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Abstract
This study outlines a method for using surveillance cameras and an algorithm that 
calls a deep learning model to generate video segments featuring salmon and trout in 
small streams. This automated process greatly reduces the need for human interven-
tion in video surveillance. Furthermore, a comprehensive guide is provided on setting 
up	and	configuring	surveillance	equipment,	along	with	instructions	on	training	a	deep	
learning	model	 tailored	 to	 specific	 requirements.	Access	 to	 video	data	 and	 knowl-
edge	about	deep	learning	models	makes	monitoring	of	trout	and	salmon	dynamic	and	
hands-	on,	as	the	collected	data	can	be	used	to	train	and	further	improve	deep	learn-
ing models. Hopefully, this setup will encourage fisheries managers to conduct more 
monitoring	as	the	equipment	is	relatively	cheap	compared	with	customized	solutions	
for fish monitoring. To make effective use of the data, natural markings of the camera- 
captured	fish	can	be	used	for	individual	identification.	While	the	automated	process	
greatly reduces the need for human intervention in video surveillance and speeds up 
the initial sorting and detection of fish, the manual identification of individual fish 
based	on	natural	markings	still	requires	human	effort	and	involvement.	Individual	en-
counter data hold many potential applications, such as capture–recapture and relative 
abundance	models,	and	for	evaluating	fish	passages	in	streams	with	hydropower	by	
spatial recaptures, that is, the same individual identified at different locations. There 
is	much	to	gain	by	using	this	technique	as	camera	captures	are	the	better	option	for	
the fish's welfare and are less time- consuming compared with physical captures and 
tagging.
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1  |  INTRODUC TION

Recent	 advances	 in	 the	 accessibility	 and	 relative	 ease	 of	 use	 of	
surveillance technology and deep learning models are shifting 
how	 ecological	 monitoring	 is	 conducted	 (Aguzzi	 et	 al.,	 2020; 
Saleh	et	al.,	2020, 2023).	Surveillance	cameras	can	produce	copi-
ous amounts of video and image data, and deep learning models 
can	analyse	the	data	with	speed	and	accuracy	(Hentati-	Sundberg	
et al., 2023).

A	key	benefit	of	 this	 type	of	data	 is	 its	 cost-	effectiveness	and	
scalability.	Therefore,	data	can	be	collected	from	small	systems	that	
were previously neglected in ecological monitoring. This is particu-
larly	 important	for	brown	trout	(Salmo trutta, hereafter referred to 
as	 trout)	and	Atlantic	 salmon	 (Salmo salar, hereafter referred to as 
salmon),	two	species	that	utilize	streams	and	rivers	as	spawning	and	
nursing grounds (Klemetsen et al., 2003).

For	instance,	in	Sweden,	where	the	present	study	took	place,	
there are 111 defined catchment areas that are open to the sea 
along	 the	 Swedish	 coastline.	 The	definition	of	 a	 catchment	 area	
by	 SMHI	 (Swedish	Meteorological	 and	 Hydrological	 Institute)	 is	
having an area of >200 km2.	The	Swedish	Electrofishing	RegiSter	
has	data	from	109	of	these,	where	juvenile	trout	has	been	found	
in	103	and	juvenile	salmon	in	61	(Sers,	2013, data extracted July 
2022).	 The	 median	 size	 of	 the	 defined	 catchment	 areas	 where	
juvenile	 trout	 has	 been	 found	 is	 588 km2, and for salmon, it is 
1229 km2.	Additionally,	catchment	areas	of	undefined	size	but	less	
than	200 km2 are located on islands in the archipelago or wedged 
between	 the	mouths	 of	 larger	 catchments	 in	 coastal	 areas.	Out	
of	 1902	 water	 courses	 sampled	 in	 these	 small	 catchments,	 ju-
venile	 trout	has	been	 found	 in	1337	and	 juvenile	 salmon	 in	106	
(Sers,	2013, data extracted July 2022). However, water courses 
were	not	sampled	randomly,	so	the	proportions	between	sampled	
water	courses	and	the	occurrence	of	trout	and	salmon	may	be	mis-
leading. In contrast, monitoring of adult trout and salmon focuses 
mainly	on	the	greatest	fluvial	systems,	often	 in	conjunction	with	
hydropower,	or	in	systems	where	there	is	a	public	interest	such	as	
recreational angling (Hagelin et al., 2021;	Shephard	et	al.,	2019). 
Hence,	 in	proportion	of	occurrence	adult	salmon	 is	better	moni-
tored than adult trout. Therefore, there is a need to increase the 
coverage of ecological monitoring in small fluvial systems, and es-
pecially for trout.

Animal	density	and	movements	are	fundamental	estimates	in	ap-
plied ecology (Royle et al., 2013, Chapter 1). The methods used to 
estimate	these	parameters	rely	on	data	where	individuals	have	been	
observed	multiple	times.	If	individuals	can	be	unambiguously	iden-
tified from frames in a video, this information can serve as capture 
histories	 in	 capture–recapture	models	 to	 estimate	 population	 size	
(Karanth, 1995;	Karlsson	&	Kari,	2020). Furthermore, if an individual 
is	observed	at	different	locations,	this	provides	valuable	information	
about	its	movements	(Efford,	2004).

Since	both	trout	and	salmon	are	significantly	impacted	by	the	
exploitation of fluvial systems and are threatened or extinct in 
many areas (Johnsen et al., 2011; Junge et al., 2014), it is important 

to continuously monitor these populations. This monitoring is im-
portant	 not	 only	 to	 establish	 a	 population	 baseline	 but	 also	 to	
assess	whether	measures	 taken,	 such	as	habitat	 restoration,	 im-
proved connectivity or changes in fishing regulations, have had 
an effect.

The	aim	of	this	study	was	to	describe	how	to	set	up,	configure,	
and use Power over Ethernet (PoE) Internet Protocol (IP) cameras 
for monitoring trout and salmon in small streams and to analyse 
the	videos	using	a	deep	learning	model.	Videos	from	the	cameras	
were	recorded	on	either	stationary	or	mobile	battery-	driven	net-
work	video	recorders	(NVR),	depending	on	whether	the	sites	had	
access	 to	 the	 local	 electric	 grid.	 Furthermore,	 I	 describe	how	 to	
analyse the videos in Python and, to some extent, in R (R Core 
Team, 2023). Currently, R does not have as powerful video pro-
cessing	 capabilities	 as	 Python.	 In	 both	 R	 and	 Python,	 I	 trained	
deep learning models to detect fish and, finally in Python, wrote 
an algorithm to automatically generate short video segments of 
the detected fish (a link to data and the algorithm is provided). The 
purpose of the algorithm was to identify the occurrence of trout 
and salmon in large datasets and further, to generate video seg-
ments	 that	produce	 sequences	where	 the	 fish	are	clearly	visible	
with enough sharpness and focus for manual individual identifica-
tion if captured on camera again. The resulting predictions from 
the deep learning model are presented to provide a general idea of 
its	performance	and	possible	applications.

