range (Caudullo et al., 2017), 
EU-Trees4F (Mauri et al., 2022), and literature revealed both consistent 
and divergent results (Fig. B.18). Our results corroborated existing 
literature (Hanewinkel et al., 2013; Dyderski et al., 2018; Mauri et al., 
2022; Noce et al., 2023), indicating probability increases for silver fir, 
particularly under the fine-scale RCP4.5 scenario, and European beech 
in fine-scale models. Conversely, decreases in probability were observed 
for European larch, especially in the fine-scale model, as well as for Scots 
pine and Norway spruce, the latter being more pronounced in the 
fine-scale model. Notably, many of the studies we used as references did 
not mask unvegetated areas at high elevations or in urban regions (e.g., 
Hanewinkel et al. 2013, Dyderski et al. 2018, Noce et al., 2023). In doing 
so, they included as suitable areas that we did not expect to be suitable in 
the next 50–100 years, such as unvegetatated areas and rocks at high 
elevations. This consideration is particularly important for montane and 
subalpine species such as the European larch.

Overall, many species showed different responses to the spatial 
scales of the predictors. We discuss two examples of tree species with an 
important history of use in Piedmont: sweet chestnut and European 
larch. Our analysis of sweet chestnut showed significantly different 
spatial predictions between fine-scale and coarse-scale models, yet the 
magnitude of the probability of occurrence loss remained similar. In the 
current scenario, the fine-scale model showed greater ecological reli-
ability, identifying hilly and low mountain regions as the most suitable 
habitats for the species. This aligns with local traditional silvicultural 
practices that have historically favored sweet chestnut in these areas due 
to its value for fruit, timber, and fuelwood production, a practice also 
observed in other Alpine regions such as Canton Ticino, Switzerland 
(Conedera et al., 2004; Camerano et al., 2017). Conversely, coarse-scale 
models emphasized lowland areas (i.e., the Po Valley) as climatically 
suitable regions, but these models may overlook the influence of tradi-
tional land use and only reflect the potential distribution of the species 
in the region. The data pooling model, when applied to sweet chestnut, 
revealed spatial patterns more similar to the fine-scale model. This 
highlights the importance of the spatial scale and the inclusion of basal 
area information retained in this dataset. In terms of future scenarios, 
the expected future decline in the probability of occurrence of sweet 
chestnut is likely due to its expansion into areas of lower climatic suit-
ability, such as regions potentially dominated by stands of sessile and 
downy oak (Conedera et al., 2004; Camerano et al., 2017).

When comparing models for a different species, such as the European 
larch, we observed a different outcome. Current probability of occur-
rence was relatively consistent between the modeling frameworks (r =
0.88), but the fine-scale model displayed greater suitability at lower 
elevations, particularly in the Southern and Northern sectors of the 
study area. In spatial predictions more than in model performance, the 
effect of climate data emerged. Therefore, we attributed this discrepancy 
to differences in climate scenarios but also to possible niche truncation. 
Additionally, the relative variable importance exhibited similar patterns 
between the frameworks, with a slightly greater emphasis on tempera-
ture in the coarse-scale model. In terms of future scenarios, both models 
projected a decline in the probability of occurrence at lower elevations, 
but the fine-scale model predicted a more substantial loss compared to 
the coarse-scale model. The fine-scale result is in line with results from 
the literature (Dyderski et al., 2018; Mauri et al., 2022), likely due to the 
comprehensive representation of European larch in Piedmont region, 
encompassing a wide array of the environmental conditions across its 
entire geographic range because of the historical use of the species 
across several altitudinal and ecological gradients (Garbarino et al., 
2011).

While this study provides valuable insights into the impactof spatial 

scale and modeling decisions on SDM performance and reliability, it 
does not come without limitations. First, the models do not account for 
genetic variation or provenance, which can significantly influence spe-
cies’ adaptive capacity and response to environmental change (e.g., 
Marchelli et al. 2017, Marchi 2024). Second, population dynamics were 
not explicitly included, as we focused on pure correlative models: This 
approach potentially overlooks key processes such as dispersal, 
recruitment, and competition, which are essential for understanding 
future species distributions (e.g., Mauri et al. 2022). We should also note 
again that the modeling choice of a climate-ensemble modeling over the 
ensemble of predictions for singular climate models may reduce the 
extent and the magnitude of extreme climate conditions. Finally, forest 
management practices, which can influence habitat availability and 
species persistence, were not incorporated. Nevertheless, the dataset 
developed in this study may have the potential for applications in 
regional forestry and conservation planning. By providing fine-scale 
models that are accurate for the present, but also coarse-scale and 
data pooling methods that are more sound for future climate change 
scenarios, this dataset allows for the identification of habitat suitability 
at a resolution that aligns with the management practices and conser-
vation priorities of the Piedmont region while limiting niche truncation 
for the future.

