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Sammanfattning 

Den här rapporten sammanfattar processen av genomförandet av en riktmärkning för bedömning av 

europeisk hummer i Svenska Skagerrak, Kattegatt och Öresund. De olika ingående delarna, 

fångstdata, index och livshistoriedata, som statusbedömningen är avhängig beskrivs 

sammanfattande i rapporten och i detaljerad form i bifogade appendix. Vidare sammanfattar 

rapporten modellstrukturen och de känslighetsanalyser som gjorts för att tillslut generera en 

ensemblemodell för statusbedömningen av hummerbeståndet. Jämfört med tidigare modellverktyg 

är den nuvarande bedömningen mer optimistisk. Den beståndsanalysmodell som presenteras här 

bedöms vara en förbättring jämfört med tidigare modeller. Det är på grund av utvecklingen av själva 

modellverktyget, förbättrat dataunderlag och kunskap om rumslig utbredning och storleksstruktur i 

beståndet. Beståndet av hummer på svenska västkusten bedöms just nu som på hållbara biologiska 

nivåer. Efter en period av för stort fiske och liten biomassa har sentida förvaltningsåtgärder sannolikt 

lyckats begränsa fisket och få beståndets status att förbättras. Under rådande fisketryck kan 

beståndet utvecklas positivt, men hur framtida fisketryck kan se ut är under rådande förvaltning, 

utan en begränsning i totalfångst, omöjligt att veta. 

This report summarizes the process of conducting a benchmark for the assessment of European 

lobster in the Swedish coastal areas of the Skagerrak, Kattegat and Öresund. Catch data, survey 

indices, commercial catch per unit of effort and life history data, on which the assessment is based 

on, are described in summary in the report and in detailed form in the attached appendices. 

Furthermore, the report summarizes the model structure and the sensitivity analyses done to generate 

an ensemble model that can be used to estimate the stock status of the lobster stock and provide 

advice. The current assessment is considered an improvement compared to previous modelling. This 

is due to advances in the modelling tools used, as well as improved data and knowledge on spatial 

distribution and size composition. The lobster stock on the Swedish west coast is currently assessed 

as being around sustainable biological levels. After a period of excessive fishing and low biomass, 

recent management measures have likely succeeded in limiting fishing and improving the status of 

the stock. Under the current fishing pressure, the stock may develop positively, but what future 

fishing pressure may look like under current management, without a limitation in total catch, is not 

possible to predict.  
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1. Benchmark process, overview

This Stock annex is the result of the benchmark process for the European lobster 

(Homarus gammarus) stock in the Swedish coastal areas of the Kattegat, Skagerrak 

and the Sound (ICES subdivisions 20-21 and 23) conducted during 2024. The aim 

of a benchmark is to agree on a way to perform stock assessment by scrutinizing 

data and modelling tools. This is usually performed by presenting and comparing 

data, models and/or management targets. As expert in data collection and stock 

assessment, the Swedish University of Agricultural Sciences, department of 

Aquatic resources (SLU Aqua) led this process. 

A benchmark framework was formulated to provide information on the 

development of data collection, data management, assessment model formulation 

and assessment model evaluation and to decide on a way forward for assessing the 

stock status. To include a wider perspective on stock biology and utilization of 

many different data sources, a broad participation of stakeholders is preferred in a 

benchmark process. Thus, representatives from management bodies, commercial 

fishing fleets, industry and NGOs (e.g., representing recreational fishing) were 

invited to actively participate in the meetings. Also, an international reviewer was 

invited to assist in discussions on biology, assumptions and decisions on how to 

treat included data and model settings.  

Prioritized issues for the assessment were identified during 2022-2023, 

including e.g. data needs, parameters and model settings, all of which needed to be 

scrutinized. During 2023, a benchmark process was supported by the Swedish 

Agency of Marine and Water Management (SWaM), and a meeting was scheduled 

for the first half of 2024. The original plan was to have one meeting in June 2024 

to address all the above aspects and to agree on a model for stock status. However, 

additional time was needed to standardize indices, and the meeting was adjourned 

and resumed in October 2024 to finalize the model selection and basis for stock 

status updates and to provide advice.  

Data analyses were performed during spring 2024. An invitation to the 

international reviewer was sent and accepted during April 2024. Invitations to 

stakeholders were also sent on 22nd May, 4 weeks prior to the planned meeting. The 

initial meeting was started on the 17th of June. During the meeting, all data were 

reviewed, but further data preparations were deemed necessary, and the meeting 

was adjourned for 18th of June. The meeting was reconvened for model review on 
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the 4th of October. More than 15 people from SLU Aqua, SWaM, the County 

administrations of Västra Götaland and Halland (Lst VG and Lst Halland) and the 

Swedish Fishermen Producer Organization (SFPO) attended the benchmark 

process supported also by the scientific reviewer from University of Agder and 

Institute of Marine Research in Norway (UiA/HI). 

The October meeting was provided with a reference model (a starting point for 

model assessment and evaluation) and a set of alternative models, each with a 

different scenario, which were later combined into an ensemble framework for 

assessment purposes. This model framework was adopted and will serve as the 

basis for stock status updates from 2025 and onwards. The full details of the 

assessment and work done to support it are listed in this report. There is also an 

issue list which details any inconsistencies and needs for further work and will be 

managed by SLU Aqua until a next benchmark. 
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2. Background 

2.1 Stock definition 

The European lobster (Homarus gammarus) stock in the Swedish territory of ICES 

subdivisions 20-21 and 23 is defined as the lobster population along the Swedish 

west coast. There is no significant genetic differentiation within the Skagerrak, and 

only weak differentiation within the North Sea (Ellis et al., 2017; Jenkins et al., 

2019). Weak genetic differentiation is assumed also for the Swedish Kattegat and 

the Sound. European lobster is treated as a national stock with Swedish jurisdiction 

over the Swedish territorial waters inside the trawl border. Overall, the assessed 

stock includes the Swedish areas of the Sound, Kattegat and Skagerrak. The Danish 

and Norwegian areas are not considered.  

2.2 Spawning and distribution 

Although European lobster has a large distribution range (Mediterranean to 

Northern Norway), spawning and larval distribution occurs on a rather limited scale 

(Oresland & Ulmestrand, 2013). The pelagic larval stage is limited to only a few 

weeks of drifting and genetic differentiation is weak in the North Sea area (Ellis et 

al., 2017; Jenkins et al., 2019). Dispersal by post larval migration is thought to be 

very limited, and adult lobsters are relatively stationary and occupy small home 

ranges (Moland et al., 2011).  

European lobster has internal fertilization and a brooding time of 9-10 months, 

when females, after excretion, carry the fertilized eggs under the abdomen. Eggs 

hatch into a pelagic larval stage with 4 molts before they settle into a bottom 

dwelling life. Average size at sexual maturity is 78 mm carapace length (L50 of 

females) when the female is around 5-6 years old (Sundelof et al., 2015; 

Ulmestrand, 2003). 
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2.3 Factors influencing lobster population development 

European lobster is a long-lived species, and although there is currently no precise 

method of aging lobsters, a max age of 25+ years is suggested based on tagging 

experiments and anecdotal information suggests that large individuals might be 

older than that (Fairfield et al., 2021). It grows incrementally by molting its 

exoskeleton, a process during which they are very vulnerable to predation. Small 

juvenile lobsters are also likely to be very sensitive to predation by large demersal 

fish species and other crustaceans. Despite this, the European lobster is thought to 

have very few natural enemies once it grows to sexual maturity or larger.  

Natural mortality decreases dramatically with size and is for larger sizes of 

lobsters counteracted by being targeted by the fishery that selects individuals larger 

than the minimum size of landing (MLS). Fishing mortality may be large and is 

influenced by the number of pots in the fishery, size regulations in the fishery, and 

the length of the fishing season.  

2.3.1 Commercial and recreational fisheries 

Lobster fishing has a long history in Sweden (Hasslöf, 1949), with the fishery 

dating back to at least the 17th century when the Dutch developed a fishery with 

rudimentary pots for the export market. Around 1730 the earliest demands on 

regulations were voiced for a summer closure, and in the 1780’s minimum landing 

sizes were suggested. These regulations were not implemented until 1830 and 1879, 

respectively. Since then, several changes to the regulations such as season closures 

and a MLS were made.  

Until 1994 the fishery was mainly a sustenance fishery with unregulated sales. 

Fishers were allowed 40 pots each and another 35 pots for every additional person 

in the boat. In 1994, the lobster fishery was formally separated into a licensed 

commercial fleet, permitted to fish with 50 pots, and a recreational fleet allowed 14 

pots per person. In 2017, the regulation was reformed, and the number of pots were 

limited to 40 for commercial actors and 6 for recreational fishing. 

In 1985, a moratorium on berried females was launched, enforcing the 

immediate return of any sized female with external eggs to the sea. In addition, the 

MLS was changed from total length (TL) to carapace length (CL) (22 cm TL 

corresponding to 80 mm CL). In 1996, escape gaps for the filtering of undersized 

individuals were introduced to each chamber of pots (least diameter 54 mm). Since 

2003, pots have been the only permitted gears for fishing of lobster and each 

chamber of the pot is regulated since 2018 to have two openings of a minimum 

diameter of 60 mm. 

As there is no mandatory catch reporting for the recreational fleet, the total catch 

has never been reliably censused. However, in 2007 and 2019, gear counts and 
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interviews on catch rate were performed. The recreational catches were estimated 

to be 75% and 50% of the total catch in 2007 and 2019, respectively. The 

importance of recreational fishery to the harvest of lobsters and the worry of 

reduced stock status warranted a change in regulations between recreational and 

commercial fishers in 2017.  

The revision of the regulation in 2017 confirmed the previous opening date for 

the fishing season to the first Monday after 20th September (Monday of week 39) 

but set the closing date on the 1st December for the recreational fishers and 1st 

January for commercial fishers. In addition to season length and the restrictions in 

number of pots per fisher, the MLS was increased to 90 mm CL. In a follow up 

addition in 2022, the date of last live keeping (in holding creels or tanks for storing 

live lobsters) was changed, and the use of an anti-ghost-fishing device (rotting 

thread) was regulated. All current regulations are found in (FIFS, 2004) 

2.4 Ecosystem aspects 

2.4.1 Effects of temperature on biological parameters 

Crustacean biology is strongly temperature dependent. European lobsters are no 

exception, and shifts in temperature are thought to affect several aspects of their 

biology (Coleman et al., 2021; Goode et al., 2019; Mazur et al., 2022). Although 

climate related changes in pH and salinity, and the availability of oxygen, may have 

further implications for lobster larvae and adults, recent studies have focused on 

temperature. 

Strong positive effects of temperature on adult growth rates have been 

documented for European lobster (Coleman et al., 2021). Furthermore, time to 

hatching and larval development times were shortened by increased experimental 

temperatures at least up to 22 ℃ (Schmalenbach & Franke, 2010), in turn leading 

to an increased survival through the larval phase by more rapidly growing through 

the most sensitive stages. What effects such decreased mortality and increased 

growth rates will have on a harvested stock is not yet predicted.  

Although shellfish diseases are not highly prevalent in lobster populations and 

temperature effects are uncertain (Rowley et al., 2014), diseases have been 

hypothesized to increase in NTZ although to what extent has not been quantified 

(Davies et al., 2015). Lack of quantified increases in incidence of shellfish diseases 

in NTZ is perhaps due to the higher available genetic variability (Le Bris et al., 

2018) that can be expected in the more abundant populations in NTZ. Effects of 

climate on the biology of European lobster was reviewed by (Sundelöf, 2023), and 

is provided in Appendix I. 
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2.4.2 Effects of lobster on the ecosystem 

Competition between brown crab and lobster is, although only recently documented 

(Perry et al., 2025), often assumed. Recruitment and survival of juvenile lobster 

may well be heavily affected by the density of brown crab and other crustacean 

species. If left unfished however, as they are in NTZs, the density of brown crab is 

found to be markedly lower than in conventionally fished areas (Oresland et al., 

2020). The main reason is assumed to be direct competition (fighting) or 

competition for food with lobster. 

In a large effort to assign the effects of fishing to changes in fish assemblages, 

scientific fishing inside and outside a Marine Protected Area (MPA) was performed 

(Perry et al., 2025). Changes in fish assemblages on small spatial scales were not 

found, however, changes in the abundance of brown crab and lobster were apparent 

between fished and unfished areas. 

In some fisheries with pots, seals are attracted to the smell of bait and if entrances 

are sufficiently big, small individuals may be captured and drowned. Generally, the 

pot fishery is very specific to crustaceans with very small bycatches of fish. 

2.4.3 Predation from birds and mammals 

Studies in NTZs along the Swedish West coast suggest that predation by seals and 

cormorants on lobsters are negligible. This is because despite large populations of 

seals and cormorants, the lobster population in the NTZ have increased in recent 

years (Bergström et al., 2022; Perry et al., 2025). 
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3. Data 

The assessment model for the European lobster stock includes catch data, several 

indices of abundance, length compositions, and life history parameters (e.g. growth 

and mortality). The temporal range of the data included in the assessment model is 

illustrated in Figure 1.  

The data sources for abundance indices were either fisheries dependent (data 

from conventional fishing which depend on variation in fishing pressure due to e.g. 

new regulations) or fishery independent (not affected by other fishing operations or 

by changes in management regulations). Six CPUE (Catch Per Unit of Effort) 

indices exist for five fisheries dependent fleets and one fishery independent fleet 

(the survey Lobserve). 

 

Figure 1. Overview of data on European Lobster stock in ICES subdivisions 20-21 and 23 included 

in the assessment models. Point size scales with the amount of data that is available. 
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3.1 Catch 

3.1.1 Commercial 

Between 1875 and 1956, the Swedish Rural Economic Agricultural Society 

(SREAS) collected data on the number of fishers, number of pots and number and 

weight of lobster catch for each year (also used as official statistics on catch by 

Statistics Sweden).  

Since 1978, catch data has been obtained from the sales slips (wholesale 

receipt) and corrected for by sales on the docks (i.e., “kompletteringstillägg” of 

landings not sold to wholesale customers). The annual registered landings are 

published in early June the following year. This is one of the longest known catch 

series of any marine stock in Europe (Figure 2). 

3.1.2 Recreational 

In Sweden, recreational catch is not formally registered. Despite attempts to 

estimate recreational landings from gear counts and interviews, there is no proper 

census of recreational landings. Instead, catches from the recreational fleet are 

estimated and the change over time is based on expert judgement and previous 

studies that have not covered the entire stock area (Ulmestrand & Loo, 2009). 

Before 1955, all catches from the recreational fishery are assumed to be recorded 

in the data collected by SREAS. During 1960, the non-recording of some catches 

is assumed to have started, relating to catches from non-commercial sources (i.e., 

fish caught for sustenance or recreation). The development of a recreational fleet 

became important at the same time that the recreational/unregistered part of the 

landings dominated the total landings (Ulmestrand & Loo, 2009).   

Since recreational catches are unreported, the input data has been experimentally 

tested with different levels of recreational catch - low, intermediate and high 

(detailed description below). It is formulated to represent recreational catches, but 

the model handles it as a composite of otherwise unregistered catches. Figure 2 

shows registered catches and the assumed additional unregistered catches (defined 

as Recreational_intermediate in the Reference_run).  
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Figure 2. Catch (tonnes) of European lobster stock in ICES subdivisions 20-21 and 23, 1875-2023, 

in commercial and unreported but estimated recreational (intermediate level) fleets. Data used in 

the Ry.  

3.2 Temporal data selection 

Fishing practices tend to change throughout the season. Pots are pulled less 

frequently later in the season, and catches shift in spatial distribution as recreational 

fishers have a shorter season, leaving the entire coastal region for commercial 

fishers from 1st of December.  

Information on soak time is very difficult to extract from the journals. 

However, early in the season pots are pulled a lot more frequently and soak time is 

assumed to have a lesser effect on catch. Catch rates are also assumed to be 

impacted by the capture of harvestable individuals which reduces the number of 

lobsters that are available to the fishery as the season progresses. Catches later in 

the season may also be over-represented by undersized individuals and berried 

females that are repeatedly returned to the sea. In combination, these factors led us 

to assume that for the fisheries dependent indices the first two weeks of the fishery 

provided the most robust estimate of stock size, and as a result, only the first two 

weeks of the respective fishery were used in the model. Hence week 39-40 was 

used for the generic case (used in the SS3 models) and for exploratory purposes 

weeks 39-41 and 39-44 used for perspective (e.g., Appendix V). 
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3.3 CPUE 

 

As recreational catches are not formally registered, efforts have been made to study 

parts of the recreational fleet by voluntary diaries providing CPUE-indices 

(SREAS, VCD_1938, VCD_2017, Lobserve). Catch journals by sectors of 

commercial and other licensed fisheries also provide CPUE indices (Tourist, 

Halland_com). The standardized indices relative to each other are presented in 

Figure 3. 

During the scrutinizing of the data sources and the CPUE-indices, the need for 

further standardization was recognized during the benchmark. Three indices 

(Tourist (Safari), VCD_2017 and Halland_com) with supporting fishing operations 

data (fisher ID, soak information etc.) were updated and differences between 

nominal CPUE and standardized CPUE are shown in Figure 4. Details on 

standardizing are given in the respective Appendices (III, IV, V).  

 

Figure 3. European lobster stock in ICES subdivisions 20-21 and 23. Standardized indices of six 

different fleets that were used in the assessment models. 
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Figure 4. European lobster stock in ICES subdivisions 20-21 and 23. Mean index values, nominal 

(orange) and standardized (blue) for Halland commercial journals, Tourist fishers and VCD_2017. 

Lobserve index is only presented with standardized value. 