2  |  METHODS

2.1  |  Setting up the network video recorder, mobile 
NVR and Internet Protocol cameras

The	IP	cameras	were	of	the	Linovision	4 K	PoE	IP	underwater	cam-
era	anti-	corrosion	 type,	 equipped	with	either	30-		or	50-	m	cables.	
Cameras were mounted on iron fundaments to secure them in the 
stream;	network	cables	were	weighed	down	to	the	river	bottom	by	
chains	to	prevent	drifting	in	the	stream	and	avoid	snagging	debris.

The	 cameras	 were	 connected	 to	 either	 a	 battery-	powered	
mobile	NVR	or	a	stationary	NVR,	depending	on	if	the	sites	of	re-
cording had access to the local power grid. Recordings were made 
at 3840 × 2160	resolution	and	20	frames	per	second.	A	detailed	
description	of	how	to	set	up	the	NVRs	and	cameras	is	found	in	the	
Appendix	A.

2.2  |  Recording

Videos	of	salmon	and	trout	were	recorded	at	three	different	 loca-
tions.	Skeboån	is	a	small	stream	where	sea	trout	migrate	to	spawn	
in	 late	autumn.	 (Sea	 trout	 is	a	migratory	 form	of	brown	 trout	 that	
migrate from freshwater rivers and streams to the sea, where they 
spend	 part	 of	 their	 life	 before	 returning	 to	 freshwater	 to	 spawn.)	
Here, an association of recreational anglers has restored spawning 
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    |  3 of 18KARLSSON

habitat	 and	 stocked	 trout.	 In	 Skeboån,	 I	 recorded	 on	 a	 restored	
spawning	ground	 in	Häverödal	during	 the	spawning	season	 in	 late	
October	2023	(Latitude:	60.025197,	Longitude:	18.603479).

The	Dalälven	River	has	a	governmentally	funded	hatchery	with	
salmon	and	sea	trout.	This	river	is	regulated	by	hydropower,	so	den-
sities	of	spawning	fish	are	very	high	below	the	lowermost	migration	
barrier	at	Älvkarleby,	where	I	recorded	spawning	fish	in	late	October	
2023	(60.563282,	17.435323).

Mörrumsån	is	a	small	river	famous	for	its	recreational	angling	
of	 salmon	 and	 sea	 trout.	Here,	 fish	 begin	 their	 upstream	migra-
tion in early summer, while they are still silvery and have not yet 
developed their spawning coloration. I recorded near ‘Laxens hus’ 
in	Mörrum	town	during	the	second	half	of	July	2023	(56.192046,	
14.748952).

2.3  |  Video processing and training of the deep 
learning model in R and Python

Both R and Python were used separately to generate images from 
video frames. However, I recommend using Python due to its faster 
processing speed and simpler syntax. In R, videos were processed 
using the ‘av’ package (Ooms, 2022), with the ‘av_video_images’ 
function	was	used	to	extract	one	frame	for	every	20 s	of	video,	ef-
fectively thinning the videos. In Python, the ‘ffmpeg’ software and 
module (Tomar, 2006) were employed to generate images at 20- s 
intervals from the video using the ‘input’ and ‘output’ functions. 
Both R and Python functions produce images at the specified in-
terval,	but	there	may	be	differences	in	the	exact	start	or	end	frames	
utilized,	resulting	in	potentially	distinct	images.	All	recordings	used	
to train and validate the model were captured at 20 frames per 
second.	Approximately	 3 h	 of	 continuous	 video	material	 from	one	
camera	in	Skeboån	was	used.	In	Mörrumsån,	5 + 5 + 16 + 16 h	of	con-
tinuous	videos	from	two	cameras	(5 + 37 h)	for	3 days	were	used.	In	
Dalälven,	4 h	of	continuous	video	from	one	camera	was	used	to	train	
the model.

Each	image	was	reviewed	by	me	to	determine	the	presence	of	a	
fish (or part of a fish) and then classified into one of two folders: ‘fish’ 
or ‘no fish’. Images from each location and camera were compiled 
into these folders. For some images, it was challenging to discern 
whether	 a	 fish	was	 present;	 they	 included	 only	 blurry	 fragments.	
In other images, the fish was sharp and in focus. However, I chose 
not	to	train	the	model	exclusively	on	‘ideal	images’	but	on	all	images	
produced	 by	 splitting	 the	 training	 videos.	 This	 approach	 ensures	
the inclusion of real- world complexity in deep learning models for 
effective	real-	world	applications	(Saleh	et	al.,	2020).	With	the	20-	s	
thinning of the videos, this resulted in 8960 images, of which 7772 
did not include a fish, and 1188 included a fish or parts of a fish. The 
classification of the training data revealed images only of trout and 
salmon; no other fish species were identified.

The	model	was	trained	on	Windows	10,	both	in	R	using	a	Python	
environment with the packages Reticulate (Ushey et al., 2023), Keras 
(Allaire	&	Chollet,	2023)	and	TensorFlow	(Allaire	&	Tang,	2023), and in 

Python using a Conda TensorFlow environment. The same model ar-
chitecture	was	employed	in	both	R	and	Python;	however,	the	syntax	
differed	between	the	two	languages.	The	training	and	validation	im-
ages were pre- processed and loaded using the ImageDataGenerator. 
A	base	model	with	 the	Xception	 architecture,	 utilizing	pre-	trained	
weights from ImageNet (Chollet, 2017), was employed. The layers 
of	the	model	were	frozen	to	prevent	further	training.	A	new	sequen-
tial	model	was	constructed	on	top	of	the	base	model,	incorporating	
a	global	average	pooling	 layer,	a	dense	 layer	with	ReLu	activation,	
a dropout layer and a final dense layer with softmax activation for 
classification.

The model was compiled using categorical cross- entropy loss, 
the	 Adam	 optimizer	 with	 a	 specified	 learning	 rate,	 and	 accuracy	
as	the	evaluation	metric.	The	batch	size	and	epochs	were	set	to	32	
and 3, respectively, and the model was trained using the specified 
training and validation generators. Eight different models were fit-
ted,	encompassing	all	unique	combinations	of	the	hyper-	parameters:	
learning rate (10−2 or 10−3), dropout rate (0.2 or 0.3) and the num-
ber	of	neurons	in	the	dense	layer	(256	or	1024).	Hyper-	parameters	
were	based	on	default	values	and	experimental	refinement	for	the	
specific task and data at hand. The model with the highest valida-
tion accuracy after three epochs achieved approximately 93% ac-
curacy (learning rate: 10−3,	dropout	rate:	0.2	and	neurons:	256)	and	
was selected for testing the data. There was, however, only a 1–2% 
difference	between	the	worst	and	best	model,	and	there	is	a	 level	
of stochasticity in the model training. Therefore, the exact hyper- 
parameter	values	within	this	range	may	not	have	been	important	in	
this particular case. You can find a link to the code for setting up the 
model	in	R	and	Python	under	the	data	availability	section.

2.4  |  Testing the model

To	test	the	model,	I	utilized	videos	from	Mörrumsån,	covering	a	total	
of	6 days	from	22	to	27	July,	with	recording	sessions	between	05:00	
and 21:00 each day. These hours ensured there was sufficient light 
to	observe	the	fish	clearly.	Similar	to	the	process	used	in	creating	the	
training and validation data, the videos were thinned into one image 
every	20 s.	The	model	was	then	employed	to	predict	each	image	and	
provide	a	probability	of	whether	the	image	included	a	fish	or	not.