4.3. SDMs as tools for local forest management

As previously discussed, SDMs can be particularly important for 
implementing assisted migration and ecological restoration within local 
reforestation plans (Wan et al., 2017; Begemann et al., 2021; Twardek 
et al., 2023). Advancements in forest planning should therefore account 
for spatial scales of response and predictive variables within predictive 
models, especially given the growing body of research on microclimate 
variation based on fine-scale topography and canopy cover (Lembrechts 
et al., 2019b; De Frenne, et al., 2021; Haesen et al., 2023).

We advocate for adequate testing of species data (i.e., forest in-
ventories) and predictor variables within SDMs for forest planning and 
management. Fine-scale models are valuable for current predictions, 
particularly when local data sources and response data align with the 
scale of application. Moreover, in our study area, fine-scale models 
appeared to amplify local anthropogenic signals associated with the 
traditional use of sweet chestnut. This result underscores the difficulty of 
aligning meaningful spatial scales of ecological processes with available 
climate data, a major challenge especially in long-lasting human- 
dominated mountain systems such as the Alps, where human activities 
have profoundly altered ecosystem spatial patterns (Batzing et al., 1996; 
Plieninger et al., 2016; Zanon et al., 2018). Coarse-scale models or data 
pooling approaches, on the other hand, can be trained over broader 
geographic extents, covering a larger portion of a species’ niche 
(Anderson and Raza, 2010; Sánchez-Fernández et al., 2011). We should 
still note that SDMs usually refer to the species level, but many adap-
tation strategies take place at the level of genotypes and populations, 
which are defined at local spatial scales. A multi-scale approach can be 
particularly useful in complex forest policy frameworks, where various 
model scales correspond to different policy levels. Indeed, multi-scale 
approaches can enhance the discussion with stakeholders and increase 
the robustness of predictions (Begemann et al., 2021; Sharma et al., 
2023).

5. Conclusion

In this study, we explored the importance of spatial scales in Species 
Distribution Models (SDMs), shedding light on their core relevance in 
ecological research and forest management within the context of climate 
change. Our results stress the trade-off between reliability and perfor-
mance for current times and the problem of niche truncation when 
extrapolating to changing climates that fine-scale models suffer from. 
Models built upon local species data (i.e., forest inventory) performed 
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better than their coarser counterparts for current times, while high- 
resolution regional climate models allowed for precision in capturing 
local conditions, making them indispensable for current predictions, 
ecological assessments, and localized forest management.

Fine-scale models also magnified local anthropogenic influences by 
emphasizing the profound impact of local traditional practices like 
sweet chestnut and European larch silvicultural systems. In contrast, 
coarse-scale models may miss these nuances, favoring climatic suit-
ability over intricate local practices. Therefore, incorporating fine-scale 
data is essential when it aligns with the study’s scale of application.

However, we demonstrated how fine-scale models do not come 
without problems. Niche truncation can occur when response data en-
compasses only a portion of a species’ ecological niche, potentially 
affecting future predictive performance. This result emerged from the 
comparison of fine-scale, coarse-scale and data pooling models pre-
dictions. Therefore, ecologists and forest practitioners should carefully 
choose the scale of response data based on the study’s scope and the 
species under investigation. In terms of climate data, while they did not 
significantly affect model performance, their resolution can impact the 
spatial outcomes of probability of occurrence and binary maps.

In the light of the ongoing climate and land use changes, SDMs have 
an increasingly important role in forest planning and management. 
Considering differences in spatial scales, integrating fine-scale models 
and microclimate data, and using data pooling by integrating species 
data with different spatial scales can enhance the performance and 
reliability of species distribution models for ecologists, policymakers, 
and forest practitioners.

CRediT authorship contribution statement
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Fumière, Q., Déqué, M., Nuissier, O., Somot, S., Alias, A., Caillaud, C., Laurantin, O., 
Seity, Y., 2020. Extreme rainfall in Mediterranean France during the fall: added 
value of the CNRM-AROME Convection-Permitting Regional Climate Model. Clim. 
Dyn. 55, 77–91. https://doi.org/10.1007/s00382-019-04898-8.

Gandin, L.S., 1963. Objective analysis of meteorological fields. Israel program for 
scientific translations 242.
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