3.3.1 Swedish Rural Economic Agricultural Society (SREAS) 

Between 1875 and 1955, the SREAS covered the lobster fishery by census. The 

number of gears and their catch was recorded per village along the Bohuslän coast. 

The data were never recorded by actual number of fishing days, but for each season 

a total number of caught lobsters by the total number of used pots was provided by 

villagers to the controlling agents. Consequently, a catch per unit effort index can 

be calculated as the number of landed lobsters divided by the number of used pots. 

The CPUE was also calculated for each fishing district. Details of standardization 

are described in Sundelöf et al. (2013) and provided in Appendix II. 
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3.3.2 Voluntary catch diaries 1938-2010 (VCD_1938) 

SLU Aqua-staff had access to data from historical diaries from a number of active 

lobster fishers along the Bohuslän coast. Fishermen provided catch and effort data 

from their private fishing operations. Catch per unit effort for each fishing day was 

calculated and provided a standardized index of abundance for 1938-2010. The 

participants were assumed to fish predominantly in one area, their “home waters”, 

with a consistent effort and fishing pattern (e.g. type of pots, number of pulls, etc), 

but with some development of increased efficiency in their catches, a so-called 

“technical creep”. This was included as a linear increase in efficiency of catches 

during 1970-1980 following a study comparing CPUE in old-style and modern pots 

(Sundelof et al., 2013). After the change in gear and license regulations in 1994, 

these fishers were permitted to keep fishing under exemption from the license 

regulations. These data have been analyzed by fishing district and were published 

previously (Sundelof et al., 2013) and are provided in Appendix II. 

3.3.3 Voluntary catch diaries 2017-2023 (VCD_2017) 

VCD_2017 was designed to provide a catch per unit effort index, similar to 

VCD_1938, but randomized for the entire lobster fishing community. To 

implement this in the field during lobster fishing season, randomized surveys of 

lobster pot transects were performed by SLU Aqua. Buoys were counted, and fisher 

contact information was collected at approximately 5% of the buoys (visit to every 

20th buoy). From the collected fisher contact information, 100 were selected to 

cover the entire area of the coast surveyed. The selected fishers were later 

interviewed by phone to obtain information on e.g. fishing experience and fishing 

pattern (number of pots, number of pulls, bait, boat type, etc). The fishers were also 

asked to participate in data collection on their daily lobster catches by filling in a 

catch diary. However, more experienced and avid fishers are more likely to 

participate in the study and submit such catch reports (Thomson, 1991), and they 

are also less likely to drop out from the study. Together, this creates a bias in the 

reported catches. This data is therefore not treated as a random subset of the entire 

fishing community corresponding to an average lobster fisher. Instead, these diaries 

are assumed to provide a catch index not influenced by changes in effort or 

participation rates but dominated by experienced fishers with constant fishing 

habits and therefore comparable effort over time. This produces an index estimate 

relative to the availability of lobsters to the fishery. Data for VCD_2017 covers 

2017-2023 in the benchmark work. Details for VCD_2017 are found in Appendix 

III. 



   

 

 

19 

 

 

3.3.4 Tourist charter operators (Safari in SS3 and Tourist 

elsewhere) 

The Swedish Agency for Water and Marine Management (SWaM) issues special 

permits (and exemptions from the number of gears) for several recreational actors 

that organize lobster fishing-trips along the Swedish west coast, so-called Tourist 

fishing. Those fishermen are liable to record their effort and catch in more detail 

than otherwise necessary. SLU Aqua gets access to data from SWaM, and from this 

daily effort and catch, a mean catch rate of the first two weeks of the fisheries was 

calculated giving a catch per unit effort index. This index includes data from 2014-

2023 and is called ‘Safari’ in all models runs. Further details are provided in 

Appendix IV. 

3.3.5 Journals for Commercial fishers in Halland 

(Halland_com) 

In the County of Halland, the county board issues special permits (and exemptions 

from the number of gears) for several commercial actors. Those fishermen are liable 

to record their effort and catch by fishing day, which is not otherwise necessary by 

this segment of the commercial fleet. Data on landings and returned berried females 

is provided. For some years, a few fishermen have also had exemptions for smaller 

than regulated escape gaps. This made the data more complicated to use. Although 

an attempt was made to provide catch and landing data irrespective of management 

rules, this was not successful. Instead, an index of the number of landed lobsters 

was calculated. This was then combined with data on daily effort to calculate a 

mean landing rate for the first 2 weeks of the fishery (i.e. an index of landing per 

unit effort). Data from 2000 to 2023 were available. Further details are provided in 

Appendix V. 

3.3.6 Lobster survey index (Lobserve)  

The Lobserve index is based on a research survey performed annually in August 

before the ordinary lobster fishing season starts. A set of experienced lobster fishers 

perform a depth stratified catch-measure-release fishery in their specific fishing 

area. Each fisherman deploys six pots and is liable to pull them at 24-hour intervals 

at least four times. The pots are set at three different depth strata (6-10 m, 10-20m 

and >20m), two at each depth. After each pull, the pots are moved to a new set 

position to minimize the probability of recapturing the same lobsters. The index 

provides survey quality data on catch rates and size composition. Details are 

provided in Appendix VI. 
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3.3.7 Missing data 

During the First World War (WWI), the SREAS index has missing values. 

However, the assessment model can handle data blanks/gaps and make use of 

whatever data exists in the time series.  

 

3.4 Sizes 

Substantial effort has been made to get some representative size samples from both 

recreational and commercial fisheries. Some incidental size data exist for very early 

fisheries (1901-1903). However, the documentation of gear selectivity is weak, and 

data thus deemed unreliable. Sampling of sizes from commercial agents has been 

made sporadically, and original data sheets have been digitalized in recent years to 

provide size data for the periods 1979-1982 and 1998-2001. From survey fishing, 

size composition is available for 2017-2023, with a substantial increase in the 

number of samples in 2021 with the use of Lobserve data. Some size composition 

data exist for the Tourist-index for 2016-2021. 

Ideally, more size composition data would help inform the assessment model on 

fishing mortality, age-composition in the stock and recruitment dynamics. 

Discrepancies in size composition between fishery dependent and fishery 

independent data sources are notable. Males are on average larger than females in 

survey data from August but not in size data from fisheries dependent sources later 

in the year. Large males are effectively filtered from the population during the 

fishing season. 

Size composition data from Lobserve is shown in Figure 5 and from all data 

sources in Figure 6. Size composition is collated for each data source. “MPA” size 

composition is from an area protected from fishing and is not included to 

correspond to a conventional fishery but as a basis for length to weight relationships 

and von Bertalanffy growth parameters. All available size data are presented in 

Appendix VII. 
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Figure 5. Size composition of European Lobster stock in ICES subdivisions 20-21 and 23. Data from 

Lobserve projects sampled in August. 
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Figure 6. . Size composition of European lobster stock in ICES subdivisions 20-21 and 23, by data 

source. Historic refers to the period 1901-1903, data not used in the model due to poor 

documentation. 

3.5 Length to Weight conversion  

The length to weight relationship was previously calculated using carapace lengths 

between 50 and 128 mm. This size range was used partly due to the selectivity of 

the gears and the limited period of sampling. In 2021 and 2022, both standard pots 

and fish pots were used to sample, measure and weigh individuals in the size range 

70-172 mm CL. Total weight depends on sex and whether the individual is missing 

one or both claws. Standard length to weight relationships by sex use measured 

individuals with both claws intact.  
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Figure 7. European lobster stock in ICES subdivisions 20-21 and 23. Length (carapace in cm) to 

weight (in kg) relationship for male and female.  

 

The assessment model was provided with a length to weight relationship 

expressed in cm CL and kilograms with the following formula 

 

Formula: Weight ~ a * Sizeb 

 

and with the following parameters (also shown in Figure 7) by each sex: 

 Female Male 

a 0.001165 0.000473 

b 2.799602 3.227385 

3.6 Discard 

Lobster fishing has typically been performed (and since 2003 exclusively) with 

pots. Inspection of all catch is done during harvesting. For most indices and size 

compositions, data correspond to catch per unit effort (CPUE) and not Landing per 

unit effort (LPUE). As all catch has been inspected and is included for the major 
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data components, no separate sampling of discard is warranted. Furthermore, size 

specific selectivity is used in the model to only harvest individuals above MLS.  

3.7 Biological data 

3.7.1 Fisheries independent surveying 

Mark-recapture-based studies have been performed in the MPA Kåvra since 1989. 

After a recess in 2010, a survey restarted again in 2017. Survival, fecundity, growth 

parameters and length to weight relationships were parameterized for modelling 

purposes as in (Moland et al., 2013; Sundelof et al., 2015). A length-based maturity 

ogive was fitted using a logistic function (redrawn in (Sundelof et al., 2015)). 

Survival has been evaluated extensively in (Moland et al., 2013) with mark 

recapture data from 1994-2007. It has recently been revisited with data from 2017-

2023 to verify survival rates, scrutinize the survival of males and females in 

conventionally fished areas, and to evaluate the effects of a moratorium on the 

capture of berried females (see Appendix VIII). A von Bertalanffy growth rate (vB) 

was estimated for each sex (Sundelof et al., 2015), showing typical differences in 

male and female growth rates (Table 3). Females grow slower than males, 

particularly after reaching sexual maturity as they start investing in reproduction 

(L50 female; 78 mm CL in size). 

3.7.2 Mortality 

Sex- and size-dependent mortality rates were estimated from an extensive mark-

recapture data set (Moland et al., 2013; Sundelof et al., 2015). Using additional data 

between 2017 and 2023 did not result in a significantly different sex dependent 

mortality rate (Appendix VIII). Thus, mortality values from (Moland et al., 2013) 

were used for the assessment model. See Appendix VIII. 

3.7.3 Spawning stock biomass 

No independent data available. 

3.7.4 Recruitment 

No independent data available. 
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4. Assessment model 

The assessment of European Lobster stock in ICES subdivisions 20-21 and 23 was 

conducted using the Stock Synthesis (SS) model (Methot & Wetzel, 2013; Methot 

et al., 2024). Stock Synthesis is programmed in the ADMB C++ software and 

searches for the set of parameter values that maximizes the goodness-of-fit, then 

calculates the variance of these parameters using inverse Hessian and MCMC 

methods. The assessment was conducted using the 3.30.22 version of the Stock 

Synthesis software under the Windows platform. For lobster in 3a, the most feasible 

structure was a two-sex, length-based model with a time step of one year. A range 

of plausible scenarios (unreported landings, steepness in stock-recruitment 

relationships and time varying selectivity, Table 1) were explored using an 

ensemble modelling approach, which better encapsulates the variability and 

uncertainty exploring contrasting but plausible ranges of parameter values over 

choosing a single set of fixed values (Dietterich, 2000; Knutti et al., 2010).  

The fitting of the model was satisfactory, with the aggregated length 

compositions well reconstructed. The model generally showed decent retrospective 

patterns, weaker predictive skill, but with diagnostic results within the accepted 

limits used by the ICES framework for international stock assessment models. For 

an overview of model diagnostics results, see section ‘Model diagnostics’ below. 

For full details of the evaluation, generality and robustness of the assessment model 

and the ensemble approach, see the appendices: 

Appendix X - Reference model - justifying the set up and structuring of the 

lobster model in the framework Stock Synthesis. 

Appendix XI – Diagnostics - comparing output and diagnostics of several 

alternative models illustrating the dimensions of uncertainty. 
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4.1 General model description 

A Reference model was formulated based on the best available knowledge of the 

lobster fishery and its biology. It is described in detail in Appendix X. Such a 

reference model should be considered the model of choice until another model 

outcompetes it based on model performance diagnostics. It also provides a metric 

stick against which other model formulations can be compared to.  

Several models were formulated to better represent our uncertainty in parameter 

estimates or unavailable data. This is referred to as considering multiple dimensions 

of uncertainty. In this case, we were interested in investigating the effect of 

unreported catch and the steepness of the stock-recruitment relationship on the 

fitting and performance of the model.  

In particular, we expected the model to react to changes in unreported catch 

levels and the steepness of the stock recruitment relationship. The model was 

provided with a long timeseries of catch data within which the most recent part of 

the time series is underreported largely due to recreational fisheries that are not 

reported. The potential effect of these underreported catches needed to be tested to 

understand the models behavior and how they impact estimates of stock status. 

Steepness, the sensitivity of a stock recruitment function to reductions in biomass, 

is known to be a parameter that is difficult to parameterize and can have large 

effects on model output. Thus, steepness was also included in the dimensions of 

uncertainty. 

We did not explore the full grid of uncertainty combinations as some 

combinations of parameter values might not make ecological sense. Instead, from 

the reference run we either modified the catch (low -25%, or high + 25%) or the 

steepness (0.65, 0.90) to investigate directional changes of behavior in model output 

(run 1-4) and to illustrate variability caused by the uncertainty. As supporting tests, 

we also tested for time varying selectivity (from 2018) following changes in 

regulations in 2017 (run 5). Unreported catches are believed to be underestimated, 

thus most likely being larger than those provided in the reference run. The 

benchmark group therefore agreed to test the combined effect of higher catches, 

and low steepness (run 6). 

An extra set of models were also tested within SS3 (Table 2) as an add-on to the 

dimensions of uncertainty. This set of models did not add quantitatively different 

trends and were not used in the uncertainty grid of the ensemble model but is 

reported in the Diagnostics section. 
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Table 1.  Dimensions of uncertainty. Model configurations to explore effects of parameter settings. 

Model name 
Description 

Ecological/biological 
relevance 

Reference_run Average catches, steepness 0.80 
Assumed reference run 
formulated from previous 
experience 

Run1 Reference run, low catches - 25% 
Assumed reduced level of 
unreported catches, 
reduced productivity 

Run2 Reference run, high catches + 25% 
Assumed elevated level of 
unreported catches, 
increased productivity 

Run3 Reference run, low steepness 0.65 
Recruitment sensitive to 
overfishing 

Run4 Reference run, high steepness 0.90 
Recruitment insensitive to 
overfishing 

Run5 
Reference run, time varying 
selectivity 

Selectivity of the 
commercial fleet since 
2018, using time-blocks to 
separate selectivity 
patterns 

Run6 Run 2 but with low steepness 

Run to inform on a model 
that would be sensitive to 
overfishing and experience 
elevated harvest 

 

 

Table 2. Set of additional standard model configurations suggested by SS3 to be run for diagnostic 

purposes. Reference_run model set up was used for modifications 

Model name 
Description 

Ecological/biological 
relevance 

sigmaR06 
Variability around stock recruitment 
relationship set to 0.6. Instead of 0.5 

Model more flexible to 
deviations from average 
recruitment 

High catches 
Assumed elevated level of 
unreported catches 

Increased catch must be 
matched by increased 
recruitment or growth 
and survival to mitigate 
an increase in 
productivity of the stock 

Recdev2 

The deviations do not have an 
explicit constraint to sum to zero, 
although they still should end up 
having close to a zero-sum.  Option 
(2) instead of option (1). 

Recruitment deviations 
allow for larger 
fluctuations and may 
result in a more positive 
intrinsic growth rate  
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TVsel 

Time-varying selectivity of the 
commercial and recreational fleets, 
estimated within the model for each 
year 

Selectivity fitted by year. 
Making the model more 
influenced by size 
composition. 

M-estimated 
Natural mortality estimated within 
the model 

Tagging work not 
included as an 
independent estimation 
of mortality. Test of how 
the tagging data 
performed for estimating 
M 

ExtraSd_estimated  

Additional standard error is 
estimated within the model for 
survey indices 

Model more influenced 
by other factors than 
indices (catch and life-
history parameters) 

4.2 Model settings  

Full model formulation is provided in Appendix X. Here follows a summary. 

The benchmark model is a one-area yearly model where the population is 

comprised of 25+ age-classes with two sexes (males and females are considered as 

separated). The model is a length-based model where the numbers at length in the 

fisheries and survey data are converted into ages using the von Bertalanffy growth 

function. The population was modelled as sex-structured with sex-specific 

parameterization for somatic growth and M-at-age. Stock fecundity was assumed 

to be proportional to female spawning stock biomass. The model starts in 1875 and 

includes 8 fleets: 1 commercial fisheries, 1 recreational fishery and 6 surveys. LFDs 

are available for 2 of the fleets. 

4.2.1 Key settings 

• Maximum age in the population set to 25 years (population plus group) 

• Growth parameters separated for females and males using the von 

Bertalanffy function 

• Fixed CV young and old individuals at 0.15 and 0.10 respectively 

• Fixed age varying, time unvarying M for females and males separately 

• Estimated selectivity for the commercial fleet and VCD_2017 survey 

• Early recruitment era starts in 1875 

• Extra standard deviation was assumed for several surveys 
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4.2.2 Model specifications 

• For the reference model, the sex specific growth is fixed for both sexes 

using Von Bertalanffy model. LatAmin and LatAmax were specified as 0.5 

and 25 years, respectively. The CVs for LatAmin were set to 0.15 and for 

LatAmax to 0.1. 

• Female maturity was assumed to have the form of a logistic ogive with 

a length at 50% maturity (Lm50) being attained 7.8 cm and a slope of -

0.971 cm (Figure 7). Lm50 corresponds approximately to a female of 

age-5. 

• Sex-specific natural mortality at age (Ma) was set for age 0, 1, 4, 5, 10 

and 20 and were based on tagging carried out in the Kåvra marine 

reserve 

• Nominal spawning and settling time were set to 1st January. The 

expected mean recruitment was assumed to follow a Ricker stock 

recruitment relationship. For the base-case a steepness of h = 0.8 was 

assumed. 

• Recruitment deviations were estimated for 2010-2017 as main 

recruitment deviations and for the preceding years 1875-2009 as early 

recruitment deviations. Recruitment deviations were assumed to have a 

penalty of 0.5 on the standard deviation (sigmaR). 