The	 predictions	 were	 summarized	 in	 a	 table	 where	 each	 row	
represented	 a	 unique	 probability	 (e.g.,	 0,	 3,	 25	 and	 100),	 and	 the	
columns	 represented	 specific	 dates.	 The	 frequency	 of	 images	 per	
unique	probability	per	date	was	matched	to	the	corresponding	row.	
All	images	with	a	probability	of	≥3%	were	scrutinized	by	me	to	deter-
mine	whether	they	contained	a	fish	or	not.	Images	with	a	probability	
of <3%	were	not	scrutinized.	Due	to	the	large	number	of	images	with	
a <3%	probability	and	the	indication	from	images	with	≥3%	proba-
bility	that,	if	the	<3%	images	contained	a	fish,	the	image	would	be	of	
very	poor	quality	and	the	information	would	be	largely	meaningless.	
A	 subset	of	 the	 images	was	 selected	 and	plotted	 along	with	 their	
respective	 probabilities	 to	 provide	 a	 general	 idea	of	 how	well	 the	
model performed.
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2.5  |  An algorithm to write video segments of the 
detected fish

As	described	above,	the	model	predicted	the	images,	and	their	re-
spective	probabilities	were	stored	in	a	column	of	a	data	frame,	along	
with	a	column	containing	the	path	to	each	image.	Probabilities	and	
image paths were arranged in chronological order. Using the ffmpeg 
function	‘probe’,	the	number	of	frames	per	video	and	the	frame	rate	
of the videos (20 frames per second) was calculated. Knowing this, 
and	having	all	the	probabilities	and	image	paths	sorted	chronologi-
cally	 with	 20 s	 between	 images,	 it	 was	 possible	 to	 determine	 the	
corresponding frame in each video from which the image prediction 
was made.

For	each	image	(row)	 in	the	data	frame,	the	frame	number,	the	
path	 to	 the	 video	 and	 the	 total	 frame	 number	 of	 the	 video	were	
added.	Furthermore,	a	sequence	from	1	to	the	number	of	images	in	
each video file was included as a column in the data frame, making it 
possible	to	determine	whether	two	adjacent	images	both	contained	
a	fish	(a	true	or	false	statement;	if	the	difference	between	two	im-
ages is >1,	they	are	not	adjacent).

The	data	frame	was	then	filtered	based	on	a	set	probability,	for	
example,	≥50%.	The	resulting	data	frame,	consisting	of	video	frames	
with	a	probability	of	≥50%	to	contain	a	fish,	was	split	by	video	file,	
creating	a	separate	data	frame	for	each	video	file.	Within	each	data	
frame,	adjacent	video	 frames	containing	a	 fish	were	assigned	 to	a	
‘group’ column. The split data frames were concatenated, and the re-
sulting	data	frame	was	split	a	second	time,	now	by	video	and	group.	
Each data frame now represents video frames from the same fish 
observation,	where	the	number	of	rows	depends	on	how	long	the	
fish	has	been	in	front	of	the	camera.

For	each	data	frame,	the	minimum	and	maximum	frame	numbers	
were	selected	and	used	as	start	and	end	frames.	A	buffer	of	20 s	was	
set	for	start	and	end	frames,	achieved	by	subtracting	and	adding	400	
frames to the start and end frames, respectively. The start frame 
was set to a minimum of 1, and the end frame was set to a maximum 
of	the	video's	total	frames,	to	avoid	going	out	of	bounds.	The	video	
path,	 start	 frame	and	end	 frame	were	 then	used	by	 ffmpeg	when	
writing the video files. To test this algorithm, I applied it to the videos 
from	22	to	27	July	 in	Mörrumsån,	encompassing	16 h	of	video	per	
day. The algorithm performed as expected on all tested dates; how-
ever, in the results, enclosed data and algorithm, I present the anal-
ysis from 26 July, as this day had the most camera captures of fish.

3  |  RESULTS

The	model	was	used	to	predict	a	probability	for	each	of	the	17,296	
images	between	 the	dates	22	 and	27	 July	 in	Mörrumsån.	Here,	 0	
indicates	no	probability,	and	100	 indicates	full	probability	that	the	
image contains a fish or part of a fish. The results showed an increas-
ing	proportion	of	correctly	classified	 images	with	 increasing	prob-
ability	that	the	image	contained	a	fish	(Table 1).	As	the	probability	
decreased, the proportion of images including a fish decreased, and 

the clarity of the fish on the images that did contain a fish gradually 
worsened	with	lower	probabilities	(Figures 1–3).

Ten images, where the fish was sharp and in focus, were selected 
to	illustrate	the	type	of	images	that	could	be	used	for	individual	iden-
tification (Figure 4).

From	the	video	files	of	26	July	recorded	in	Mörrumsån,	the	algo-
rithm produced six video files of salmon, three of which are shown 
here (Videos 1–3).

4  |  DISCUSSION

This	 study	 demonstrates	 the	 assembly	 of	 NVR	 and	 IP	 cameras	
for	 recording	 trout	and	salmon	 in	small	 streams.	Additionally,	 it	 il-
lustrates	 how	 to	detect	 trout	 and	 salmon	 in	 the	 video	by	 training	
a deep learning model for image classification and, finally, how to 
produce	video	segments	of	the	fish.	The	key	benefit	of	this	monitor-
ing approach is that physical captures and tagging of the fish are not 
necessary,	thus	avoiding	any	impact	on	fish	welfare.	Moreover,	the	
method	is	relatively	straightforward,	and	NVRs	and	IP	cameras	offer	
a	cost-	efficient	alternative	to	customized	solutions	for	fish	monitor-
ing	provided	by	commercial	companies,	especially	when	scaling	up	
the	monitoring	efforts.	Upscaling	is	facilitated	as	the	NVRs	support	
up	 to	eight	 IP	 cameras,	 and	 the	number	of	 cameras	 connected	 to	
the	NVR	can	be	increased	using	a	PoE	switch.	Because	the	cameras	
are	small,	relatively	inexpensive	and	easy	to	handle,	they	can	be	de-
ployed	in	high	numbers	directly	in	the	stream	in	areas	where	the	fish	
are	believed	to	pass.	This	reduces	the	need	to	make	changes	in	the	
riverbed,	preserving	the	fish	habitat.	Another	benefit	of	this	method	
is that those conducting the monitoring have complete access to all 
video data, the algorithm and the deep learning model. These re-
sources	 are	 typically	 not	 provided	 by	 commercial	 companies	 that	
offer	 proprietary	 software	 and	 licenses.	 Data	 availability	 allows	
the	user	to	further	train	the	model	based	on	their	needs,	leading	to	
improved	monitoring	and	deep	learning	models	(Saleh	et	al.,	2023). 
Hence,	the	methods	described	here	align	with	modern	perspectives	
on	animal	welfare,	habitat	protection	and	the	transparency	of	open	
science.

Recent advances in camera technology have accelerated its ap-
plication in applied ecology (Royle et al., 2018). The data presented 
in	this	study	can	be	utilized	in	various	ways,	such	as	in	capture–re-
capture	and	relative	abundance	models.	Both	types	of	models	rely	
on	individual	identification.	The	main	difference	between	the	two	is	
that	the	former	relies	on	recaptures	to	estimate	a	detection	proba-
bility	that	 is	related	to	the	number	of	captured	individuals	(Kéry	&	
Royle, 2021, introduction chapter). Hence, recaptures transform a 
relative	abundance	into	an	unbiased	population	size,	essentially	pro-
viding	a	detection	correction	to	the	relative	number.	In	studies	of	fe-
line mammal populations, camera traps are commonly employed to 
gather data, relying on the identification of individuals through their 
natural markings (Karanth, 1995). This method of individual identifi-
cation has also found its way into fisheries science, where individual 
pike (Esox lucius)	 can	be	distinguished	based	on	 their	 conspicuous	
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    |  5 of 18KARLSSON

markings	(Karlsson	&	Kari,	2020).	Consequently,	documenting	daily	
camera captures of trout and salmon through videos provides the 
necessary individual encounter data for capture–recapture and rel-
ative	abundance	models.	Providing	estimates	that	are	fundamental	
for the management of these populations.

A	further	application	of	this	type	of	setup	is	the	evaluation	
of	fish	passages.	Dams	for	hydropower	and	water	storage	block	

the migration of anadromous and potamodromous fish such as 
trout and salmon, that is, fish that migrate from freshwater riv-
ers	 to	 the	ocean	or	 large	 lakes	 and	back	 to	 spawn	 (Klemetsen	
et al., 2003). One approach to guiding fish past these dams is 
by	creating	 fish	passages,	 typically	small	 side	streams	 that	cir-
cumvent the dam and connect to the river upstream. However, 
enticing fish to use these passages is challenging as they often 

Prob. is fish July 22 July 23 July 24 July 25 July 26 July 27 Is fish?

0 2215 2451 2360 2290 2443 2211 Not checked

1 474 375 438 509 361 497 Not checked

2 112 28 46 58 46 71 Not checked

3 50 17 23 13 10 25 5/138

4 12 8 12 2 6 22 No fish

5 1 3 1 1 2 16 2/24

6 6 – 1 1 1 9 No fish

7 2 – – 2 1 10 No fish

8 3 – – – – 2 2/5

9 – – – – 1 3 1/4

10 1 – – 1 – 1 No fish

11 – 2 – 1 – 1 No fish

12 – – – – – 1 No fish

13 – – – – – 1 No fish

14 – – – – – 3 No fish

15 1 – – 1 1 2 1/5

16 – – 1 – – 1 No fish

17 2 – – – 1 – 1/3

27 – – – – 1 – Fish

28 – – 1 – – – No fish

34 – – – – – 1 No fish

35 – – – – 1 – Fish

39 – – – – 1 – Fish

64 – – – – 1 – Fish

67 – – – – 2 – Fish

69 – 1 – – – – Fish

75 – – – 1 – – Fish

97 – – – – 1 – Fish

98 – – – – 1 – Fish

99 – – – 1 2 1 Fish

100 1 – – – 6 – Fish

Note:	The	leftmost	column	represents	these	probabilities,	while	the	columns	with	dates	show	the	
frequency	of	images	in	each	probability	category	(the	probabilities	were	multiplied	by	100	and	
rounded	to	the	nearest	whole	number).	The	rightmost	column,	labelled	‘is	fish?’,	indicates	whether	
the images in each category actually contained a fish. If a proportion is stated, it represents the 
number	of	images	with	a	fish	relative	to	the	total	number	of	images.	The	probability	categories	0,	
1	and	2	were	not	checked	as	it	would	be	too	laborious.	To	get	an	idea	of	what	type	of	images,	the	
model can and cannot handle, images from the coloured cell and rows are shown in the figures 
below.	For	3%	probability	during	26	July,	see	Figure 1,	for	8	and	15%	probability,	see	Figure 2, and 
for	67	to	99%	probability,	see	Figure 3.
The grey shaded cell represent the images shown in Figure 1,	the	blue	shaded	cells	represent	
images shown in Figure 2, and orange shaded cells represent the images shown in Figure 3.

TA B L E  1 In	total,	17,296	images,	
or	96 h	of	video	(16 h	*	6 days),	were	
predicted	and	given	a	probability	that	the	
image contained a fish.
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6 of 18  |     KARLSSON

prefer to remain in the mainstream where water flow is high-
est. From a fish's perspective, the mainstream is likely the most 
direct route to their spawning grounds, making them reluc-
tant	 to	enter	smaller	 side	streams,	 such	as	 fish	passages	 (Silva	
et al., 2018).	 Consequently,	 the	 construction	 of	 fish	 passages	
does	not	guarantee	 their	utilization	by	 fish,	necessitating	con-
tinuous	 evaluation	 and	 adaptation	 of	 these	 structures	 (Silva	
et al., 2018).	 The	 presented	 setup	 could	 be	 employed	 for	 fish	
passage evaluation, monitoring the entry and progression of 
fish through the passage, and measuring their passage time—
three essential metrics for evaluating fish passages, as high-
lighted	by	Silva	et	al.	(2018).	This	evaluation	could	be	conducted	

by	 placing	 cameras	 downstream	 of	 a	 fish	 passage	 to	 observe	
whether individuals captured on camera downstream entered 
the	fish	passage	upstream.	Additionally,	cameras	placed	at	 the	
ends	and	along	the	fish	passage	could	be	used	to	estimate	pas-
sage time. By using natural markings and cameras to identify 
the	fish,	spatial	recaptures	can	be	used	to	track	its	movements.	
This is harmless to the fish and aligns with modern views on fish 
welfare	 (Kristiansen	&	Bracke,	2020). This approach stands in 
contrast to conventional methods for fish passage evaluation, 
such as telemetry, which involves capture, sedation and surgery 
to implant transmitters in fish for monitoring their movements 
(Cooke	&	Wagner,	2004;	Silva	et	al.,	2018).

F I G U R E  1 Ten	images	(a–j)	from	26	
July,	each	having	a	3%	probability	that	the	
image contains a fish. In image (e), there 
is a weak silhouette of a sea trout or a 
salmon; in the remaining images, there are 
no fish.
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    |  7 of 18KARLSSON

4.1  |  Optimizing system usage: Practical 
suggestions and limitations

The presented deep learning model is trained to detect salmon and 
trout.	With	 the	model's	 predictions,	 it	 is	 possible	 to	 filter	 out	 im-
ages	where	 the	 fish	 is	 clearly	visible.	These	 images	are	associated	
with video frames and the video itself, which are then used to gener-
ate video segments. These segments are intended to facilitate the 
unambiguous	identification	of	individual	fish	based	on	their	natural	
markings	 through	manual	 scrutiny.	For	 this	process	 to	be	 feasible,	
the	number	of	detected	fish	cannot	be	too	high,	as	 it	would	result	
in	 extensive	manual	 labour.	 For	 reference,	 Karanth	 (1995)	 utilized	