• All fleets were assumed to have a double-normal (dome-shaped) 

selectivity (option 24). 

• A time-varying selectivity was enabled for the commercial fleet (Figure 

9). 

• Fishing mortality was modeled using a fleet-specific hybrid F method 

(Option 4), which is consistent with best practice. Option five was 

selected for the fishing mortality (F) report basis; this option corresponds 

to the simple unweighted average of the F of the age classes chosen to 

represent the Fbar (ages 8–13). 

 

Table 3 lists all inserted parameters. 
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Table 3. Life-history parameters as input into SS3. Negative phase indicates that these parameters 

are fixed and thus not estimated within the model. Min, Max and Bounds is SS3-language used in 

the estimation process when active. 

Label Value Phase Min Max Bounds 

NatM_break_1_Fem_GP_1 1.11 -3 0.15 3 (0.15, 3) 

NatM_break_2_Fem_GP_1 0.747 -3 0.15 1.4 (0.15, 1.4) 

NatM_break_3_Fem_GP_1 0.356 -3 0.15 0.4 (0.15, 0.4) 

NatM_break_4_Fem_GP_1 0.343 -3 0.15 0.4 (0.15, 0.4) 

NatM_break_5_Fem_GP_1 0.305 -3 0.15 0.4 (0.15, 0.4) 

NatM_break_6_Fem_GP_1 0.247 -3 0.15 0.4 (0.15, 0.4) 

L_at_Amin_Fem_GP_1 1.7 -3 1 15 (1, 15) 

L_at_Amax_Fem_GP_1 15.2 -3 10 20 (10, 20) 

VonBert_K_Fem_GP_1 0.089 -3 0.05 0.22 (0.05, 0.22) 

CV_young_Fem_GP_1 0.15 -3 0.05 0.45 (0.05, 0.45) 

CV_old_Fem_GP_1 0.1 -3 0.03 0.45 (0.03, 0.45) 

Wtlen_1_Fem_GP_1 0.00116 -99 -3 3 (-3, 3) 

Wtlen_2_Fem_GP_1 2.8 -99 -3 4 (-3, 4) 

Mat50%_Fem_GP_1 7.8 -3 5 20 (5, 20) 

Mat_slope_Fem_GP_1 -0.97 -99 -1 3 (-1, 3) 

Eggs/kg_inter_Fem_GP_1 1 -99 -3 3 (-3, 3) 

Eggs/kg_slope_wt_Fem_GP_1 0 -99 -3 3 (-3, 3) 

NatM_break_1_Mal_GP_1 1.11 -3 0 3 (0, 3) 

NatM_break_2_Mal_GP_1 0.747 -3 0 1.5 (0, 1.5) 

NatM_break_3_Mal_GP_1 0.39 -3 0 0.5 (0, 0.5) 

NatM_break_4_Mal_GP_1 0.363 -3 0 0.5 (0, 0.5) 

NatM_break_5_Mal_GP_1 0.286 -3 0 0.5 (0, 0.5) 

NatM_break_6_Mal_GP_1 0.239 -3 0 0.5 (0, 0.5) 

L_at_Amin_Mal_GP_1 1.7 -3 1 15 (1, 15) 

L_at_Amax_Mal_GP_1 17.3 -3 10 20 (10, 20) 

VonBert_K_Mal_GP_1 0.139 -3 0.08 0.25 (0.08, 0.25) 

CV_young_Mal_GP_1 0.15 -3 0.05 0.5 (0.05, 0.5) 

CV_old_Mal_GP_1 0.1 -3 0.03 0.5 (0.03, 0.5) 

Wtlen_1_Mal_GP_1 5.00E-04 -99 3.00E-04 0.02 (3e-04, 0.02) 

Wtlen_2_Mal_GP_1 3.15 -99 2 4 (2, 4) 

CohortGrowDev 1 -1 0.1 10 (0.1, 10) 

FracFemale_GP_1 0.5 -99 1.00E-05 0.99999 (1e-05, 1) 

SR_Ricker_beta 0.8 -2 0.2 1 (0.2, 1) 

SR_sigmaR 0.5 -2 0 5 (0, 5) 

SR_regime 0 -2 -5 5 (-5, 5) 

SR_autocorr 0 -99 0 0 (0, 0) 

 

The formulated model has 18 parameters to be estimated. Table 4 shows initial 

values, sequence of estimation, range of values and estimates for those 18 
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parameters as they were estimated in Run2. Run2 will be presented below as an 

example for model fitting.  
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Table 4.  European Lobster stock in ICES subdivisions 20-21 and 23. Parameters fitted by the model with values for Run2 as example. Fitted value, in which phase of 

the model parameter estimation is done, range of value of estimates, parameter initial value and status of estimation process et cetera. 18 parameters were estimated, 

all models converged, and gradients were acceptable. 
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SR_LN(R0) 11.11 1 8 15 12.03 OK 0.10 -1.78E-05 No_prior NA NA NA OK 

Q_extraSD_VCD_1938(6) 0.05 4 0 1 0.07 OK 0.02 1.90E-05 No_prior NA NA NA OK 

Size_DblN_peak_Commercial_official(1) 8.65 5 7.4 15 8.65 OK 0.03 -2.72E-08 No_prior NA NA NA OK 

Size_DblN_top_logit_Commercial_official(1) -4.37 6 -5 3 -4.41 OK 1.24 5.88E-07 No_prior NA NA NA OK 

Size_DblN_ascend_se_Commercial_official(1) -4.50 6 -12 3 -4.50 OK 0.26 -7.20E-06 No_prior NA NA NA OK 

Size_DblN_descend_se_Commercial_official(1) 2.05 6 -5 12 2.05 OK 0.11 1.20E-05 No_prior NA NA NA OK 

SzSel_MaleatDogleg_Commercial_official(1) -0.23 6 -10 3 -0.27 OK 0.09 -2.74E-06 No_prior NA NA NA OK 

SzSel_MaleatMaxage_Commercial_official(1) -2.53 6 -15 10 -2.45 OK 0.60 -2.53E-05 No_prior NA NA NA OK 

Size_DblN_peak_VCD_2017(5) 8.29 5 7.4 15 8.31 OK 0.05 7.69E-06 No_prior NA NA NA OK 

Size_DblN_ascend_se_VCD_2017(5) -2.00 6 -5 12 -1.96 OK 0.14 -4.62E-06 No_prior NA NA NA OK 

Size_DblN_descend_se_VCD_2017(5) 1.90 6 -13 16 1.97 OK 0.15 2.44E-06 No_prior NA NA NA OK 

SzSel_MaleatDogleg_VCD_2017(5) -0.44 6 -10 3 -0.49 OK 0.15 2.03E-06 No_prior NA NA NA OK 

SzSel_MaleatMaxage_VCD_2017(5) -0.87 6 -15 10 -1.25 OK 0.92 -3.36E-06 No_prior NA NA NA OK 

ln(DM_theta)_Len_P1 -1.52 7 -5 5 -1.54 OK 0.09 -5.48E-07 Normal 0 2 0 OK 

ln(DM_theta)_Len_P2 -0.58 7 -5 5 -0.59 OK 0.14 5.33E-08 Normal 0 2 0 OK 

Size_DblN_peak_Commercial_official(1)_BLK1repl_1875 7.96 5 6 15 7.96 OK 0.01 1.49E-05 No_prior NA NA NA OK 

Size_DblN_peak_Commercial_official(1)_BLK1repl_1985 8.21 5 6 15 8.21 OK 0.01 4.97E-06 No_prior NA NA NA OK 

Size_DblN_peak_Commercial_official(1)_BLK1repl_2017 8.23 5 6 15 8.23 OK 0.02 -4.33E-07 No_prior NA NA NA OK 
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4.3 Model diagnostics  

Full diagnostics are provided in Appendix XI. 

 

4.3.1 Model fit 

Selectivity and catchability are both estimated in the model (Table 3) and the model 

fits to size compositions are crucial to understand the quality of the model fit. Sizes 

compositions fit well, and the Pearson residuals by sex do not show any apparent 

trend (Figure 8). 

  

Figure 8. European Lobster stock in ICES subdivisions 20-21 and 23. Residuals of the size 

compositions by sex in Run2, which is used here for illustration. 

 

  



   

 

34 

 

The trajectories estimated by all models showed similar trends with some 

quantitative differences (Figure 9). The largest differences were displayed in recent 

years in terms of F, which is driven by assumptions on the levels of unreported 

catch. Inflated catches inform the model of an assumed larger productivity, and the 

model responds with increased recruitment deviations, decreased SSB and 

increased F in the later years to compensate. 

Inflated catches in the later years are seen by the model as a productivity change 

historically, through a complex integration between relative SSB and relative F. 

The model does not have a lot of information on historical productivity and has to 

compensate for by increasing relative SSB and with a decreased relative F. 

 

 

Figure 9. European Lobster stock in ICES subdivisions 20-21 and 23. Trajectories of all models as 

dimensions of uncertainty. 

 

4.3.2 Retrospective analysis 

Retrospective analyses were performed showing acceptable results (Figure 10). 

This is based on ICES standards for which values of Mohn's rho higher than 0.20 

or lower than -0.15 for longer-lived species (upper and lower bounds of the 90% 

simulation intervals for the flatfish base case) indicate a cause for concern and the 

presence of a retrospective pattern. However, Mohn's rho values within the 

proposed range should not be taken as confirmation that a given assessment does 

not present a retrospective pattern, and the choice of a 90% interval means that a 

"false positive" will occur 10% of the time. In both cases, model misspecification 
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would be correctly detected more than half the time. SSB appears to have been 

consistently underestimated. A substantial part of the lobster fishery catches is not 

documented (reported) hence an improved documentation of unreported fishing 

may provide a better basis for the model to analyze biomass trends.  

 

Figure 10. European Lobster stock in ICES subdivisions 20-21 and 23. Retrospective analysis of 

Run 2. 

4.3.3 Predictive analysis 

Mean Absolute Scaled Error (MASE-) indices showed that the model is not able to 

accurately predict the indices (MASE > 1, Figure 11). This is most likely due to a 

conflict in indices and catch trends between North and Southern areas of the stock 

distribution, which is known for European Lobster stock in ICES subdivisions 20-

21 and 23 and because some of the time series are short. Such conflicts are not rare 

in stock assessment work but may be difficult to resolve. A more reliable sampling 

of landings as well as the introduction of an area specific model could potentially 

disentangle this conflict and perhaps achieve a better predictive power for the 

model. However, we would need to distinguish the landings data on an appropriate 

spatial level.  
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Figure 11. European Lobster stock in ICES subdivisions 20-21 and 23. Hindcast cross-validations 

for the survey indices of the Reference_run (top) and Run1 to Run6 (bottom). 
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4.4 Alternative models tested 

The set of additional models (see Table 2 for details) that were tested as supporting 

sensitivity runs did not add any qualitative trends that differed from what was 

already captured by the set of dimensions of uncertainty (Figure 12). Some aspects 

were not dealt with in the dimensions of uncertainty (e.g., fitting of natural 

mortality, M). However, this did not introduce additional trends in the trajectories, 

and no further models were suggested by the benchmark meeting. 
 

 

Figure 12. European Lobster stock in ICES subdivisions 20-21 and 23. Trajectory of alternative 

models fitted as supporting sensitivity analysis.  

 

Diagnostics could not identify one best model, the differences in diagnostics 

between models are very small. Each model may capture the relevant behavior of 

the data and help inform us on the development of the stock. Limiting the modelling 

work to selecting only one model may lead to an underestimation of the total 

variability in data and model fits. Instead, by using an ensemble model framework 

it is possible to incorporate all model output weighted by the diagnostic output 

(Table 5).  
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4.4.1 Model selection 

It is good practice that an objective methodology for selecting, pruning and 

weighting hypotheses is pre-agreed, to overcome artifacts and biases introduced by 

a ”cherry-picking” approach (Pechlivanidis et al., 2018). This is particularly 

important since divergent views and opinions mean that uncertainties can be used 

to support stakeholder positions and to strengthen or weaken management measures 

(Fromentin et al., 2014). 

Stock assessment models are deeply scrutinized for model misspecification 

during their development within benchmark workshops. Traditionally in ICES, 

diagnostics have been based on retrospective and visual analysis of the residuals. 

However, recent papers by (Carvalho et al., 2021) showed that when several 

diagnostic tests are considered together, the power to detect model misspecification 

improves without a substantial increase in the probability of incorrectly rejecting a 

correctly specified model (Carvalho et al., 2017; Carvalho et al., 2021). 

Consequently, several available diagnostics should be applied routinely during 

benchmarks. For example, residual analyses were easily the best detector of 

misspecification in the observation model, while the retrospective analysis had low 

rates of detection of misspecified models (Carvalho et al., 2017; Carvalho et al., 

2021), although retrospective analysis is effective in detecting un-modelled 

temporal variation (Hurtado-Ferro et al., 2015).  

4.4.2 Model diagnostics 

The different plausible model configurations to be used in the ensemble were 

compared using model diagnostics (Carvalho et al., 2017; Carvalho et al., 2021; 

Kell et al., 2021; Merino et al., 2022). The key model diagnostics used were 

convergency (which includes checking of parameters at the bounds, final gradient 

and inversion of the Hessian matrix for uncertainty estimation), runs test and 

RMSE, retrospective analysis, and hindcasting cross-validation (Table 3). 

Estimates and trends in SSB, F, and R were used at the last step and only as a 

plausibility check. 

Convergence 

The first step for checking model convergence is to verify if parameters are 

estimated at a bound, which can suggest problems with data or the assumed model 

structure. The second is checking that the final gradient of the model is relatively 

small (e.g., ≤ 1.00E-04 or smaller). The third is to determine whether the Hessian 

(i.e., the matrix of second derivatives of the log-likelihood concerning the 

parameters, from which the asymptotic standard error of the parameter estimates is 

derived) is positive definite (Carvalho et al., 2021). Other convergence diagnostics 

include (i) examining the correlation matrix for highly correlated (e.g., > 0.95) 
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parameter pairs; and (ii) examining parameters for excessively high variance as an 

indication that they do not influence the fit to the data (Carvalho et al., 2021). 

Residuals test 

A non-random pattern of residuals may indicate that some heteroscedasticity is 

present, or there is some leftover serial correlation (serial correlation in 

sampling/observation error or model misspecification). Several well-known 

nonparametric tests for randomness in a time-series include: the runs test, the sign 

test, the runs up and down test, the Mann-Kendall test, and Bartel’s rank test 

(Gibbons & Chakraborti, 1992). Standardized residuals are commonly used, 

although recent analysis showed that one-step-ahead (OSA) should be used instead 

in stock assessment model diagnostics (Trijoulet et al., 2023). Here we used the 

runs test to evaluate whether residuals of the surveys, and the length frequency 

distributions, were normally distributed and/or displayed any temporal trends. The 

runs test was chosen as this test has recently been used to diagnose fits to indices 

and other data components in other assessment models (e.g., (Carvalho et al., 2021; 

FAO-GFCM, 2021; Winker et al., 2018).  

The RMSE runs test (see (Carvalho et al., 2021) for details) could indicate the 

presence of a random pattern in the length frequency distributions and in the survey 

indices. The RMSE plot is frequently used as a tool for identifying trends in 

residuals, and if the standard deviation is small on a given year this means the fleets 

included in the model agree, even if not fitting well, which is a useful diagnostic. 

Its purpose is to visualize multiple residuals at once, pick up on periods of 

substantial data conflicts and systematic departures in median residuals (loess 

smoothers). The fit is considered satisfactory if no residuals are larger than 1 and 

the RMSE is below 30%. 

Retrospective analyses 

Retrospective analysis is a diagnostic approach to evaluate the reliability of 

parameter and reference point estimates and to reveal systematic bias in the model 

estimation. It involves fitting a stock assessment model to the full dataset. The same 

model is then fitted to truncated datasets where the data for the most recent years 

are sequentially removed. The retrospective analysis was conducted for the last 5 

years of the assessment time horizon to evaluate whether there were any strong 

changes in model results. Given that the variability of Mohn's rho index depends 

on life history, and that the statistic appears insensitive to F, (Hurtado-Ferro et al., 

2015) proposed the following rule of thumb when determining whether a 

retrospective pattern should be addressed explicitly. Values of Mohn's rho index 

higher than 0.20 or lower than -0.15 for long-lived species (upper and lower bounds 

of the 90% simulation intervals for the flatfish base case), or higher than 0.30 or 

lower than -0.22 for short-lived species (upper and lower bounds of the 90% 
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simulation intervals for the sardine base case) should be cause for concern and taken 

as indicators of retrospective patterns.  

Hindcasting 

The provision of fisheries management advice requires the assessment of stock 

status relative to reference points, the prediction of the response of stock to 

management, and checking that predictions are consistent with reality. A major 

uncertainty in stock assessment models is the difference between model estimates 

and reality. To evaluate this uncertainty, it is common for several scenarios to be 

considered, whereby scenarios correspond to alternative model structures and/or 

dataset choices (Hilborn, 2016). It is difficult, however, to empirically validate 

model predictions, as fish stocks can rarely be observed and counted. Various 

criteria are available for estimating prediction skill (see (Hyndman & Koehler, 

2006). One commonly used measure is a root-mean-square error (RMSE). RMSE, 

however, is an inappropriate and misinterpreted measure of average error (Willmott 

and Matsuura, 2005). On the other hand, mean absolute error (MAE) is a more 

natural measure of average error, and unlike RMSE is unambiguous. Scaling the 

average errors using the Mean Absolute Scaled Error (MASE) allows forecast 

accuracy to be compared across a series at different scales. MASE values greater 

than one indicates that in-sample one-step forecasts from the naïve method perform 

better than the forecast values under consideration. MASE also penalizes positive 

and negative errors and errors in large forecasts and small forecasts equally.  