31 camera captures of tigers (Panthera tigris) in Nagarahole National 
Park,	India,	to	unambiguously	identify	individuals.	Similarly,	Karlsson	
and Kari (2020) had 66 camera captures of pike (Esox lucius) from 
a	small	Swedish	 lake	 for	 individual	 identification.	 In	 the	 far	end	of	
the	 spectrum,	 in	 a	 catalogue	of	850	photo-	identified	 right	whales	
(Eubalaena	sp.),	a	single	matching	attempt	may	take	up	to	3 h,	which	
was	considered	about	the	maximum	practically	for	that	researcher	
(Hammond et al., 1990).	Although	3 h	for	a	single	matching	attempt	
likely	far	exceeds	what	can	be	considered	feasible	in	many	research	
projects,	quantities	up	to	around	100	captures	may	represent	a	more	
typically	 manageable	 volume	 for	manual	 identification	 until	 auto-
mated	 processes	 are	 implemented.	 Based	 on	 those	 numbers,	 this	

F I G U R E  2 Five	images	with	an	8%	
probability	that	they	contain	a	fish	
(a–e).	In	panels	(b,	c),	there	is	a	group	of	
cyprinids that the model cannot detect 
as	fish.	In	images	(f–j),	each	have	a	15%	
probability	of	containing	a	fish.	In	image	
(h),	there	is	a	blurry	tail	of	a	salmonid.
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8 of 18  |     KARLSSON

method	renders	it	feasible	to	survey,	for	example,	the	total	popula-
tion of a small stream or the spawning population within a geograph-
ically defined spawning area in a somewhat larger fluvial system.

It is important to clarify that capture–recapture and relative 
abundance	models	do	not	depend	on	capturing	all	individuals	(Kéry	
&	Royle,	2021, introductory chapter). This means that, for example, 
the	inability	to	capture	individuals	during	night-	time	does	not	inher-
ently	pose	a	problem.	However,	factors	such	as	day	length	and	the	
operational	time	of	cameras	may	need	to	be	considered	in	the	model.	
Similarly,	environmental	changes	such	as	water	flow	or	temperature	

can	alter	the	fish's	movement	in	relation	to	the	camera,	thereby	af-
fecting	 capture	 probability,	which	may	 necessitate	 adjustments	 in	
the	model.	Additionally,	changes	in	camera	location,	orientation	and	
the	number	of	cameras	deployed	will	also	impact	capture	probability	
and	may	require	adjustments	in	the	model.

Furthermore,	 achieving	 unambiguous	 identification	 of	 captured	
fish	will	not	always	be	possible,	even	if	the	fish	is	captured	on	camera.	
This	could	be	due	to	various	reasons,	such	as	the	fish	quickly	sprinting	
past	the	camera,	being	too	distant	from	it,	or	presenting	the	opposite	
flank	for	 identification	than	what	 is	 required.	Hence,	 in	 these	cases,	

F I G U R E  3 Ten	images	(a–j)	with	a	67%	to	99%	probability	of	containing	a	fish,	and	each	image	clearly	contains	a	fish	or	parts	of	a	fish.

 20457758, 2024, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ece3.11246 by Sw

edish U
niversity O

f, W
iley O

nline L
ibrary on [30/01/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



    |  9 of 18KARLSSON

and	many	others,	where	the	fish	cannot	be	unequivocally	 identified,	
I	suggest	omitting	these	observations	and	considering	the	fish	as	not	
detected.	Some	of	this	variability	may	be	addressed	by	incorporating	
covariates in the model, such as water flow, which can affect the dura-
tion	and	proximity	of	fish	to	the	camera.	Consequently,	changes	in	the	
detection	probability	can	be	explicitly	accounted	for	during	capture–
recapture	and	relative	abundance	modelling.

Changes	to	the	settings	of	the	NVR	and	algorithms	can	potentially	
influence	capture	probability.	For	example,	video	compression	 tech-
niques	are	known	to	exploit	temporal	redundancy	by	encoding	frames	

differentially	or	by	referencing	neighbouring	frames,	indicating	a	po-
tential	dependence	of	each	frame's	information	on	data	from	adjacent	
frames.	Consequently,	 it	 is	theoretically	plausible	that	recording	at	a	
higher	frame	rate	per	second	could	enhance	the	likelihood	of	acquiring	
high-	quality	images	suitable	for	individual	identification.	However,	the	
precise impact of this effect, along with other factors related to the 
NVR's	configuration	such	as	image	resolution	and	exposure	settings,	
remains unclear. It is necessary to assess whether these factors are 
significant	and	they	should	be	considered	given	the	current	conditions,	
especially	 if	 settings	 are	 changed	 during	 the	 study.	 This	 is	 because	

F I G U R E  4 Images	where	the	fish's	head	is	sharp	and	in	focus:	(a–e)	sea	trout	in	Skeboån;	(f)	salmon;	(g)	sea	trout;	(h)	salmon,	all	in	
Mörrumsån.	Panels	(i,	j)	show	either	salmon,	sea	trout	or	hybrids	of	the	two	(I	cannot	determine	which)	in	Dalälven.	Each	image	show	an	
individual fish.
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10 of 18  |     KARLSSON

the	quality	of	 images	and	the	prevailing	circumstances	when	images	
are	 taken	 are	 key	 to	 the	 successful	 identification	 of	 animals	 based	
on	natural	markings	 (Gunnlaugsson	&	Sigurjonsson,	1990;	Würsig	&	
Jefferson, 1990). Therefore, it is important to have these factors in 
mind	when	configuring	the	NVR	and	analysing	the	data.

Furthermore,	the	time	lapse	between	images	when	splitting	the	
video files of the monitoring data is crucial as it directly impacts de-
tection	 probability.	 In	 the	 provided	 algorithm,	 a	 20-	s	 interval	was	
utilized,	which	 can	be	easily	 adjusted	 if	 necessary.	A	 shorter	 time	
lapse results in more detections, whereas a longer time lapse leads 
to	fewer	detections.	This	aspect	 is	also	 influenced	by	the	duration	
fish spend in front of the camera. For instance, during recordings at 
spawning	sites,	I	observed	fish	that	remained	stationary	for	several	
minutes,	only	to	briefly	leave	and	then	return	to	the	same	location.	
Conversely, during migration in the lower reaches of a river system, 
fish	may	only	briefly	pause	in	front	of	the	camera	before	moving	on.

Reducing	 the	 number	 of	 detections	 may	 be	 advantageous	 if	
detections	 are	 overly	 abundant,	 as	 this	 alleviates	 workload,	 pro-
vided there is sufficient data. However, it is crucial that the thin-
ning process remains consistent throughout the study, or that any 
changes	in	the	time	lapse	between	images	should	be	accounted	for	
as	covariates	in	the	capture–recapture	or	relative	abundance	model.	
Therefore, when thinning the video files, prevailing conditions must 
be	considered.

However, the same strict adherence to thinning does not apply 
when splitting the video files for training data. Here, the primary goal 
is	to	avoid	overly	similar	images	to	increase	dataset	variation.	A	20-	s	
time	lapse	allows	sufficient	time	for	objects	such	as	bubbles,	debris	
and plants on rocks, as well as the fish itself, to change positions in 
the image. This variation reduces the risk of overfitting and artificially 
inflating the model's validation accuracy. Overfitting occurs when 
the model performs well on validation data, which contains similar 
images,	but	fails	to	generalize	to	unseen	data	(Borowiec	et	al.,	2022; 
Shorten	&	Khoshgoftaar,	2019; Ying, 2019).	Moreover,	incorporating	
data	 from	different	 recording	 locations,	 such	as	Skeboån,	Dalälven	
and	Mörrumsån	in	the	present	study,	as	well	as	from	different	cam-
eras within the same stream, is vital in creating dataset variation.

Another	 parameter	 that	 affects	 detection	 probability	 and	 can	
be	 adjusted	 in	 the	 algorithm	 is	 the	 probability	 filter	when	writing	
the	video	segments.	 In	 the	current	study,	 this	was	set	 to	≥50%.	A	
higher	 probability	 will	 result	 in	 a	 greater	 proportion	 of	 videos	 of	
good	 quality	 but	 will	 inevitably	 overlook	 detections	 that	 were	 of	
good	quality	by	chance,	as	the	image	the	deep	learning	model	based	
its	predictions	on	may	not	fully	represent	the	entire	video	sequence.	
Therefore, similar to the thinning of video files, prevailing conditions 
must	 be	 considered	 when	 using	 this	 filter.	 It	 must	 be	 considered	
whether	changes	to	this	setting	should	be	incorporated	into	the	cap-
ture–recapture	or	relative	abundance	model	as	they	will	 introduce	
variation	in	detection	probability.

4.2  |  Suggested statistical analyses and exemptions 
from statistical analyses

A	 significant	 challenge	 in	 estimating	 the	 populations	 of	 migrat-
ing animals arises from the fact that these populations are not 
closed. There is a constant flow of immigration and emigration 
within the study area, thus violating one of the core assumptions 

V I D E O  1 Salmon	swimming	downstream	and	stopping	in	front	
of	the	camera.	Video	segments	are	created	between	400	frames	
(20 s)	before	and	after	the	frame	in	which	the	fish	is	detected	by	the	
deep learning model.

V I D E O  2 This	specific	salmon	was	recorded	four	times	on	July	
26th, it is the same individual as in Video 3.	Video	segments	are	
created	between	400	frames	(20 s)	before	and	after	the	frame	in	
which	the	fish	is	detected	by	the	deep	learning	model.

V I D E O  3 This	specific	salmon	was	recorded	four	times	on	July	
26th, it is the same individual as in Video 2.	Video	segments	are	
created	between	400	frames	(20 s)	before	and	after	the	frame	in	
which	the	fish	is	detected	by	the	deep	learning	model.
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    |  11 of 18KARLSSON

of	 capture–recapture	models,	which	 assumes	 equal	 capture	 prob-
abilities	for	all	 individuals.	One	model	that	can	be	used	to	monitor	
the	population	size	of	migrating	salmon	is	a	three-	part	hierarchical	

model:	a	conditional	multinomial,	followed	by	a	binomial	model,	and	
finally a Poisson model. In short, this model makes use of two cap-
ture locations, one downstream and one upstream, and assumes 

F I G U R E  5 Suggested	data	collection	and	analysis	workflow	based	on	insights	drawn	from	this	study.
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12 of 18  |     KARLSSON

that	individuals	mix	in	between	so	that	the	capture	probability	be-
tween	the	two	locations	is	independent.	This	model	is	described	in	
various	versions	in	Schwarz	and	Dempson	(1994),	Mäntyniemi	and	
Romakkaniemi (2002), and for an application not relating to migrat-
ing	fish	in	Chapter	7	of	Kéry	and	Royle	(2016).

Another	approach	is	to	utilize	the	spawning	period	when	salmon	
and trout are stationary, conducting the capture–recapture study 
on	spawning	grounds	during	the	brief	period	when	the	population	is	
closed.	While	this	allows	the	model	assumptions	to	be	met,	it	does	not	
enable	us	to	estimate	the	entire	population	of	the	fluvial	system.	This	
approach	was	employed	 in	 a	 study	of	Atlantic	 sturgeon	 (Acipenser 
oxyrinchus oxyrinchus) in the Hudson River, as well as in studies of mi-
grating	birds	like	the	willow	warbler	(Phylloscopus trochilus), excluding 
time	periods	when	 fish	 and	bird	populations	were	highly	 transient	
(Kazyak	et	al.,	2020;	Chapter	3	in	Kéry	&	Royle,	2021).

A	 final	 suggestion	 is	 to	 exempt	 statistical	 analyses	 and	 simply	
count	 the	number	of	observed	unique	 individuals	during	 the	study	
period.	This	may	prove	beneficial	 in	small	 streams	where	sea	 trout	
migrate	to	spawn	in	the	autumn.	This	is	because,	unlike	large	fluvial	
systems, spawning migration and spawning in small streams typically 
occur within a short timeframe (Klemetsen et al., 2003). For exam-
ple,	 members	 of	 the	 Recreational	 Anglers	 Association	 in	 Skeboån	
reported that migration and spawning typically conclude within a 
month.	Moreover,	most	individuals	of	the	population	can	likely	be	ob-
served if the stream is small enough and if multiple cameras are used. 
This	 is	 crucial	 as	much	of	 the	monitoring	 is	 conducted	by	 fisheries	
associations that may lack the resources to perform advanced statis-
tical	analyses	and	adhere	to	strict	requirements	on	data	collection.

4.3  |  Future directions

Throughout all stages of the analysis process, Python consistently 
outperformed R in terms of speed, rendering the use of R unnec-
essary for this type of analysis. Given that R cannot generate the 
video segments, which serve as the final output of this workflow, it 
may	be	worthwhile	to	entirely	bypass	 its	usage.	Additionally,	 I	en-
countered difficulties when attempting to load the deep learning 
model trained in R into Python, necessitating the retraining of the 
model	 in	 Python.	While	 this	 posed	 a	minor	 inconvenience,	 as	 the	
R	code	for	training	the	model	can	be	easily	translated	into	Python,	
I	initially	utilized	R	out	of	convenience	and	habit	to	generate	tables	
and	 figures	based	on	model	 predictions	 for	 evaluating	model	 per-
formance. Therefore, while there is some value in having the deep 
learning	model	in	R,	particularly	if	R	and	RStudio	are	the	preferred	
programming language and integrated development environment, it 
is not strictly necessary.

As	additional	features,	the	battery	powering	the	mobile	NVR	can	
be	connected	to	solar	power,	which	can	simultaneously	charge	the	
battery	while	it	 is	 in	use.	This	addition	may	prove	cost-	effective	in	
the	 long	run,	as	 it	reduces	the	need	to	change	batteries	 in	remote	
areas.	Additionally,	both	types	of	NVRs	can	connect	to	a	4G	router,	
allowing	remote	access.	This	remote	access	capability	can	serve	as	

a cost- effective method to monitor that data collection is progress-
ing	as	desired,	without	the	need	to	be	physically	present.	However,	
neither a solar- powered setup nor 4G access were considered in 
the	present	study	due	to	budget	constraints	and	short-	term	needs.	
Nevertheless,	their	potential	benefits	for	future	and	extended	mon-
itoring are compelling.