(Carvalho et al., 2021; Kell et al., 2016; Kell et al., 2021) showed that 

hindcasting can be used to evaluate the model prediction skill of the CPUE time 

series. When conducting hindcasting, a model is fitted to the first part of a time 

series and then projected over the period omitted in the original fit. Prediction skill 

can then be evaluated by comparing the predictions from the projection with the 

observations using, for example, the MASE indicator (Hyndman & 

Athanasopoulos, 2013). If a model is used for prediction, the specific tool used for 

model selection is less important than the approach used to validate predictions. 

Quantifying predictive skills using independent data in ecology is therefore 

essential (Tredennick et al., 2021).   

4.4.3 Model weights 

Table 5 summarizes the model diagnostics that were used to evaluate the reference 

and candidates’ alternative model configurations that were used in the ensemble. 

The table is an attempt to sum up a multidimensional space and thus it needs to be 

seen as a guidance more than as a definitive result. All models invert the hessian 

matrix and have a good to moderate convergence. Most of the models did not pass 

the runs test (Table 5). The RMSE is below 30% for all models. However, most of 

the MASE-tests fail. 
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The estimated Hurtado-Ferro et al. (2015) variant of the Mohn´s rho (of SSB) 

indices were inside the bounds of recommended values for long-lived species for 

model Reference_run and for Run1 (however not for the forecast), Run3 and Run5. 

For F Mohn´s rho was acceptable for all models. 

Table 5. European Lobster stock in ICES subdivisions 20-21 and 23. Table of model diagnostics 

and weights 

Run R
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n
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n
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R
u

n
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Convergence 9.57E-05 5.51E+00 9.25E-05 8.28E+00 6.21E-05 1.46E+01 1.08E+01 

Total_LL 2142.56 2142.58 2143.11 2136.98 2146.47 2116.82 2138.53 

N_Params 170 170 170 170 170 178 170 

Runs_test_cpue1 Failed Failed Failed Failed Failed Failed Failed 

Runs_test_cpue2 Passed Passed Passed Passed Passed Passed Passed 

Runs_test_cpue3 Failed Failed Failed Failed Failed Failed Failed 

Runs_test_cpue4 Failed Failed Failed Passed Failed Failed Passed 

Runs_test_cpue5 Failed Failed Failed Failed Failed Failed Failed 

Runs_test_len1 Failed Failed Failed Failed Failed Failed Failed 

Runs_test_len2 Passed Passed Passed Passed Passed Passed Passed 

RMSE_Perc 19.7 19.6 19.9 19.9 19.8 19.1 20.1 

RMSE_Perc_1 3.1 3.1 3.1 3 3.1 2.3 3 

Retro_Rho_SSB -0.15 -0.14 -0.16 -0.15 -0.16 -0.14 -0.16 

Forecast_Rho_SSB -0.16 -0.14 -0.16 -0.15 -0.16 -0.14 -0.16 

Retro_Rho_F 0.17 0.15 0.17 0.16 0.17 0.16 0.17 

Forecast_Rho_F 0.14 0.12 0.15 0.14 0.14 0.16 0.15 

MASE_cpue1 3.01 2.90 3.05 3.16 2.86 2.31 3.24 

MASE_cpue2 1.50 1.45 1.55 1.67 1.43 1.47 1.72 

MASE_cpue3 3.95 3.71 4.09 4.60 3.54 3.21 4.79 

MASE_cpue4 18.49 18.57 18.66 18.38 18.94 20.84 18.43 

MASE_cpue5 4.30 4.19 4.38 4.55 4.17 4.09 4.64 

MASE_len1 1.39 1.39 1.37 1.38 1.34 0.69 1.38 

MASE_len2 0.16 0.16 0.16 0.16 0.16 0.16 0.16 

MASE_len3 0.51 0.51 0.50 0.51 0.50 0.31 0.51 

Summary Weight 0.48 0.48 0.48 0.52 0.48 0.52 0.52 

 

The summary weight is calculated as the number of passed tests divided by the 

total, resulting in a proportion. 
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4.5 Ensemble model 

The models in the set of dimensions of uncertainty provide alternative sources of 

uncertainty and variability in model fitting. Including them all in the ensemble and 

allowing them to influence the model outputs saves us from limiting ourselves to 

only one model representation. The trajectories in Figure 13 include trends and 

variability from all model representations. The fluctuations coincides well with 

previous descriptions of developments of effort, catch and CPUE (Sundelof et al., 

2013). The large decline beginning in the 1960’s is well described since before, but 

not entirely understood. However, it is followed by a continued decline as fishing 

mortality increased during the 1980’s to 2000’s. The many regulations on lobster 

fishing since 1971 onwards, eventually reduced fishing mortality and a rebuilding 

of biomass followed. Details on ensemble are provided in Appendix XI. 

 

 

Figure 13. European Lobster stock in ICES subdivisions 20-21 and 23. Trajectories of ensemble 

model. Catches are expressed as median of the 3 scenarios tested. 

4.6 Stock status 

The final ensemble model is a development and scrutinization of a model first 

developed with data up to 2022.  The ensemble model is more optimistic than the 

model of 2023 (Figure 14). This may have several causes, and no single reason can 

be pointed out as the integrated model balances changes in data and parameters. 

The current model has better fit to inflated levels of unreported catches. Also, a 

couple of the index series have positive trends and some changes towards larger 

size compositions cause the model to reduce F and increase SSB relatively.  
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Figure 14. European Lobster stock in ICES subdivisions 20-21 and 23. Comparison between the 

relative stock status estimates from the new reference run and the last previous advice model update 

from 2023. Landings are an input of the models. There is no reference point for recruitment and the 

comparison is therefore flat.  

 

The Kobe plot of the ensemble model shows the density of outcomes from the 

bootstrapped Hessian variance-covariance matrix (Figure 15 for each model, Figure 

16 for the ensemble). For each model every parameter has a variance-covariance 

estimate to the other parameters in the specific model. The bootstrapping 

methodology uses the entire parameter space (one value chosen at random from 

each of the parameter variability) to illustrate the statistical possibilities of the 

variability in all parameters These realizations are depicted as coloured dots in the 

kobe plot (Figure 15). Some model configurations provide more optimistic status 

than other (see Figure 9). Generally, assumed larger unreported catches provide 

more optimistic output, and higher steepness showing more pessimistic output 

(legend for model colours). 
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Figure 15. European Lobster stock in ICES subdivisions 20-21 and 23. Kobe plot of terminal year 

estimate from all bootstrapped alternative models. 

 

Plotting relative F against relative SSB also provides the trajectory of the stock 

over time (Figure 16), which is defined as the Kobe plot (Kell et al., 2016; also 

called the phase plot). It provides an intuitive way of visualising stock status in the 

context of biomass and fishing mortality. It is based on the concept that if fishing 

mortality (F) is above FMSY, overfishing is judged to be occurring, whereas if the 

biomass (B; or some measure of spawning output) is below BMSY, the stock is 

judged to be overfished. The Kobe plot shows B/BMSY on the x-axis and F/FMSY on 

the y-axis such that vertical and horizontal lines at 1.0 split the plot into four 

sections. The upper left represents a phase which is not desirable: overfishing 

occurring and an overfished stock; and the lower right represents a healthy stock: 

overfishing not occurring and an underfished stock. The trajectory of the stock over 

time is plotted such that the historical status of the stock can be followed. Typically, 

a stock starts in the lower right as the fishery develops, then moves into the upper 

left as the population becomes overexploited, and finally, as appropriate 

management is applied, it cycles around the centre of the plot. 
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The current (2023) status of the lobster stock following the ensemble approach 

is described by probabilities relating to different phases, where the probability of 

being in the red (overfishing and overfished), orange (overfishing), yellow 

(overfished) and green zone (no overfishing, not overfished) is 25, 2, 40 and 33 

percent, respectively. The mean point estimate in 2023 shows that F is below FMSY, 

and spawning stock biomass is just below BMSY. However, for 25% of the 

bootstrapped model outputs the lobster stock is in the red phase, which indicates 

the probability of overfishing occurring and the stock being overfished. The status 

of the stock has changed substantially over 145 years, from a high abundance and 

low fishing regime to a high fishing and low abundance regime which matches 

published historical sources of lobster fishing (e.g., (Sundelof et al., 2013)).  

 

 

Figure 16. European Lobster stock in ICES subdivisions 20-21 and 23. Kobe plot of ensemble 

trajectory of the stock from 1875-2023. 2023 is denoted by a large white open circle in the yellow 

quadrant. 

4.7 Conclusions and recommendations 

The benchmark was attended by research scientists, managers and commercial 

fishermen. Data was provided from several segments of the fishery where each 

concerned segment can interact in the provisioning of data. The benchmark 

workshop put light on discrepancies between these different segments of fishers 

and the formal requisition of catch data from national authorities. The models 
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provide a robust assessment of the European Lobster stock in ICES subdivisions 

20-21 and 23. 

Further developments in quality of catch data, standardizing of indices and 

development of spatial aspects of the model may improve the model performance 

and better inform on differences between areas. These are not new challenges but 

have been manifested by the benchmark. Securing the data provisioning from the 

different catch indices is a prerequisite for future updates of this ensemble model 

framework. 

4.8 Forecast not performed 

Without specific management goals or a deductible quota, there is no reference 

point for this model against which a forecast can be made. However, the current 

model is evaluated against the MSY concept. It is implemented in the modelling 

framework and provides a useful basis for sustainability.  

4.9 Reference points 

No reference points were suggested before the benchmark. The previous use of 

Btarget of 40% of B0 was extended to use the MSY approach estimated within SS3. 

BMSY and Btarget were very similar and no further discussion on the use of reference 

points were made. 

The current management of lobster is not concerned with a catch limit and the 

capping of catches is not a viable option. Instead, regulations are placed on 

individual fishers and are very indirect in the purpose of limiting catch to a relative 

level over time. Sustainability is therefore analysed in hindsight relating to some 

reference level. It may be possible to evaluate the effects of increased regulations 

on number of pots (per person), season length or minimum landing size. This will 

affect F but may also affect fishing habits and practices with implications for the 

final F acting on the stock. Minimum landing size and a moratorium on berried 

females are the most likely used management practices to protect the lobster 

population. How these options affect the size composition and productivity of the 

stock, and how their implementation may be traced in the assessment model, have 

not been developed. 
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5. Report from the reviewer 

5.1 Overview 

The benchmark assessment of the European lobster (Homarus gammarus) in ICES 

Division 3a was conducted in a series of meetings in 2024. The objective was to 

improve data integration, develop a stock assessment model, and provide a 

foundation for future management advice. The work considers data from scientific 

surveys, landing statistics and fishery-dependent survey data, from both 

commercial and recreational fishers. The assessment was presented and discussed 

over two workshops (17-18th of June and 3rd of October), with the primary goals 

of addressing the quality of input data (indices and biological data) and key 

uncertainties related to stock productivity, recruitment, and fishing mortality and 

reviewing the base case model. I have reviewed the benchmark based on 

participation in meetings and the received documentation, and I find that the 

assessment work is solid and grounded in the best available data.  

5.2 Data sources and standardization 

The lobster stock model utilizes a comprehensive selection of data sources and 

incorporates available life history parameters. The assessment uses landings data 

from both commercial and recreational fisheries (2), and surveys (6), enabling a 

robust assessment of stock status. One of the main strengths of this assessment is 

the use of historical data in conjunction with more recent fishery-independent 

surveys to inform the model. A long-standing historical time series from 

Hushållningssällskapet (SREAS1), dating back to 1875 provides catch data from 

the commercial fishery, including seasonal total catch and catch per unit effort 

(CPUE) indices, standardized to account for effort creep. More recent data are 

available from the Lobserve survey, a three-year scientific initiative where recruited 

fishermen conduct depth-stratified catch-and-release surveys before the start of the 

official fishing season.  
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Integrating shorter surveys with other indices presents challenges due to 

differences in data standardization, variations in recorded data types (e.g., full catch 

vs. landed catch only), and changes in fishing pressure and selectivity curves 

influenced by shifts in regulations over time. Some limitations in data availability 

were noted, especially for recreational catches. However, the working group 

revised input data and standardized CPUE across indices to enhance comparability 

where possible. For instance, for Lobserve, a survey with high-resolution data, a 

generalized linear mixed model (GLMM) was fitted with a Poisson distribution of 

errors (to handle the skewed zero-catch data) while adjusting for fishing effort by 

an offset term and fisher-specific differences. Data sources with higher variability 

receive lower weight within the model to reduce their influence. 

The data used in the assessment are: 

• Landings data: The assessment uses landings data from both commercial 

and recreational fisheries. This includes commercial data from vcd_2017, 

along with landings from Halland introduced in later stages of the 

assessment process. The data had undergone a rigorous review for 

accuracy and consistency. 

• Survey indices: The model includes fishery-independent survey indices, 

which were standardized to account for variables such as depth, soak time, 

and fisher ID to improve consistency, where available. 

• Size composition data: Data on size structure derived from commercial 

logbooks, vcd_2017 and some from Lobserve surveys. Discrepancies in 

size compositions between commercial catches and survey data introduce 

some uncertainty in the model. 

 

5.3 Assessment Model 

The Stock Synthesis 3 (SS3) model was chosen as the base for the assessment, 

incorporating sex-specific population dynamics and length-based models to track 

the stock over 25+ age classes. One of the strengths of SS is that it allows for mixing 

a range of different data sources, which this benchmark has. It should provide a 

robust and flexible environment for modelling population dynamics which should 

suit the European lobster. Although this framework is outside of my area of 

expertise, assessment team members have previous experience with handling SS 

from stock assessments and I entrust their expertise and knowledge to the best use.  

The model integrates much biological detail, accounting for lobsters’ biennial 

egg-laying and differences in fecundity with size (egg mass estimates not included). 

By setting the max age at 25+ years, the model treats all lobsters older than this age 

as a plus group, accounting for the longevity of this species while managing data 
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limitations on older individuals. Some of the key settings for the reference model 

were: 

Growth: Sex-specific growth was estimated by von Bertalanffy's growth 

function based on mark-recapture data. By controlling the level of uncertainty 

associated with growth at various ages, the coefficient of variation (CV) was set 

slightly differently for younger (0.15) and older (0.10) lobsters (higher variability 

in young individuals is expected, while older individuals have more consistent 

growth patterns).  

Mortality: Age-specific mortality estimates for males and females were obtained 

from mark-recapture data from Kåvra lobster reserve. This is assumed to reflect the 

natural mortality (N) of an unfished population not confounded by fishery-related 

causes. Further, N was set to be constant over time, but differentiates between six 

age classes (0, 1, 2, 4, 5, 10, 20) and sexes, which is a sound assumption for lobsters.  

Maturity: Female maturity was modelled with logistic regression, with the 

length at 50% maturity (Lm50) set at 7.8 cm, (appr. age 5). The maturity curve 

estimates the reproductive contributions of female lobsters based on size and age.  

Recruitment resilience: The model infers recruitment trends from size structure 

data since information on recruitment remains sparse for lobsters. The assessment 

used a Ricker stock-recruitment relationship which regards recruitment as a 

function of spawning stock biomass (SSB) that eventually levels off due to density-

dependence. Steepness of h = 0.8 was assumed as a baseline, implying the 

assumption of moderate resilience to lower stock levels. Considering lobsters have 

complex mating behaviour, low stock densities may proportionally reduce 

recruitment levels if lobsters have difficulties finding mates (depensation). It was 

therefore a wise choice of the team to explore the sensitivity to lowering the 

steepness (h= 0.45 − 0.95).  

Selectivity: The model assumed time-varying selectivity for the commercial fleet 

based on known changes in fishing effort and behaviour. A double-normal (dome-

shaped) selectivity was assumed and means the catchability of lobsters increases to 

a peak size, then declines for larger lobsters. It is reasonable in this case because 

scientific mark-recapture surveys often show higher catch rates for medium-sized 

lobsters and lower rates for small and larger individuals. Compulsory escape 

openings for juveniles, and because larger lobsters may be deterred from entering 

the trap opening (or easier escape), likely contribute to this pattern. 

5.4 Diagnostics, ensemble approach and stock status 

Multiple model configurations (seven in total, including the base model) were 

tested in the assessment, with “run2” identified as the most robust. This run 

demonstrated strong convergence and gave a balanced view of the uncertainties 

within the stock's dynamics (recruitment, fishing mortality). However, the decision 
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was made to pursue an ensemble model, as it provides a more balanced view of 

uncertainty than a single model run. Weighted averages of models should offer a 

more realistic representation of the stock's status, thus improving risk assessment.  

The model uses various diagnostic tools (e.g., residual tests, RMSE evaluations 

and retrospective analysis) to evaluate model stability and conflicts in surveys. Size 

structure data from the vcd_2017 survey and commercial catches displayed 

reasonable fits, while residual patterns in some surveys like Safari and Halland 

highlighted potential spatial inconsistencies, which could be explained by 

differences in trends between northernmost and southernmost areas (latitudinal 

gradients). Retrospective analyses showed stable performance, with Mohn’s Rho 

below the threshold of 0.2. The hindcast cross-validation showed that the model 

has limited predictive abilities for CPUE indices, suggesting issues with the model's 

ability to capture trends in stock CPUE accurately. However, the predictive 

performance of mean lengths was better so the size structure data might be more 

reliably modelled than CPUE trends (although low accuracy for Lobserve and 

Halland).  

The steepness is an important parameter for inferring recruitment trends and can 

have a large effect on the model results. The testing of different levels showed that 

the model better supports slightly lower steepness values (h= 0.45 − 0.65) based on 

log-likelihood, but that this parameter had minimal impact on the stock status 

estimates. The ensemble approach adds confidence by capturing uncertainties 

across the tested range, but it is somewhat unclear how the steepness values have 

been weighted. If the ensemble primarily reflects the reference run (h= 0.8), this 

value appears to be a reasonable middle ground given the lack of data. That said, it 

would be interesting to explore alternative stock-recruitment functions, especially 

ones that account for depensation at low stock densities.  

The biomass reference points were defined based on the female spawning stock 

biomass (SSB) set to SSB40 (40% of unfished biomass, SSB0) and F40 (fishing 

mortality at SSB40) to limit the risk of overfishing. Model estimates of reference 

points indicate that the lobster stock has shown signs of recovery, with SSB 

trending upward over the last ten years after having declined since the 60s. Yet, the 

SSB remains below the maximum sustainable yield (BMSY), suggesting the stock 

has yet to reach optimal levels. Fishing mortality was found to be above sustainable 

thresholds so current fishing pressure continues to exert considerable pressure on 

the stock. This is further reflected in the kobe plots, which mostly place the stock 

in yellow zone (40-45% of unfished biomass), indicating a moderate risk of 

overfishing of what is interpreted as currently stable biomass. This highlights the 

need for a cautious approach, especially given the uncertainties surrounding 

recruitment and the impact of the recreational fishery. Better reporting from the 

recreational fishery would likely benefit future assessments by addressing all 

sources of fishing mortality.  
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5.5 Conclusions and future recommendations 

The purpose of this benchmark assessment was to determine if a model could 

present a realistic and reasonable representation of the Swedish lobster population, 

aiming to reflect dynamics and trends over time. I commend the working group for 

a thorough job in assembling and weighing the various data sources, paying 

attention to the limitations and potential biases of each source of data, the sampling 

design, and standardization decisions. Attention is also paid to the importance of 

life history traits and the values chosen are based on the best available knowledge, 

and the ensemble modelling approach and thorough diagnostic testing give 

confidence in the results while acknowledging areas of uncertainty.  

 

5.5.1 Recommendations for future assessments:  

• A potential limitation identified in the current data usage is the absence of 

corrections for technological improvements (technological creep) in 

fishing efficiency, such as the transition to two-chambered traps, which 

could inflate historical catch rates. It would be beneficial to include such 

corrections in future assessments to help avoid potential overestimations 

of stock abundance, as similar findings have been highlighted in studies 

like Kleiven et al. (2022). 

• There is still room for continued refinement of data sources, particularly 

regarding recreational catches and the inclusion of more size data. 

Improving recreational fishery data collection through expanded Lobserve 

participation and user-friendly electronic logbook systems could help 

validate catch-based indices and improve model parameterization.  

• Consider including video surveys as additional data sources as they give 

valuable fishery-independent data on density/relative abundance and size 

distributions (with potentially being less size selective than traps).  

• The changing climate already increases the water temperature which can 

affect feeding behaviour and spatial distribution of lobster, which in turn 

can affect catchability in the fishery and scientific surveys. Temperature 

monitoring through trap-mounted loggers is recommended to develop 

temperature-dependent catchability models. The current assumption of 

constant catchability likely misses out on an important relationship 

between environmental conditions (temperature, salinity) and catch rates. 

Combining temperature data with existing depth-stratified sampling could 

improve CPUE standardization.  

• Exploring alternative stock-recruitment relationships that account for 

depensation effects at low stock densities.  

Tonje Knutsen Sørdalen (PhD) 
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6. Model code 

The running of the models is outlined in Appendices IX and X. Model settings and 

input as well as output can be shared on request. However, the code is not 

implemented in GitHub or other repositories for executing code. At the publication 

of this reports it was not yet decided how this would be pursued. 
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7.1 Appendix I - Climate effects on Lobster in Sweden 

European lobster, Homarus gammarus, is a long-lived decapod crustacean 

living in rocky subtidal environments in the Mediterranean and Eastern 

Atlantic primarily down to 40 meters depth. It is a marine species distributed 

from the Mediterranean to the Northern Norwegian Sea. Adults are sensitive 

to elevated temperatures (above 22ºC) for physiological excretion of 

ammonium and larvae are sensitive to low salinity. These limitations result in 

the curbed distribution of European lobster in Swedish waters to Skagerrak, 

Kattegat and parts of Öresund and primarily distributed around or below the 

summer halocline. 

European lobster has internal fertilization and a brooding time of 9-10 

months, when females after excretion carry the fertilized eggs under the 

abdomen. Eggs hatch into a pelagic larval stage with 4 moults before it settles 

to a bottom dwelling life. Average size at sexual maturity is 78 mm carapax 

length (L50 of females) when the female is around 5-6 years old (Sundelof et 

al., 2015). 

Crustacean biology is strongly temperature dependent. European and 

American lobsters (Homarus gammarus, H. americanus) are no exceptions 

and shifts in temperature may potentially affect several aspects of their 

biology (Coleman et al., 2021; Goode et al., 2019; Mazur et al., 2022). 

Although climate related changes in pH and salinity and availability of oxygen 

may have implications for lobster larvae and adults recent studies have 

focused on temperature. 

Many studies during the past 10-15 years have been performed on 

American lobster, while fewer have covered the European lobster. Their life 

histories are very similar and inference on European lobster is assumed 

relevant from studies also on American lobster. 

Increased temperature stress lobster larvae and narrows the settling 

habitat available at 12-16 degrees Celsius (Steneck & Wahle, 2013). This 

effect has been more pronounced in the southern distribution range for H. 

americanus, and less so in the more northern, due to colder ocean currents but 

also depending on the mixing due to large tidal amplitudes in the Gulf of 

Maine (Goode et al., 2019). Incorporating environmental variability and 

projections of future change has predicted decadal declines even in the 

northern range (Oppenheim et al., 2019). This seems to be, at least partly, 
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driven by temperature effects on food items of the larvae (Calanus, (Greenan 

et al., 2019)). 

Strong positive effects of temperature on adult growth rates have been 

documented on H. gammarus (Coleman et al., 2021). Furthermore time to 

hatching and larval development times were shortened by increased 

experimental temperatures at least up to 22 degrees Celsius (Schmalenbach 

& Franke, 2010), in turn leading to an increased survival through the larval 

phase. What effects such decreased mortality and increased growth rates will 

have on a harvested stock is not yet predicted. Warmer temperatures 

enhance growth rates at the expense of physiological stress that may 

cause loss of genetic variability and adaptability of H. americanus through 

temperature induced genetic erosion (Harrington et al., 2019). It has been 

suggested that maximum size limits for landing mitigates loss of adaptability 

through preservation of genetic variability on larger individuals and secured 

reproduction and recruitment (Le Bris et al., 2018). 

More individuals with less genetic variability are thus assumed to reach 

post larval phase and affect recruitment positively. However, many 

individuals will by a faster individual growth rate more quickly recruit into the 

fishery. This may in turn lead to a fishery on fewer year classes and the 

average age of a reproducing individual to be younger. 

Restrictive harvesting regulations may mitigate the effects of climate 

change. No-take-zones (NTZ) have strong local effects on population 

abundance (Knutsen et al., 2022) and will help preserve adaptability. Although 

shellfish diseases are not highly prevalent in lobster populations and 

temperature effects are uncertain (Rowley et al., 2014) diseases have been 

hypothesized to increase in NTZ although it has not been quantified (Davies et 

al., 2015). Lack of quantified increases in incidence of shellfish diseases in NTZ 

is perhaps due to the higher available genetic variability (Le Bris et al., 2018) 

that can be expected in the more abundant populations in NTZ. 

Increased freshwater runoff may have detrimental effects on suitable 

settling grounds as the larval development is sensitive to a salinity below 17 

ppt (Charmantier et al., 2001) affecting potential settling through a gradient 

of salinities. Settling at salinities below 17 ppt will be nonexistent and the 

geographical limit for 17 ppt may shift in the future due to increased runoff. 

Table 6.10. Climate change processes and responses, key conclusions 
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European lobster 

Process Response to climate change Reference 

Mortality Temperature provokes early hatching 

Faster larval growth decreases early life stage mortality 

Schmalenbach & Franke 

(2010) 

Maturation Warming increases growth rate and implicitly early 

maturation 

Coleman et al (2021) 

Growth Faster larval growth and genetic erosion 

 

 

Faster adult growth rates, anticipates recruitment to 

fishery 

Schmalenbach & Franke 

(2010), Harrington et al. 

(2019) 

 

Coleman et al (2021) 

Settling Warmer water compresses available habitat for settling 

Reduced salinity below 17 ppt inhibits settling 

Steneck & Wahle (2013) 

Charmantier et al. (2001) 

 

European lobster 

 

Figure 6.10. Schematic of expected impact of warming on main life stages and processes. 

The elements included are hatching (Hatch), metamorphosis (Met), maturity (Mat), natural 

mortality (M), growth (G) and recruitment (R). A plus sign (+) refers to an expected increase 

in the rate of the process as a consequence of climate change, a minus sign (-) to an expected 

decrease, (~) to no expected change, (±) to contrasting effects with uncertain net effect, and 

(?) to an unknown effect. 
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7.2 Appendix II – Sundelöf et al. PLOS 2013 

Original reference is: 
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Exploitation Levels. PLoS ONE 8(4): e58160. doi:10.1371/journal.pone.0058160 

 

Can be freely downloaded from: 

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0058160 
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7.3 Appendix III – VCD2017 - recent recreational 

diaries 

Emmelie Hammenstig-Åström 

In Sweden, fishery-dependent lobster fishing data and catch records are 

collected from several sources.  One of these sources was initiated by SLU-

Aqua which includes voluntary journals, e.g. diary records, written by 

professional fishermen, or recreational fishermen. These journals, i.e. catch 

logs, have been compiled and used to provide support for additional 

parameters (see this report) which are then included in the stock analysis that 

forms the basis for the status assessment in the presentation of 

“Fiskbarometern” (Larsson et al. 2024). 

Since 2017, SLU assembles voluntary catch journals e.g. diaries, where 

contact information to recreational fishermen and a few professional lobster 

fisheries are collected using the information on the floating buoys of the 

fishing gear. This is followed by an interview where individuals are invited to 

participate in track record of providing journals of their lobster fishing and 

catches. This is entirely based on voluntary participation and the goal is to 

complement the weaker data records from the commercial logbook. During 

2022, the collection of information from recreational fishers slightly changed 

based on the results from a few assumptions that were made (see specifics 

below). We will go through these assumptions and explain their influence on 

the provided data that can be used in the stock analysis model (Stock 

Synthesis 3, SS3).  

Thanks to this type of fishery-dependent data, trends and fishing patterns 

provide increased information first and foremost about the recreational 

lobster fisheries in Sweden, as well as index calculations that later can be 

used in the SS3 model. 

The journals that SLU obtain from the voluntary catch records are 

relatively few in the light of how many recreational lobster fishermen that 

every season join the fishery. As there is no register before or after fishing 

starts, estimates are based on the number of floatation buoys. Since the new 

VCD2017 started, there has been approximately 24-40 participants annually 

that contribute to the records. The VCD2017-logs may also include more than 

one person per submitted journal, i.e. two people fish with 12 pots, and 

family and relatives can report as one group, household etc. The main 

regulation of six pots per fishing person is used to back-calculate the effort.  

https://fiskbarometern.se/rapport/2023/species/Europeisk%20hummer
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In the VCD2017, fishermen report their catches (figure 1) as above 

minimum size length (MSL), below MSL (these have to be released 

immediately) and berried females (female carrying eggs underneath the tail, 

these have to be released immediately as well). The provided information has 

a high accuracy in terms of how often fishermen pull their pots during a 

season, catch distribution, rates between the size classes and berried females 

and for how long fisheries continues in the autumn. This information can be 

used to get average of fishery patterns, and this information forms the basis 

for calculations of fishing effort and catch per draw as well as the fishery 

indices such as catch and landings per unit effort (CPUE and LPUE).   

 

Figure 1. Number of lobsters reported in VCD2017 fishing, separated into 

the three different categories, above minimum size length (MSL), below MSL, 

and berried females. The number in parenthesis behind the years at the x-axis 

indicate the number of journals returned to SLU, at the Institute of marine 

research in Lysekil.  

 

The length of the lobster fishing season varies annually and can differ up to 

a week because of the variable start date (first Monday 7 o’clock, after 

September 20th). As an example, the premiere 2020 took place Sep. 21st 

whereas the year after, 2022, the premiere was Sep 27th instead. The end of 
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the season is November 30th for recreational fishers, and December 31st for 

professional, licenced lobster fishermen, regardless of the starting date. The 

weeks 39 to 40 captures the same period annually. 

 

Assumptions to the modelled work 

Fishing practices changes through the season, the pots being pulled less 

frequently later in the season and shifts in spatial distribution as recreational 

fishers have a shorter season opening up the entire coastal region for 

commercial fishers from 1st December (figure 2). Also catch rates are 

assumed to be affected by the extraction of harvest, leaving fewer lobsters 

available to the fishery. Soak time is very difficult to extract from the journals. 

However, early in the season pots are pulled a lot more frequently and soak 

time is assumed to have a lesser effect on catch. It is a rapid decrease in 

fishing intensity (number of pulled pots), after the first weeks and many 

fishermen end their fishing season early. The combination of these factors 

leads to a general conclusion to focus on a subset of the information in the 

journals, using only the first two weeks of the fishery after season opening. 
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Figure 2. Number of pulled pots per week. The first week of the fishing 

season tend to have the greatest number of pulled pots and then the 

intensity in the fisheries decreases.  

 

As the length of the season to the index was set to two weeks, we further 

tested potential variability in experience, geographical knowledge and 

fishery-patterns, and if this would influence the index used for the SS3 model. 

Á priori set ups of data were analyzed to determine the potential difference 

among the level of experience of fishermen that report their catches to SLU 

(Table 1).  Level of experience was documented from previous interviews with 

reporting fishermen. The following groups were compared: 1] randomly 

selected lobster fishers, recruited from previously counted buoys and the 

information from these. 2] all lobster fishers (regardless of year and how 

much experience they previously had, before the recruitment), 3] less 

experienced lobster fishermen, (fishermen with less experience in terms of 

both lobster fisheries <5 years and little geographical knowledge of the area). 

Table 1 shows the small difference (2nd decimal) in nominal CPUE of both 

total catch and landed catch between the different sub groups of fishers.  

 

Table 1. The outcome in the a priori tests represents no major difference in 

catch per unit effort (CPUE), based on the two first weeks of the Swedish 

recreational lobster fisheries).  

 

1] Randomly 
selected   

2] All lobster 
fishers   3] Less experience  

  CPUE (above MSL) 
CPUE (all 

catches) 
CPUE mål (above 

MSL) 

CPUE 
(all 
catches) 

CPUE mål (above 
MSL) 

CPUE 
(all 
catches) 

2017 0.06 0.16 0.06 0.16 0.06 0.15 

2018 0.15 0.26 0.14 0.25 0.16 0.25 

2019 0.16 0.31 0.16 0.30 0.15 0.28 

2020 0.22 0.44 0.22 0.43 0.23 0.44 

2021 0.12 0.26 0.12 0.28 0.11 0.24 

2022 0.15 0.30 0.15 0.30 0.15 0.28 

 

Hence, table 1 indicates that the previous recruitment of VCD’s through 

the buoy-counting and randomly collected information of fishermen as well 

as experienced lobster fishers does not have a strong impact on the index of 

catch per unit effort. This is most likely an effect of fisher avidity, and the 
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more active and engaged fishers, that generally have more experience, are 

the ones that voluntarily report catch diaries to SLU. The less avid fishers 

often drop out before they even start reporting. It implies that the 

recruitment of fishermen and their journals could be performed by more 

efficient methods. Also, despite a large effort to randomize information from 

fishermen and their lobster catches, we see that the recruits from the 

voluntary catch diaries are experienced lobster fishers and most likely 

engaged in the fisheries and monitoring of the species as they chose to 

participate in the survey and also return their diaries to SLU in Lysekil.   

The number of pots pulled per week decreases sharply as the season 

progresses (figure 2). There is also a risk that CPUE per week decreases, 

fluctuates and become influenced by the few numbers of fishermen that 

continue through-out the late season.  

From the potential scenarios of selecting data depending on  

• Length of the season (i.e. full season, or a limited number of 

weeks).  

• Skills and experience among recreational lobster fishers that 

participate in the VCD- work (presented in table 1).  

It was decided, based on the analyses and arguments above, to limit the 

data for standardization of CPUE to weeks 39 and 40, including soak nights for 

that period (the first two weeks of the season) and include all of the reporting 

fishermen.  

 

Model formulation 

As the lobster catch data are counts of lobsters, with many zeros and 

typically poisson distributed variance the standardization was done with a 

generalized linear model with a  Poisson  model as variance estimator using 

Year as a fixed factor, fisher_id as a random variable and offsetting number of 

pots and soak nights.  The final model formulation was: 

lob_num ~ factor(Year) + (1 | fisher_id) + offset(log(pots)) +      

offset(log(soak_nights)) 

 

Coding and analysing was done in R using R-Studio. The output estimate was 

on log scale and transformed back to normal scale (Table 2). 
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Table 2:  Output of the glm-model on lobster counts in pots. Estimate and 

Standard Error (SE) of the fixed factor Year is on log scale. SE on log scale is used 

in SS3 but estimates are back transformed to normal scale for use in SS3. 