The success of future monitoring depends on the strategic place-
ment	of	cameras,	as	the	image	quality	and	number	of	camera	cap-
tures	varied	notably	between	locations.	In	Mörrumsån,	for	instance,	
the	cameras	were	positioned	at	the	end	of	a	200 m	stretch	of	rapids	
and	white	water,	resulting	in	images	with	a	white	tone	due	to	air	bub-
bles	that	 limited	visibility.	 In	contrast,	 in	Skeboån,	the	camera	was	
situated	at	the	beginning	of	a	small	rapid	without	any	white	water	
that served as a spawning ground, yielding much clearer images of 
stationary	 fish.	 However,	 in	 Mörrumsån,	 the	 fish	 circulate	 below	
the	rapids	before	starting	to	climb	and	are	hence	easily	captured	on	
camera compared with other areas in this river, introducing a trade- 
off	between	image	quality	and	quantity	when	placing	cameras	in	this	
area. Thus, the placement of cameras emerges as an important fac-
tor for the success of this monitoring approach.

To	further	utilize	the	data,	the	resulting	video	segments	from	the	
model	and	algorithm	presented	here	could	be	split	into	images.	This	
is to train a second model to select images containing at least the 
head	 and	upper	 body	of	 the	 fish	 in	 good	 resolution,	 and	 showing	
either	the	left	or	right	flank	of	the	fish.	Subsequently,	a	third	model	
could	use	these	selected	images	and	be	trained	for	species	classifi-
cation and, finally, to classify individuals. However, training the sug-
gested	models	would	require	the	collection	of	more	data	and	raise	
more	funding	than	what	was	obtained	in	the	present	study.

Based on the lessons learned from this study, a suggested work-
flow	for	data	collection	and	analysis	 is	summarized	 in	a	flow	chart	
(Figure 5).
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APPENDIX A

SETTING UP THE NETWORK VIDEO RECORDER, MOBILE NVR 
AND INTERNET PROTOCOL CAMERAS
The Internet Protocol (IP) cameras and network video record-
ers	 (NVR)	used	 in	this	study	adhere	to	the	Open	Network	Video	
Interface	 Forum	 (ONVIF),	 an	 open	 standard	 for	 IP-	based	 secu-
rity products, allowing products from different manufacturers to 
communicate with each other. This means that similar devices, as 
presented	below,	can	be	used	 instead,	as	 long	as	they	adhere	to	
ONVIF.	Further	considerations	when	building	this	type	of	system	
include	the	storage	capacity	of	the	NVR	in	relation	to	the	number	
of cameras used, and ensuring that the power demand is covered 
for	 both	 the	 NVR	 and	 the	 intended	 number	 of	 cameras,	 when	
using	mobile	equipment.

The	 IP	 cameras	 were	 of	 the	 Linovision	 4 K	 PoE	 IP	 underwa-
ter	 camera	 anti-	corrosion	 type,	 with	 a	 maximum	 depth	 of	 165 ft,	
equipped	with	either	30	or	50 m	cables	(Figure	A1a,b). These water-
proof cameras send and retrieve information and power through a 
network	cable.	The	cameras	were	mounted	on	foundations	made	of	
galvanized	steel	that	had	been	filled	with	cast	iron,	either	5	or	8 kg,	
comprised of modified anchors (Figure A1a).	When	necessary,	 the	
network	cables	were	weighed	down	to	the	river	bottom	by	chains	to	
prevent	drifting	in	the	stream	and	avoid	snagging	debris.
For	 this	 project,	 a	 mobile	 NVR	 (Hikvision	 AE-	MN7083	 series)	

was used, which can connect up to 8 IP cameras via PoE interfaces 
(Figure A1c).	The	NVR	connects	to	a	DC-	12 V	power	source	through	
an aviation plug (Figure A1d).	The	negative	cord	requires	a	10A	flat	
fuse,	and	the	yellow	accessory	(ACC)	wire	should	be	connected	to	
the positive red wire (Figure A1d).	A	male	XT60	plug	can	be	soldered	
to	 the	wire	ends	 for	easier	 connection	 to	 the	 female	XT60	of	 the	
battery	(Figure	A1e).	At	least	one	hard	disk	drive	(HDD)	needs	to	be	
mounted	in	its	casing	and	locked	in	position	for	the	NVR	to	power	
up	and	begin	recording	(Figure	A1f). To activate and configure the 
mobile	NVR,	it	can	be	connected	to	a	computer	via	a	network	cable	
(Figure A1h).
A	LiFePO4	(LFP)	battery	of	12 V	and	100	AH	was	used	to	power	

the	 NVR	 and	 IP	 cameras	 (Figure	 A1i).	 The	 battery	 has	 DC-	12 V	 *	
100AH = 1200	Watt-	hours.	The	manufacturer	informed	that	each	IP	
camera	consumes	7 W,	and	the	mobile	NVR	consumes	30 W.	Hence,	
the	 setup	 should	 last	 for	 about	 24 h	 with	 three	 cameras:	 1200/
(30 + (3	 *	 7)) = 23.6 h.	However,	 during	 the	 study,	 the	 battery	 held	
for	48 h	with	three	cameras.	This	may	be	because	the	NVR	was	set	
to	 record	only	during	daylight,	which	was	about	10 h	a	day	 in	 late	
October	when	the	mobile	NVR	was	used.
The	battery	was	charged	using	an	ISDT®	608 AC	smart	charger	and	

connected	to	the	charger	through	the	XT60	connector	(Figure	A1j). 
The charger was configured as follows: Task—Charge; Chemistry—
LiFe;	Condition—3.6 V;	Cells—4S;	Current—8.0A.	Select	Start,	 then	
confirm	the	perform	unbalancing	task:	LiFe-	4S.	The	battery	charger	
beeps	once	the	charging	is	complete.	For	the	12 V	100AH	LFP	bat-
tery,	it	takes	approximately	12 h	from	empty	to	full.
The	mobile	NVR	and	IP	cameras	were	activated	by	setting	a	pass-

word	in	the	Hikvision®	SADP	software	after	connecting	the	mobile	
NVR	to	a	laptop	with	a	network	cable.	Once	a	password	is	set	for	the	
devices,	 their	network	parameters	can	be	edited	within	 the	SADP	
software (Figure A2a).	The	default	IP	address	of	the	mobile	NVR	is	
192.168.1.64. The devices should share the same network, having IP 
addresses	starting	with	192.168.1.x,	where	x	is	any	number	between	
1	and	254	that	is	not	already	assigned	to	another	device	in	the	net-
work.	The	gateway	of	 the	mobile	NVR	and	cameras	was	set	 to	be	
identical: 192.168.1.1 (Figure A2a).
The	IP	address	of	the	PC	must	be	set	to	be	on	the	same	network	

as	 the	mobile	NVR.	To	set	 the	 IP	address	of	a	PC	using	Windows	
10, follow these steps: Control Panel >	Network	and	Sharing	Centre	
>	Change	Adapter	Settings	> Ethernet >	Internet	Protocol	Version	
4	 (TCP/IPv4).	Here,	the	 IP	address	can	be	set.	For	example,	 in	the	
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present	 study,	 192.168.1.6	was	used,	 the	 subnet	mask	was	 set	 to	
255.255.255.0,	 and	 the	 default	 gateway	 to	 192.168.1.1,	 which	
was	the	same	gateway	as	the	NVR	and	IP	cameras.	Then,	click	OK	
(Figure A2b).	 After	 this	 configuration,	 the	mobile	NVR	 can	 be	 ac-
cessed	via	a	web	browser	by	connecting	the	PC	to	the	mobile	NVR	
using	a	network	cable	(Figure	A1h).