Year 
Estimate on 

log scale 

Back 
transformed 
to real scale 

Estimated 
SE on log 

scale 
z value Pr(>|z|)       

2017 -2.1418 0.11744 0.398 4.133 3.58E-05 *** 

2018 -1.7775 0.16906 0.3968 5.064 4.12E-07 *** 

2019 -1.4295 0.23943 0.3956 5.959 2.54E-09 *** 

2020 -1.2917 0.27480 0.3958 6.304 2.89E-10 *** 

2021 -1.4283 0.23972 0.396 5.956 2.59E-09 *** 

2022 -1.4097 0.24422 0.3962 6 1.98E-09 *** 

2023 -1.0597 0.34656 0.3956 6.893 5.45E-12 *** 

 

 

Diagnostics 

Generalized linear mixed model fit by maximum likelihood (Laplace 
Approximation) ['glmerMod'] 

Family: poisson  ( log ) 

Formula: lob_num ~ factor(Year) + (1 | fisher_id) + offset(log(pots)) 

+      offset(log(soak_nights)) 

Data: tmp 

     AIC      BIC   logLik deviance df.resid  

  7972.6   8092.8  -3963.3   7926.6     1352  

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-5.0677 -0.9480  0.0506  1.0322  9.2906  

 

Random effects: 

 Groups Name        Variance  Std.Dev. 

 fisher_id (Intercept)  0.2544    0.5044   

 

Number of obs: 1375, groups:  fisher_id, 98 
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Figure 3. Residual analyses. Dispersion test insignificant but KS- and outlier test 

significant. 

 

We ran a DAHRMa-residual (Hartig, 2024) to check the diagnostics to the Poisson 

model (Figure 3) and the non-significant result (p = 0.592) from the dispersion test 

indicates that there is no strong evidence for over-dispersion of our VCD data. 

Hence, it also supports that the Poisson model is appropriate in terms of variance 

structure. Regarding the significant deviation of the KS-test, this could indicate 

that the residuals are not matching perfectly a Poisson distribution. Further, 

outliers are expected in our data set and the Poisson model can be relatively 

robust to outliers, in particular if these have a minor influence on parameter 

estimates. The Poisson model was chosen based on the abovementioned 

conclusions to include both variables; soak time and pots in the analysis.  
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7.4 Appendix IV - Tourist journals 

Emmelie Hammenstig Åström 

The Swedish Agency for Water and marine Management (SwAM) may issue 
special permits for fishing, and exemptions from regulations. Tourist fishing 
operators, fishing as recreational fishers but with customers on-board, may apply 
for such exemptions, in order to use more than six pots in their fishing 
operations. Conditions for these exemptions from the regulations include 
keeping a detailed journal of catch and effort. Instead of six pots per fisher used 
in the recreational lobster fishery, these Tourist fishers can use as many as 50 
pots per registered person or operator. Apart from the number of gears, these 
operators follow the regulations of recreational fishers concerning season length 
and the non-sale of landing with an addition of a baglimit of landing a maximum 
of 2 lobsters per guest. This segment of the lobster fishing fleets is called Tourist 
fishers, and in the SS3 model it is called Safari. 

At SLU-Aqua, there is information of lobster catches from commercial tourist 
permits since 2014. Monthly, operators need to report information about their 
trips and number of guests as well as the number of pulled pots and lobster 
catches (above MSL, released and berried females) to SwAM.  

The detailed catch log for tourist permits, is used to calculate a catch per unit 
effort index, and as all operators need to report their trips, the basis provides a 
total number of all catch, and we get an absolute number for the amount of 
lobster caught in the Tourist fisheries annually. Annual lobster catches from all 
categories are presented below (figure 1).  

 

 

Figure 1. Total number of lobsters caught in the Swedish Tourist fishery annually.  
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In 2023, there were 55 permits from SwAM to Tourist operators along the 
Swedish west-coast. Similarly, as for the VCD_2017 journals, there is an intense 
start at the week of the lobster premiere, and then a decrease in number of 
pulled pots per week (figure 2). For some years, there is a steep decline in the 
fisheries and further, notable is also week 44 which pop up for a few years as this 
week is known to be the autumn holiday for elementary schools in Sweden.  
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Figure 2. Number of pulled pots per week in the stipulated commercial Tourist 
fishery. The different colours correspond to operator permits (in total 55 permits 
for 2023).  

 

Assumptions 

Fishing practices changes through the season, the pots being pulled less 
frequently later in the season and shifts in spatial distribution as recreational 
fishers have a shorter season opening up the entire coastal region for 
commercial fishers from 1st December. Also catch rates are assumed to be 
affected by the extraction of harvest, leaving fewer lobsters available to the 
fishery. Soak time was not possible to extract from the Tourist journals. 
Depending on the demand on the operators, they may pull variable number of 
pots per fishing day. This quickly leads to a loss of precise soak time information 
in the journals. However, early in the season pots are pulled a lot more 
frequently and soak time is assumed to be more uniform, also for the Tourist 
fleet, and have a lesser effect on catch.  

Following the same reasoning of how the lobster fishery progresses over the 
season (above and in Appendix III and V) the catch data was not used in its 
entirety. It was decided, based on the analyses and arguments above (and in 
Appendix III and V), to limit the data for standardization of CPUE to weeks 39 and 
40, and not include soak nights for that period (the first two weeks of the 
season).  

 

Model formulation 

As the lobster catch data are counts of lobsters, with many zeros and typically 
Poisson distributed variance the standardization was done with a generalized 
linear model with a Poisson model as variance estimator using Year as a fixed 
factor, fisher_id as a random variable and offsetting number of pots.  The final 
model formulation was: 

lob_num ~ factor(Year) + (1 | fisher_id) + offset(log(pots)) 
 

Coding and analysing was done in R using R-Studio. The output estimate was on 
log scale and transformed back to normal scale (Table 1). 

 

Table 1. Output of the glm-model on lobster counts in pots. Estimate and 
Standard Error (SE) of the fixed factor Year is on log scale. SE on log scale is used 
in SS3 but estimates are back transformed to normal scale for use in SS3. 
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Year 
Estimate 

on log 
scale 

Backtransform 
to real scale 

Estimated 
SE 

z value Pr(>|z|)       

2014 -1.4674 0.2305 0.2271 -6,462 1.03E-10 *** 

2015 -0.8271 0.4373 0.229 2,791 0.005253 ** 

2016 -1.1893 0.3044 0.23 1,209 0.226754   

2017 -1.0259 0.3585 0.2273 1,943 0.05205   

2018 -0.9273 0.3956 0.2268 2,381 0.017244 * 

2019 -0.8216 0.4397 0.2266 2.85 0.004372 ** 

2020 -0.4013 0.6694 0.2257 4,724 2.32E-06 *** 

2021 -0.6824 0.5054 0.2254 3,483 0.000496 *** 

2022 -0.5019 0.6054 0.2268 4,257 2.07E-05 *** 

2023 -0.3269 0.7212 0.2254 5,059 4.21E-07 *** 

 

 

Diagnostics 
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Figure 3. Residual analyses. Dispersion test insignificant but KS- and outlier test 
significant. 

We standardized the data for the Tourist-fisheries and used a Poisson-model 
where the dispersion test (DHARMa package R, Hartig, 2024) indicates no 
significant overdispersion (p = 0.112) and where the variance structure support 
that we can proceed using a Poisson model. 

The deviations in the KS test and outlier test indicate minor imperfections in the 
residuals, however, does not necessarily nor substantially affect the model’s 
overall validity. 

Our model provides reliable inferences about the relationships between the 
predictors and our outcome, even if the residuals does not align perfectly with a 
Poisson distribution. Additionally, the model’s performance in terms of 
prediction and inference remains strong, and thus, support the idea that our 
choice to use the Poisson model is reasonable despite the minor residual 
deviations. 

 

 

References 

Hartig, F. 2024. DHARMa: Residual Diagnostics for Hierarchial (Multi-Level / Mixed) Regression 

Models. R package version 0.4.7, http://florianhartig.github.io.DHARMa/ 

Posit team (2024). RStudio: Integrated Development Environment for R. Posit Software, PBC, Boston, 

MA. URL http://www.posit.co/ 

  

http://florianhartig.github.io.dharma/
http://www.posit.co/


   

 

77 

 

7.5 Appendix V - Commercial lobster fishermen in 

Halland with stipulated journals 

Andreas Sundelöf 

Since 2000 a number of commercial fishermen have filled a compulsory journal 
as a terms for the exemption of rules for number of allowed gears. Originally the 
journal reported on legal individuals and berried individuals. In 2017 the 
regulation on minimum landing size changed (80 mm to 90 mm) but not size of 
escape gaps (maximum diameter 54 mm), resulting in a larger part of the catch 
to be released. The regulation of escape gaps was later changed to a larger 
diameter (60 mm) and some exemptions included the small escape gaps 
providing an opportunity to inspect and record size categories of lobsters such 
that the original categories of MLS = 80mm could be recalculated also for the 
years after 2017. Although the journal is ambitious the reporting has not been 
error free, and the true size categories prove difficult to recalculate. For example 
the data 2000 to 2016 does not report undersized returns. And from 2017 and 
afterwards the size categories risk to be difficult to interpret. 

From the 2017 journal the following column names and meanings exist 

Number Column name renaming issue 

1 Antalet lovliga humrar above_MLS some years only LPUE 
exist!! 

2 Återutsatt (CL 80-900mm ) returned_8090  

3 Åter 80-90 Hona returned_8090_f
emale 

could be double 
counted females 

4 Åter 80-90mm Hanne returned_8090_
male 

 

5 åter 80-90 varav romhona returned_8090_b
erried 

 

6 Antalet återutsatta romhumrar 
(över 90mm 2017-18) 

management 
rule, 
returned_berried 

after 2017 some 
should be reported in 

5 

7 Totalt återsatta humrar inkl 
romhona(2017-18) 

returned_1718 not exist before 2017 

8 total fångst inkl romhonnor Total catch Not total catch until 
2017 

As the reporting was not provided for all returned individuals this document 
outlines the calculation of an index following the same assumptions on the data, 
but a change in the size composition due to regulation change in 2017. 

Management dependent index CPUE: above_MLS+returned_17_18/pots  

Management dependent index LPUE: above_MLS/pots 
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The catch per unit effort (CPUE) is not a true catch as it lacks number of 
undersized individuals. The landing per unit effort (LPUE) however, is a true LPUE 
following the minimum landing size (MLS) change in 2017 

Data 

Landings (and partly catch) data by fishing day is provided by the county 
administration of Halland. 

A lot of effort was put into trying to salvage the size category data but in the end 
time constraints forced the dismissal of the more detailed data. Going through 
the data line by line may result in something more useful from 2017 onwards. To 
not risk calculating an index with double counted individuals, inflating the 
possible biomass, a management dependent index was calculated. An LPUE can 
be readily used, and the CPUE is calculated by combining legal and returned 
berried females. 

Management index LPUE was calculated as: aboveMLS/pots 

Management index CPUE was calculated as: aboveMLS+returned1718/pots 

Data was inspected for consistency and then proceeded with conversions of data 
for later modelling purposes. 

Date conversions 

Adding days and weeks for filtering of catch data. Harvest of lobsters during 
seasonal fishery removes individuals above a certain size and without external 
eggs. As fishing intensity has been high for a long time, an assumption is that the 
proportion returned individuals will increase during the season. To get 
comparable indices between years only the first weeks of the fishery are used for 
index calculations. The season always open on a Monday, thus number of weeks 
is a neat variable to used for index calculation. Periods of different lengths and 
their effect on the index are evaluated. 

Summary statistics 

Catch and effort 

Weekly data show the change in fishery over time. Soak time was cleaned from 
NAs and Catch and effort by week shows fishing patterns through the year and 
was recorded only since 2017 (Figure 1). 
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Figure 1. Available data on soak time. 

 

Figure 2. Number of pots pulled per week. 
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Figure 3. Number of lobsters caught by week. 

Proportion berried can be looked at by week to asses seasonal change and by 
year for temporal trends. Trends in effort is shown by aggregation of weekly 
number of pots, but shows only the commercial trends, and may be strongly 
influenced by weather/weekday etc 

An overview of amount of records in the data. Count of pots and lobsters 
(landed) per week per year (Figure 2 and 3). Same data tabulated below by 
fishers, pots, caught (landed + berried females) and landed. 

 

 

 

 

 

 

 

Table 2. Number of Fishers, Pots, LST Total (landed + berried females), total reg 
(test on all types of registered lobsters), Landed (used for index) 
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Year Fishers Pots LST Total total reg Landed 

2000 7 14894 9031 6798 6798 

2001 7 13226 6543 5016 5016 

2002 7 14564 6501 5148 5148 

2003 7 15536 10064 7898 7898 

2004 7 16958 10925 8825 8825 

2005 7 15327 8414 6554 6554 

2006 7 13888 6339 4776 4776 

2007 4 7052 4104 3030 3030 

2008 7 12166 6263 5035 5035 

2009 7 12657 7859 6178 6178 

2010 7 12032 7273 5662 5662 

2011 5 11081 7645 6247 6247 

2012 4 12377 7603 5865 5865 

2013 4 10818 5434 4096 4096 

2014 4 11122 5935 4400 4400 

2015 6 11971 6330 4403 4403 

2016 6 12219 4089 3079 3079 

2017 10 12427 5632 5462 1949 

2018 9 13220 8679 8661 3386 

2019 9 18179 16795 16795 7524 

2020 10 16211 18184 18184 9538 

2021 7 8213 7358 7358 3733 

2022 5 7624 5667 5667 3204 

2023 4 6280 4197 4197 2318 

Proportion berried 

The sex biased fishery removes more males than females from the population. It 
thus may have detrimental effects on the proportion of berried females and 
potential reproduction. Proportion females may increase over the season as they 
are returned, and may be increasingly recaptured. Below the proportion berried 
in all of the journal records (entire season) is described (with small differences 
per year), and also per week to illustrate the within season temporal trends. 

 

Table 2. Halland commercial journals. Proportion berried by season. 
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Year prop_berried 

2000 0.24725944 

2001 0.23337918 

2002 0.20812183 

2003 0.21522258 

2004 0.19221968 

2005 0.22106014 

2006 0.24656886 

2007 0.26169591 

2008 0.19750918 

2009 0.21389490 

2010 0.22150419 

2011 0.18286462 

2012 0.22859398 

2013 0.24622746 

2014 0.25863521 

2015 0.30442338 

2016 0.24700416 

2017 0.19957386 

2018 0.11268579 

2019 0.07079488 

2020 0.08952926 

2021 0.10641479 

2022 0.12511029 

2023 0.07815106 
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Figure 4. Proportion berried rarely below 0.2 before 2017. After 2017, berried 
females have been reported in a different way, only legal size being noted. 

Nominal CPUE/LPUE 

LPUE was thus calculated as the AboveMLS divided by number of pulled pots per 
day per fisher. CPUE accordingly was calculated as aboveMLS plus returned 
berried females per pulled pot per day per fisher. Fishing practices changes 
through the season, the pots being pulled less frequently later in the season and 
shifts in spatial distribution as recreational fishers have a shorter season opening 
up the entire coastal region for commercial fishers from 1st December. Also 
catch rates are assumed to be affected by the extraction of harvest, leaving 
fewer lobsters available to the fishery. Soak time is very difficult to extract from 
the journals. However, early in the season pots are pulled a lot more frequently 
and soak time is assumed to have a lesser effect on catch. Also, lobster activity is 
temperature dependent leading to less activity as the sea temperature drops, 
introducing yet another factor potentially influencing catch rate of lobsters. The 
combination of these factors leads to a general conclusion to use only a subset of 
the journals, focusing on the first two weeks of the fishery. Hence week 39-40 
was used for generic case and for exploratory purposes weeks 39-41 and weeks 
39-44 used for perspective. 
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Table 3. Nominal CPUE by year, accompanied by standard deviation, Standard 
Error, CV and Standard Error on log scale. 

Year 
management

_CPUE 
man_CPUE_

sd 
man_CPUE_

se 
man_CPUE_

CV 
man_CPUE_se_l

og 

2000/2001 0.5055484 0.3172618 0.0448676 0.0887503 0.0885763 

2001/2002 0.4696520 0.2661550 0.0372692 0.0793548 0.0792303 

2002/2003 0.4641013 0.2985220 0.0445010 0.0958865 0.0956671 

2003/2004 0.6910234 0.3320721 0.0512398 0.0741507 0.0740490 

2004/2005 0.7999153 0.3658679 0.0746825 0.0933630 0.0931605 

2005/2006 0.5125971 0.2451644 0.0346715 0.0676389 0.0675617 

2006/2007 0.4306506 0.2064240 0.0304356 0.0706734 0.0705854 

2007/2008 0.5875226 0.3672229 0.0842467 0.1433931 0.1426641 

2008/2009 0.5127910 0.2424176 0.0374058 0.0729456 0.0728488 

2009/2010 0.7795913 0.4213453 0.0769268 0.0986758 0.0984368 

2010/2011 0.5333660 0.2425360 0.0353775 0.0663288 0.0662560 

2011/2012 0.6887542 0.3707372 0.0601415 0.0873193 0.0871535 

2012/2013 0.7097228 0.2501515 0.0490588 0.0691238 0.0690415 

2013/2014 0.3977388 0.1788398 0.0298066 0.0749402 0.0748353 

2014/2015 0.4480278 0.2071859 0.0350208 0.0781666 0.0780476 

2015/2016 0.4618228 0.1947820 0.0315978 0.0684198 0.0683399 

2016/2017 0.4175467 0.2738578 0.0484117 0.1159432 0.1155563 

2017 0.4171800 0.3390759 0.0565126 0.1354635 0.1348481 

2018 0.8526491 0.3815483 0.0575206 0.0674610 0.0673844 

2019 1.0993977 0.4720732 0.0604428 0.0549781 0.0549366 

2020 1.1598563 0.4940889 0.0622493 0.0536699 0.0536313 

2021 1.0315852 0.7034959 0.1263516 0.1224829 0.1220273 

2022 0.9686637 0.5450339 0.1112546 0.1148537 0.1144776 

2023 0.9658897 0.5050064 0.1076677 0.1114700 0.1111260 
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Figure 5. Nominal CPUE for week 39-40. 

 

Figure 6. Nominal CPUE for different periods of the season. Week 39-40 (black), 
39-41 (blue) and weeks 39-44 (red). Index drops slightly as the season goes on. 
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Standardization 

Nominal cpue was insufficient for the stock assessment model. Available 
parameters for standardization was fisher_id, pull time. Further work may 
provide positioning of fishing practice but it was not available at the time of data 
processing. 

Standardizing for a captain effect is common practice in fisheries cpue 
standardization. This was introduced in a glmm as a random effect to 
compensate for the bias in fisher activity over time. 

Fishers differ in activity patterns, geographic location, intensity in fishing etc. 
standardizing the counts of catches to the fisher identity and estimating a mean 
catch is useful for assessment purposes. In count models it is possible to offset 
the intensity in the fishery (corresponds to effort in number of pots used for 
each fishing event) thus converting the estimate to a rate, namely a catch per 
unit effort (cpue) commonly used as index of abundance. This is accommodated 
using mixed models with both fixed and random effects by predictor variables to 
the response variable. 

Competeing models 

Models were set up to standardize for several parameters and compare results 
and diagnostics. Year was a factor and fisher_id as a random variable. Number of 
pots and soak time were modelled as offsets to compensate the model fit for 
variability in those parameters. Soak time is preferrably included as it has strong 
effects on catch. However, in many fishing practices concerning pots it may be 
poorly documented and thus very difficult to extract from journals. Two models 
were formulated to illustrate the inclusion of soak time for this particular fishery. 

model.cpue.poisson <- glmer(lobCount ~ factor(Year) + (1|fisher_id) + 
offset(log(pots)), data, family=poisson 

model.cpue.poisson.soak <- glmer(lobCount ~ factor(Year) + (1|fisher_id) + 
offset(log(pots) + offset(log(SoakTime))), data, family=poisson) 

GLM using soak time (data only available 2018-2023). Both models converged 
and provided model summaries: 

model.cpue.poisson 

Generalized linear mixed model fit by maximum likelihood (Laplace 
  Approximation) [glmerMod] 
 Family: poisson  ( log ) 
Formula: lobCount ~ factor(Year) + (1 | fisher_id) + offset(log(p
ots)) 
   Data: dat[!(is.na(pots) | pots == 0) & Week %in% c(39, 40)] 
 
     AIC      BIC   logLik deviance df.resid  
 11339.3  11460.2  -5644.6  11289.3      907  
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Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-7.5617 -1.7842 -0.2548  1.4263 14.8986  
 
Random effects: 
 Groups    Name        Variance Std.Dev. 
 fisher_id (Intercept) 0.2922   0.5406   
Number of obs: 932, groups:  fisher_id, 15 
 
Fixed effects: 
                  Estimate Std. Error z value Pr(>|z|)     
(Intercept)      -0.764422   0.142275  -5.373 7.75e-08 *** 
factor(Year)2001 -0.144917   0.033940  -4.270 1.96e-05 *** 
factor(Year)2002 -0.092771   0.035126  -2.641  0.00826 **  
factor(Year)2003  0.212807   0.032487   6.550 5.74e-11 *** 
factor(Year)2004  0.346287   0.035819   9.668  < 2e-16 *** 
factor(Year)2005 -0.003465   0.033277  -0.104  0.91706     
factor(Year)2006 -0.266261   0.037059  -7.185 6.73e-13 *** 
factor(Year)2007 -0.138826   0.042343  -3.279  0.00104 **  
factor(Year)2008 -0.012941   0.035814  -0.361  0.71784     
factor(Year)2009  0.399832   0.036030  11.097  < 2e-16 *** 
factor(Year)2010  0.004801   0.035619   0.135  0.89278     
factor(Year)2011  0.280917   0.033935   8.278  < 2e-16 *** 
factor(Year)2012  0.141422   0.036339   3.892 9.95e-05 *** 
factor(Year)2013 -0.428380   0.039132 -10.947  < 2e-16 *** 
factor(Year)2014 -0.297513   0.040119  -7.416 1.21e-13 *** 
factor(Year)2015 -0.176389   0.039247  -4.494 6.98e-06 *** 
factor(Year)2016 -0.248688   0.041461  -5.998 2.00e-09 *** 
factor(Year)2017 -0.457602   0.042859 -10.677  < 2e-16 *** 
factor(Year)2018  0.202255   0.032830   6.161 7.25e-10 *** 
factor(Year)2019  0.532669   0.030163  17.660  < 2e-16 *** 
factor(Year)2020  0.670993   0.029834  22.491  < 2e-16 *** 
factor(Year)2021  0.457772   0.039305  11.647  < 2e-16 *** 
factor(Year)2022  0.505585   0.039766  12.714  < 2e-16 *** 
factor(Year)2023  0.432486   0.045277   9.552  < 2e-16 *** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

model.cpue.poisson.soak 

Generalized linear mixed model fit by maximum likelihood (Laplace 
  Approximation) [glmerMod] 
 Family: poisson  ( log ) 
Formula: lobCount ~ factor(Year) + (1 | fisher_id) + offset(log(p
ots) +   
    offset(log(SoakTime))) 
   Data:  
dat[!(is.na(pots) | pots == 0) & Week %in% c(39, 40) & !is.na(Soa
kTime)] 
 
     AIC      BIC   logLik deviance df.resid  
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  3722.7   3748.2  -1853.4   3706.7      171  
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-8.1412 -2.0505  0.3347  3.5561 13.0939  
 
Random effects: 
 Groups    Name        Variance Std.Dev. 
 fisher_id (Intercept) 0.5615   0.7493   
Number of obs: 179, groups:  fisher_id, 13 
 
Fixed effects: 
                 Estimate Std. Error z value Pr(>|z|)     
(Intercept)      -2.13731    0.21784  -9.811   <2e-16 *** 
factor(Year)2018  0.66044    0.06676   9.892   <2e-16 *** 
factor(Year)2019  1.47013    0.06305  23.318   <2e-16 *** 
factor(Year)2020  1.27305    0.07474  17.033   <2e-16 *** 
factor(Year)2021  0.13353    0.12942   1.032    0.302     
factor(Year)2022  1.13557    0.07500  15.141   <2e-16 *** 
factor(Year)2023  0.99663    0.08293  12.017   <2e-16 *** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
Correlation of Fixed Effects: 
            (Intr) f(Y)2018 f(Y)2019 f(Y)2020 f(Y)2021 f(Y)2022 
fctr(Y)2018 -0.251                                              
fctr(Y)2019 -0.258  0.907                                       
fctr(Y)2020 -0.240  0.808    0.830                              
fctr(Y)2021 -0.143  0.460    0.480    0.482                     
fctr(Y)2022 -0.234  0.789    0.833    0.747    0.462            
fctr(Y)2023 -0.221  0.708    0.754    0.688    0.434    0.728   

Conclusion 

Estimates are provided for both models. However, information on soak time was 
only available for a small part of the time series. Also, differences in estimates 
are substantial, both in absolute numbers and in trend. The main explanation is 
that number of soak nights is a very complex variable and not easily used to 
standardize cath. Fishermen are often not pulling all of their pots at the same 
time, leaving some due to weather, distance, prices etc. This renders a mismatch 
between catch related to number of pots and soak nights and a glm-model has 
not sufficient information to be fitted properly. Soak time may vary a lot during 
season but most fishermen are eager to pull their pots often in the beginning of 
the season. With the lack of detailed effort information on soak time, positioning 
of gears etc we make the assumption that soak time is most similar between 
pots, areas and fishermen during the first two weeks of the season when 
availability and market prices of lobster are highest. Modelling catch data per 
pull, given fisher_ID as a random factor and number of pots as an offset only 
using landings from week 39 and 40 minimizes the potential bias coming from 
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soak time. Here we accept the original model without the offset SoakTime 
parameter which is provided to the assessment model. 

Transformed index values 

Transformation back to normal scale was done for the estimates, however SE 
was inputted in SS3 as SE on log scale. 

Year Index LPUE SE on logscale 

2000 Halland_journals 0.465602972 0.142275 

2001 Halland_journals 0.402791186 0.03394 

2002 Halland_journals 0.424352416 0.035126 

2003 Halland_journals 0.57601994 0.032487 

2004 Halland_journals 0.658274672 0.035819 

2005 Halland_journals 0.463993377 0.033277 

2006 Halland_journals 0.356763922 0.037059 

2007 Halland_journals 0.405252074 0.042343 

2008 Halland_journals 0.459617342 0.035814 

2009 Halland_journals 0.694482719 0.03603 

2010 Halland_journals 0.467844642 0.035619 

2011 Halland_journals 0.616619586 0.033935 

2012 Halland_journals 0.536334095 0.036339 

2013 Halland_journals 0.303370636 0.039132 

2014 Halland_journals 0.345786758 0.040119 

2015 Halland_journals 0.390311945 0.039247 

2016 Halland_journals 0.363088744 0.041461 

2017 Halland_journals 0.294633815 0.042859 

2018 Halland_journals 0.569973734 0.03283 

2019 Halland_journals 0.793143591 0.030163 

2020 Halland_journals 0.910804504 0.029834 

2021 Halland_journals 0.735909595 0.039305 

2022 Halland_journals 0.771950384 0.039766 

2023 Halland_journals 0.717534679 0.045277 

 

Residuals, dispersion and zero inflation of poisson model 

Diagnostics of the model not containing soak time. 
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Figure. Residual tests of model not including soak time. Outliers significant but 
not adjusted as they are thought to be true observations. 
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Figure. Dispersion test of glm not including soak time. 

 
    DHARMa nonparametric dispersion test via sd of residuals fitt
ed vs. 
    simulated 
 
data:  simulationOutput 
dispersion = 0.82644, p-value = 0.784 
alternative hypothesis: two.sided 

Test of dispersion was insignificant and overdispersion thus not an issue. 
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Figure. Zero-inflation test of model including soak time. 

 
    DHARMa zero-inflation test via comparison to expected zeros w
ith 
    simulation under H0 = fitted model 
 
data:  simulationOutput 
ratioObsSim = 6.4655, p-value = 0.032 
alternative hypothesis: greater 
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Figure. Outlier test of model not including soak time. 

 
    DHARMa bootstrapped outlier test 
 
data:  model.cpue.poisson 
outliers at both margin(s) = 13, observations = 932, p-value = 0.
18 
alternative hypothesis: greater 
 percent confidence interval: 
 0.00000000 0.09648605 
sample estimates: 
outlier frequency (expected: 0.0122854077253219 )  
                                        0.0139485  

Outlier test is insignificant when bootstrapped, but there seem to be some trend 
in the residuals. Whether this is due to a shift in the fishery, abundance or 
management is untested at the moment. 
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7.6 Appendix VI - Lobserve 

Hege Sande 

Lobserve, a citizen science project where volunteers perform a survey fishery 
similar to SLU Aquas own survey, occurs annually during 3-4 weeks in August 
since 2021. 

The fishing is stratified on 3 depth-intervals to ensure coverage between 6m and 
20+m, with 2 pots deployed at each depth every fishing event (6-10m, 10-20m, 
20+m). Each participant (=fisher) deploy 6 pots at least 4 times, within a 
determined area (where they normally fish during lobster season and hence 
know the area). Pots are placed on bottoms suitable for lobster fishery, as well as 
they can, using sonar, and GPS to record position. 

Catch is reported per pot, lobsters are measured (carapax length), sex is 
determined, presence of external eggs noted, and all catch is released after 
measurements. The pots are moved to a new location to avoid recapturing the 
same lobsters. Position and depth of the pot are noted using GPS and echo-
sounder, as are date and time of setting and pulling of the pots. 

Weather data are obtained from SMHI open data accessed 2024-04-05, matched 
with catches based on distance to 7 available weather station. 

 

Setting up environment and loading data 

Standardizing depth (mean centered and standardized) 

The variable Depth (the depth at which the pot was deployed) is included in the 
models. Using unstandardized depth leads to issues when interpreting the data, 
as the intercept represent the average catch when depth equals zero. This is not 
a meaningful reference point (there is no meaningful catch at depth = zero), 
hence depth is centered around the mean so that the intercept instead 
represents catch at the mean depth (Goldstein 2015). Additionally, depth is 
standardized by dividing by the standard deviation, so that depth has a mean of 
0 and a standard deviation of 1. The beta-coefficient shows the effect on catch of 
an increase in depth of 1 sd. 

Variables included 

The response variable is lobCount - the number of lobsters per pot (or in case of 
aggregating on biomass, “kg”). Variables are labelled in Swedish in the dataset, 
and are explained and translated below; 

·       “År” - Year (always included in model regardless of significance) 

·       “Datum” - date of catch (i.e. pull pot) (fishing occurs during 3 weeks in 
August - no seasonal effect is to be expected, there are too few participants to 
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expect high fishing pressure, and catch is released so no risk of “fishing out”, 
i.e. reduced catch with time) 

·       “Fiskare” - The fishers name. Must be combined with other variable (such as 
area) as names might occur several times for different people. Random effect.  

·       “Lat”, “Lon”, “Område” - Positional data: Område = 5 km wide transects or 
circular areas (3 km radius). Lat and Lon are gps coordinates = wgs84/sweref99 
(spatial component of spatial glms) 

·       “Djup_std” - depth standardized (mean 0 sd 1) 

·       “FiskadTid” - soak time - number of days pots are left in the water. 

·       “WS_0”, “WS_1”, “WS_2” wind in m/s, “_0” = at day of catch, “_1” = one 
day before catch, “_2” = two days before catch 

·       “WD_0”, “WD_1”, “WD_2” - wind direction (circular, i.e. degrees), “wd_0”, 
“wd_1”, “wd_2” = wind direction categorical (specified as the wind rose 
quadrant of the wind direction; NE, ES, SW, WN) with number indicating days 
before catch (“_0” = at day of catch, “_1” = one day before catch, “_2” = two 
days before catch). 

Summary statistics 

• Number of lobsters caught per pot = the most frequent catch n., Depth 

fished, Wind direction, Wind speed, Soak time 

 

Figure. Number of caught lobsters per pot indicating zero as the most common 
catch (left) and number of pots per depth (right) 
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Figure. Overview of meteorological data (wind direction - top left, wind speed - 
mid left, combined as wind rose - top right), counts of soak time (mid right), 
counts of catch of lobster against soak time with model results (bottom right). 

• Factors; Area, anonymized Fisher, Wind direction (day of, 1 and 2 days prior 
to pulling pot) 
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Figure. Counts of data related to some variables. Område (Area, top left), fiskare 
(Fisher_ID, top right), wind without lag (mid left), wind with lag 1 (mid right), 
wind with lag 2 (bottom left) 

   

Models 

All modelling is carried out in R version 4.3.0. 

Model diagnostics are performed with the R package {DHARMa} where possible 
(Hartig 2024), and selection among the models is by BIC (Bayesian Information 
Criterion) and AIC (Akaikes Information Criterion). 
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GLM 

Initial {DHARMa} diagnostics show issues with overdispersion (for poisson 
distribution the mean and variance are assumed to be equal). A negative 
binomial model is therefore fitted, as this allows for overdispersion. 

 

glm.nb (Negative binomial) 

Two negative binomial models are fitted, one with Area and one with GPS 
position (Lat*Lon) specifying the geographical component. While modelling 
catches by area enables us to compare specific regions (the fished lobserve 
areas), finer spatial variation is lost and generalizability might be reduced. We 
therefore model catches with latitude and longitude as well, potentially catching 
trends within or across areas. 

• glm_nb_w <- glm.nb(lobCount ~ År + Område + Djup_std + FiskadTid + 
wd_0 + wd_1 + wd_2 + WS_0 + WS_1 + Fiskare, data=tmp1) 

 

Figure. Dispersion test (left) and zero-inflation test (right) of the negative 
binomial area model 

 
    DHARMa zero-inflation test via comparison to expected zeros w
ith 
    simulation under H0 = fitted model 
 
data:  simulationOutput 
ratioObsSim = 1.0206, p-value = 0.124 
alternative hypothesis: greater 

• with GPS position (Lat * Lon) instead of area 

  glm_nb_w2 <- glm.nb(lobCount ~ År + Djup_std + Lat*Lon + FiskadTid+ 

wd_0 + wd_1 + wd_2 + WS_0 + WS_1 + WS_2 + Fiskare, data=tmp1) 
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  Figure. Dispersion test (left) and zero-inflation test (right) of the negative 

binomial model with position as Lat*Lon 

   
    DHARMa zero-inflation test via comparison to expected zer
os with 
    simulation under H0 = fitted model 
 
data:  simulationOutput 
ratioObsSim = 1.0229, p-value = 0.1 
alternative hypothesis: greater 

Diagnostics with {DHARMa} show both models to perform well with regards to 
deviation, dispersion or outliers. 

Although the negative binomial models allow for overdispersion, there is a slight 
concern about the possibility of zero inflation. 

 

sdmTMB 

While a negative binomial model can account for overdispersion (i.e. large 
variability), it assumes that observations are independent of each other. That is 
usually not the case, as neighboring areas can be spatially correlated (similar to 
each other) (Anderson et al. 2024). The same is true for the temporal aspect, the 
current status can depend on the past status. 

{sdmTMB} models these spatial and temporal dependencies by adding random 
fields to the model, and provides a function for index standardization once a 
model has been fitted and predictions made. 

The R package {sdmTMB} fits spatial and spatiotemporal Generalized Linear 
Mixed Effects Models (GLMMs) using R packages TMB for model fitting 
(Template Model Builder TMB), R-INLA (Integrated nested Laplace 
approximation, a method for Bayesian inference) to set up stochastic partial 
differential equation (SPDE) matrices, and Gaussian Markov random fields. The 
package is particularly well suited for species distribution models (SDMs) 
(Anderson et al. 2024). 

https://pbs-assess.github.io/sdmTMB/index.html
https://github.com/kaskr/adcomp
https://www.r-inla.org/
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The sdmTMB model requires spatial coordinates, and to make sure the distance 
remains constant throughout the study region, the spatial coordinates are 
converted to an equidistant projection (UTM). 