Once	the	PC,	mobile	NVR	and	cameras	are	on	the	same	network,	
the	mobile	NVR	can	be	 configured	by	entering	 its	 IP	 address	 in	 a	
web	browser	(Figure	A2c). To log in, use the username ‘admin’ and 
the	password	previously	set	in	the	SADP	software.	After	logging	in,	
set	the	mobile	NVR's	time	and	date	by	navigating	to:	Configuration	
>	 System	 Settings	>	 Time	 Settings	>	 Sync	 with	 Computer	 Time	

F I G U R E  A 1 Panels	(a,	b)	show	the	
camera and its mounting on a lead 
fundament.	Panel	(c)	displays	the	back	of	
the	mobile	network	video	recorder	(NVR)	
with eight connections for power over 
Ethernet	(PoE),	LAN	and	power.	Panels	
(d, e) showcase the aviation power plug 
and	the	10	A	flat	fuse.	In	(d),	the	yellow	
accessory	wire	has	been	connected	to	
the positive red wire, while in (e), an 
XT60	connector	has	been	soldered	to	
the wire ends for easier connection to 
the	battery.	Panel	(f)	shows	a	1 TB	HDD	
mounted in a casing. In panel (g), the HDD 
casing is in the locked position, and the 
mobile	NVR	is	powered	and	recording.	
Panel (h) essentially illustrates the entire 
setup, where the camera connects to the 
mobile	NVR,	the	mobile	NVR	connects	
to	the	laptop	via	LAN,	and	the	battery	is	
connected	to	the	mobile	NVR.	Panels	(i,	
j)	depict	the	battery	and	XT60	connector,	
with	the	battery	charging	using	the	ISDT®	
608 AC	smart	charger.

 20457758, 2024, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ece3.11246 by Sw

edish U
niversity O

f, W
iley O

nline L
ibrary on [30/01/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



16 of 18  |     KARLSSON

F I G U R E  A 2 Panel	(a)	shows	the	SADP	software	with	two	active	devices:	a	mobile	network	video	recorder	(NVR)	and	an	Internet	Protocol	
(IP)	camera.	These	devices	are	activated	by	setting	a	password.	Panel	(b)	demonstrates	how	to	change	and	set	the	IP	address,	subnet	mask	
and	gateway	on	a	laptop	running	Windows	10.	Panel	(c)	illustrates	the	web	browser	login	process.	Panel	(d)	shows	how	to	sync	the	mobile	
NVR's	system	time	with	the	laptop.	Panel	(e)	demonstrates	how	to	format	the	HDD,	so	it	can	be	used	for	recording.	Panel	(f)	displays	the	
time	window	for	recording;	in	this	case,	the	mobile	NVR	was	set	to	record	between	7 am	and	5 pm	every	day.	Panel	(g)	explains	how	to	get	a	
live	view,	while	panel	(h)	shows	how	to	download	videos	from	the	mobile	NVR.
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(Figure A2d).	 Format	 the	 HDD	 to	 enable	 recording	 by	 going	 to:	
Configuration >	Storage	Management	>	HDD	Management	> Format 
(Figure A2e).	Set	the	recording	schedule	by	going	to:	Configuration	> 
Storage	>	Schedule	Settings	(Figure	A2f).

Once the time is within the scheduled recording window, the de-
vices	will	start	recording.	This	can	be	indicated	by	the	green	light	on	
the	front	of	the	NVR	or	by	clicking	on	‘Playback’	in	the	mobile	NVR's	
web	browser	interface	(Figure	A1g). Note that the live view may not 
work	in	the	version	of	Google	Chrome	used.	However,	you	can	obtain	
a	live	view	from	one	camera	at	a	time	by	navigating	to:	Configuration	
> Image and selecting the IP camera you want to view (Figure A2g).
To	download	videos	from	the	HDD,	go	to	‘Playback’,	choose	the	

IP camera from which you want the videos, and press the download 
button.	You	will	be	prompted	to	set	the	time	window	for	the	files	you	
want to download (Figure A2h).
With	the	default	video	settings	of	the	mobile	NVR	(3840	*	2160	

resolution	and	20	frames	per	second),	2 h	and	52 min	of	video	took	
an	average	of	0.7645547 GB	per	hour	(note:	this	is	based	on	a	small	
sample,	so	variations	may	occur).	The	mobile	NVR	accommodates	2	*	
1 TB	HDD,	allowing	for	2616 h	of	recording	with	one	camera.
The	 stationary	 NVR,	 or	 simply	 NVR	 (model:	 NVR508P8-	Q2),	

draws	power	from	a	standard	wall	socket.	This	NVR	comes	with	its	

own	user	interface	and	can	be	configured	by	connecting	it	to	a	moni-
tor and a mouse (Figure A3a).	Similar	to	the	mobile	NVR,	the	station-
ary	NVR	can	be	detected	using	the	SADP	software	and	configured	
via	a	web	browser,	as	described	for	the	mobile	NVR.	Therefore,	no	
further	description	of	the	NVR's	user	interface	is	provided	here.
On	 the	 back	 (Figure	A3b),	 the	NVR	 can	 connect	 up	 to	 eight	 IP	

cameras,	 interface	with	the	web	browser	through	a	local	area	net-
work	 (LAN),	connect	 to	a	monitor	via	an	HDMI	port,	and	 includes	
a	 USB	 port	 for	 actions	 such	 as	 downloading	 recorded	 videos	 via	
its	user	 interface.	The	NVR508P8-	Q2	can	accommodate	two	8 TB	
HDDs (Figure A3c).	Requiring	48 V DC,	the	NVR508P8-	Q2	needs	a	
100-	240 V	power	outlet,	making	it	less	mobile.	However,	the	device	
can	be	set	up	in	a	tent	or	shed	near	the	stream	if	there	is	a	power	out-
let	available	(Figure	A3d–f).	Thanks	to	the	30	-	or	50-	m-	long	network	
cables,	it	was	usually	easy	to	find	a	suitable	location	for	the	cameras	
(Figure A3g–h).
With	the	default	video	settings	of	 the	NVR	 (3840	*	2160	reso-

lution	and	20	 frames	per	 second),	1 h	of	video	 took	an	average	of	
1.299198 GB	 (based	 on	 a	 16-	h	 average).	 The	mobile	NVR	 accom-
modates	2	*	8 TB	HDD,	allowing	for	12,315 h	of	recording	with	one	
camera.
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F I G U R E  A 3 Panel	(a)	shows	the	
network	video	recorder	(NVR)	connected	
to a monitor, power and a mouse. Panel 
(b)	displays	the	back	of	the	NVR	with	
connections for power over Ethernet 
(PoE),	LAN,	HDMI	and	USB,	among	
others. Panel (c) reveals the inside of 
the	NVR	mounted	with	two	8 TB	HDDs.	
Panels	(d,	e)	depict	the	NVR	in	use	in	a	
tent	(Dalälven)	and	a	shed	(Mörrumsån),	
respectively. Panel (f) shows the tent 
raised close to a power source, with 
grey	network	cables	extending	from	the	
tent down to the cameras in the river 
in panel (g). Panel (h) illustrates grey 
network	cables	hanging	from	a	bridge	in	
Mörrumsån,	connecting	to	cameras	in	the	
river.
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