Index standardization is developed for biomass/area, as calculated from catch 
biomass, net characteristics, and time on bottom. However, lobster fishing is 
performed with pots and catch is counted as number per pot in 1 day fishing, so 
for the purpose of lobster Index we use the response variable lobCount = lobster 
per pot, and include the variable soak time (number of days the pot is left 
fishing) in the model. 

 

Make mesh 

To approximate the spatial variability in observations, sdmTMB uses a 
triangualted mesh with “knots” (vertices) including the spatial components as 
random fields. A continuous spatial field is approximated by bilinear 
interpolation (Rue et al., 2009; Lindgren et al., 2011) from estimated value at 
knots to other locations, with spatial random effects assumed to be drawn from 
Gaussian Markov random fields (Lindgren et al., 2011). 

The minimum distance between knots before a new mesh vertex is added, called 
the “cutoff”, can be chosen depending on the speed or accuracy needed. 

Cutoff is in the units of X and Y (UTM in this case), and here set at 0.5 km. 

 

Figure. Prediction mesh 

 

sdmTMB models 
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All models are constructed in the same way but with different family (family = 
poisson(), nbinom1(link = "log"), delta_gamma(), delta_gamma(type = "poisson-
link")). 

mod_sdm <- sdmTMB(lobCount ~  0 + as.factor(År) + s(Djup_std) + s(FiskadTid, 
k=3) +  wd_0 + wd_1 + wd_2 + WS_0 + WS_1 + (1|Fiskare), time = 
"År",data=tmp1, mesh=mesh, family= poisson(),spatial="on",anisotropy = T) 

 

1. Poisson 

  This model pass sanity checks, diagnostics are ok with residuals distribution 

and Q-Q plot (quantiles of residuals against quantiles of predicted values). 

   

  Figure. Residuals of poisson model. 

   

2. Negative binomial 

  The model pass sanity checks, diagnostics are ok. 

   

  Figure. Residuals of negative binomial model. 

   

3. Delta Gamma 
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  With family = delta_gamma(), the presence absence model is binomial (link 

= “logit”), and the positive catch model is Gamma (link = “log”) 

  The model pass sanity checks, diagnostics ok 

   

  Figure. Residuals of Delta Gamma model. 

   

• with poisson link 

  The default type = “standard” (specifying the Delta/hurdle family type) is 

changed to “poisson-link”, which can be used in the same instances you 

would a Tweedie, when you have positive continuous data with zeroes 

(Thorson 2018). 

  The model does not pass all sanity checks (large standard error), qq plot ok 

   

  Figure. Residuals of model with poisson link. 

   

All sdmTMB models pass the sanity checks except the deltaGamma with Poisson 
link (“mod_deltaPois”), which is excluded from further consideration. 

Simulations from fitted model with simulation-based randomized quantile 

residuals 



   

 

103 

 

Simulating data based on the different models should produce a number of zero 
catches as close to the observed data as possible. 

The observed proportion of zeros (no catch): 

[1] 0.5097886 

Zero frequency was calculated for simulated data from each of the models, and 
compared in table 1. 

The difference in observed and modeled zeros for the 3 remaining sdmTMB 
models, as well as the 2 glm models: 

Model performance and selection  

The model performing best with regards to diagnostics, AIC, BIC and ability to 
predict proportion of zeroes closest to what is observed, is the spatiotemporal 
model with negative binomial distribution (mod_sdm_nb).   

 

Table 1 The models listed all passed the diagnostic tests. The model performing best with regards 

to diagnostics, AIC, BIC and ability to predict proportion of zeroes closest to what is observed, is 

the spatiotemporal model with negative binomial distribution (mod_sdm_nb, in bold) 

Model Family AIC BIC Loglikelihood Diff 

prop 0 

mod_sdm_nb                    Nbinom1 6150.771  6296.906      -3050.385 0.0048 

mod_sdm                    Poisson 6167.681 6307.971      -3059.840 0.0324 

mod_deltaGamma                   binomial 6187.200 6445.998      -3038.632 -

0.0062 

glm_nb_w Neg 

binom 

6187.200 6637.298      -3016.600 0.0095 

glm_nb_w2 Neg 

binom 

6200.467 6633.028      -3026.234 0.0108 

 

Prediction 

Prepare prediction grid 

To predict with the fitted sdmTMB model, a data frame to predict on needs to be 
created. This dataframe (prediction grid) contains the same covariates 
(i.e. predictor columns) as the fitted data (and for spatiotemporal models, a 
column for time), and provides a fine scale grid on which to predict (Anderson et 
al. 2024). 

Here we create a prediction grid using the UTM coordinates in the fitted data, a 
base world map (R packages {rnaturalearth}, {rnaturalearthdata}), and a depth 
raster (avoids predicting on any part of the grid covering land) downloaded from 
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EMODnet (https://emodnet.ec.europa.eu/en). The R package {terra} was used to 
rasterize and extract depth data. 

 

Add variables 

For the prediction grid, variables are set as follows; 

• fiskadTid = 1 (fishing time 1 day) 

• wd_0, wd_1 and wd_2 = “SW” (the most common wind direction our 

volunteers went fishing in) 

• WS_0 and WS_1 = 5 (wind speed 5 m/s) 

 

Prediction on grid 

The model to be used for prediction is selected in section “Model performance 
and selection”. 

The model used for predictions: 

[1] "mod_sdm_nb" 

Prediction is performed using the function predict(). We predict on the 
prediction grid, and set re_form_iid to NA to predict on a population level. 

The Index 

The function get_index() {sdmTMB} is used to extract the calculation of biomass 
or numbers as well as the standard errors. Since some of the grid cells we 
created are on land, we will set the area argument to a vector of areas instead of 
a fixed area (the length of which matches the length of the predictions). 

    År       est         lwr      upr    log_est       se 
1 2021 0.7625669 0.007745858 75.07345 -0.2710650 2.341641 
2 2022 0.8455727 0.008454685 84.56769 -0.1677412 2.349683 
3 2023 0.6948273 0.007084808 68.14370 -0.3640919 2.339691 
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  Figure. Modelled average cpue 2021-2023. 

 

Conclusion 

The index provided is calculated as number of lobsters per pot in one day fishing 
and is the result of a multimodel approach where the best performing model is 
selected according to determined criteria. The model is Incorporating variables 
assumed to have an effect on the CPUE such as weather and depth, as well as 
taking into account the possibility of spatiotemporal differences. It is expected 
that the associated standard error, and hence upper and lower limits of the 
confidence interval, can be significantly reduced if more relevant variables can 
be included in the data collection and analysis. Work towards achieving this is 
ongoing. 
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Supplement 

The following plots show the four different predictions the model has produced 
(All fixed and random effects, fixed effects, spatial random effects, and 
spatiotemporal random effects). 

 

 

 

Figure. Predictions of the model mod_sdm_nb . Fixed and random effects (top 
left), fixed effects (top right), spatial random effects (bottom left), and 
spatiotemporal random effects (bottom right) 

  

http://florianhartig.github.io.dharma/
https://doi.org/10.1111/j.1467-9868.2008.00700.x
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7.7 Appendix VII - Size compositions in lobster data 

sources 

Andreas Sundelöf 

 

Size composition and their sources 

Sizes of lobster catches are hard to come by. Commercial sources do not exist, 
and voluntary or stipulated journals usually provide only size categories, not 
measurements of individual sizes. Some voluntary rapporteurs have been 
recruited for some data sources, and some targetted studies have been 
performed to, for some years, get size information from large scale lobster 
dealers providing size data on the catch. 

In the designated survey fishery LOBSERVE all lobster catches are individually 
measured, securing size data in a fisheries independent study. This document 
presents size composition data available to the SS3 model up to 2023. 

 

Commercial dealers data 

Some commercial dealers have been sampled on site 
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Figure. Size composition from commercial dealers. 

Tourism fishing sizes 

To the for hire business Swedish Agency for Marine and Water Management 
imay ssue exemtions from the rules of number of fishing gears to be used by 
recreational fishers. Thus operators running fishing trips for lobster fishing may 
do so with more than 6 pots (up to 40) without a commercial license (Tourism or 
Safari fishing). One term is to fill a stipulated journal of the catches. Some 
operators have been approached by SLU to voluntarily also record sizes of catch, 
data that is usually difficult to get by. Although number of reporting operators 
and total effort (number of pulled pots) vary over time these observations of 
sizes in one sector of the fishery is available and useful to inform the model of 
availability/selectivity/catchability. 
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Figure. Size composition from Tourism fishing operators. 

Lobserve 

A fisheries independent citizen science survey data source using pots without 
escape gaps. All catch from all pulled pots were measured and sexed. Available 
size information provides availability estimates for the survey fishery August. 
Catch below 
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Figure. Size composition from the Lobserve survey. 

 

Survey fishery 

From Kåvra and adjacent fished reference areas there are several years of 
accumulated size data. It may be used as comparison between fished and 
unfished size composition and also add to size composition in conventionally 
fished areas. 

Counts of sizes and sex by area from catches in lobster pots reveal large 
differences in size and abundance. It is suggested by these data that males are 
more common as catch in the larger sizes. This is seen in Kåvra (MPA) as large 
sizes are more common. Males grow faster and larger, and if left unharvested 
the sex ratio for lobsters larger than 14 cm CL is highly skewed to males. 

Sizes data plotted by area for several different gears reveal the remarkable 
difference size composition between fished and unfished areas. 

This is further substantiated by CPUE of kilogram lobster for lobster pots and fish 
pots. 
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Figure. Size composition of lobster in SLU survey, by years and areas for lobster 
pots(top) and areas and gear (bottom). 
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Length to weight 

Lobsters have been captured, measured, weighed, tagged and released. A 
generic length to weight relationship was based on individuals with both clawes 
intact. However, both females with or without external eggs were used. For use 
in SS3 the fitted model needs to be of the form _Weight (kg) = a*Size(cm CL)^b_ 
model outputs for males and females respectively. 

    Size    Sex    Tag Streemer Weight LeftClaw RightClaw Berried 
Size.cm 
   <int> <char> <char>   <char>  <int>    <int>     <int>  <char>   
<num> 
1:    70 Female                    250       25        30             
7.0 
2:    73 Female             479    260       27        34             
7.3 
3:    71 Female             558    260       34        22             
7.1 
4:    76   Male             642    265       29        36             
7.6 
5:    74 Female             549    276       27        35             
7.4 
6:    71 Female             744    279       26        33             
7.1 
   Weight.kg 
       <num> 
1:     0.250 
2:     0.260 
3:     0.260 
4:     0.265 
5:     0.276 
6:     0.279 



   

 

113 

 

 

Figure. Length to weight relationship of male and female lobsters. 

Model outputs (summary(fm0)) for table mm to gramms 

Has been updated with data not available to the SS3 model, with minor changes 
to the parameters. The model formulation in R was: (Weight.kg) ~ a * 
(Size.cm)^b 

Model fits were: 

 Female Male 

a 0.00114 0.000459 

b 2.80935 3.240244 

Conversion for mm to grams affected the parameter of both Males and females. 
This length to weight conversion is not used for modelling, but useful for 
calculating weights in data sets were size in mm is handled. 

Male Parameters 

 Estimate Std. Error t value Pr(> 

a 2.639e-04 7.344e-05 3.594 0.000388 *** 

b 3.240e+00 5.690e-02 56.945 < 2e-16 *** 

Residual standard error: 199.2 on 263 degrees of freedom Number of iterations 
to convergence: 41 Achieved convergence tolerance: 2.451e-06 
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Female parameters 

 Estimate Std. Error t value Pr(> 

a 0.0017686 0.0004929 3.588 0.00044 *** 

b 2.8093464 0.0585916 47.948 < 2e-16 *** 

Residual standard error: 104.3 on 163 degrees of freedom Number of iterations 
to convergence: 29 Achieved convergence tolerance: 2.26e-08 
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7.8 Appendix VIII - Survival of European lobster 

Homarus gammarus in protected and non-

protected areas 

Henrik Pärn & Andreas Sundelöf 

Background 

During 1989-2007 European lobsters Hommarus gammarus were individually 
marked and recaptured annually in a Marine Protection Area (MPA; Kåvra) off 
the coast of Lysekil, by the Swedish Agricultural University SLU, to estimate 
survival (Moland et al. 2013). In 2017, the study was resumed, and capture 
sessions have been performed annually in the MPA during 1-2 weeks in August. 
Two non-MPAs have also been included in the study (Stora Kornö, 2017-ongoing; 
Långö, 2017-2022). In addition, recaptures have been reporterted from a citizen 
science projects (“Lobserve”, an annual survey fishery by volunteers), or by other 
private fishers. 

In the SLU projects, lobsters are caught, individually marked with a tag, and 
released alive. For a more detailed description of field procedures (see Moland 
et al. 2013). Given that a marked lobster is recaptured in the MPA, it can be in 
the following states: (1) encountered alive and released alive; or (2) recovered 
dead in pot. In addition, if a lobster is captured by private fishers outside the 
MPA, it may be reported as (3) encountered alive and then harvested (by non-
Lobserve private fishers). The outcome for 2 and 3 is the same: dead (“loss on 
capture”). In this report, both causes of death are treated in the same way, i.e. as 
“loss on capture”, and cause-specific mortality is not estimated. 

The two main objectives of this report are to estimate: (1) sex-specific survival 
for the MPA during 2017-2023; (2) sex-specific differences in survival between 
the MPA (Kåvra) and the two non-MPAs (Stora Kornö and Långö) during 2017-
2023. 

Methods 

Mark recapture analyses 

In the analyses, the R package RMark (Laake 2013) was used. Individual 
encounter histories for 2017-2023 were created, i.e. a sequence of 1 and 0, 
where each number represent the individual state in each annual capture 
session; 1 indicates that an individual was recaptured, and 0 indicates the 
individual was not recaptured (or otherwise seen). In addition, a "." in the 
capture history was used for missing occasions, i.e. at Långö 2023. To account for 
“loss on capture” (see above), the freq field in the capture history was set to -1, 
to indicate that the individual was removed after the last occasion. 

Covariates 
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In a previous study in the same study area (Moland et al. 2013), models included 
sex-specific survival (𝜑). The reason for this were that (1) management rules are 
sex-specific (ban on capture of egg-bearing females), and (2) available 
information on longevity suggests that females might have higher survival 
probabilities in the wild. Thus, sex is included as a predictor variable in the 
models. 

Surival in a Marine Protection Area (Kåvra) and two non-MPA (Stora Kornö & 
Långö) were compared. Some individuals have been recorded at several sites. 
However, in the analyses, site is treated as a “fixed” covariate and site at first 
capture was used. In addition, several recapture occasions are captures by 
private fishers who have not registered a ‘site’, but only coordinates. Thus, for 
each individual, the site of first capture is assigned to all rows. 

Results 

Sex-specific survival in the MPA (Kåvra), 2017-2023 

Parameter estimates, 𝛽 

parameter estimate se lcl ucl 

Phi:(Intercept) 0.405 0.152 0.107 0.702 

Phi:sex_m 0.141 0.169 -0.191 0.473 

p:(Intercept) -1.505 0.132 -1.764 -1.246 

Real parameters 

Contrary to the expectations, survival rate of females seems slightly lower than 
for males. However, it should be noted that the 95% confidence intervals of the 
estimates are mostly overlap. The estimates are similar to those reported by 
Moland et al. (2013). 
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Figure 1: Survival rate of male and female European lobster a marine protected 
area (Kåvra). 

Sex-specific influence of MPA vs non-MPA on survival (𝝋: sex * MPA + time; 

𝝆: MPA) 

Survival in a Marine Protection Area (Kåvra) is compared with two non-MPAs 
pooled (Långö and Stora Kornö). The influence of MPA is allowed to vary 
between males and females by including the interaction sex * MPA in the 
model. 

Parameter estimates, 𝛽 
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parameter estimate se lcl ucl 

Phi:(Intercept) 0.492 0.409 -0.309 1.293 

Phi:sex_m -1.494 0.374 -2.226 -0.761 

Phi:mpaTRUE -0.888 0.397 -1.667 -0.109 

Phi:time2018 0.018 0.406 -0.778 0.814 

Phi:time2019 1.186 0.485 0.235 2.137 

Phi:time2020 1.613 0.552 0.530 2.696 

Phi:time2021 1.033 0.457 0.137 1.930 

Phi:time2022 1.442 0.609 0.249 2.635 

Phi:sex_m:mpaTRUE 1.540 0.415 0.727 2.353 

p:(Intercept) -1.530 0.231 -1.982 -1.078 

p:mpaTRUE 0.082 0.262 -0.431 0.596 

In females, the estimate of 𝜑 for the non-MPA, Långö and Stora Kornö, are both 
positive. That is, 𝜑 is higher for the non-MPA than for the MPA, Kåvra. However, 
the CI of the estimate for Långö includes zero. Thus, the difference between non-
MPA and MPA is not obvious for females. The sex * mpa interaction is positive. 
Thus, in males, the survival in the MPA seems to be higher. One possible 
explanation for the sex-specific effect of MPA, may be that egg-bearing females 
are protected also in the non-MPA anyway. In addition, higher densities of 
lobster in the MPA together with density-dependent dispersal may reduce the 
apparent survival (joint effect of true survival and fidelity to the study area) 
estimated within the MPA. Again, note that harvesting in non-MPA are not 
distinguised from ‘loss on capture’ in MPA. 

Real parameters 
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Figure 2: Annual survival rate of male and female European lobster in a marine 
protected area (grey points and error bars), and outside the MPA (black points 
and error bars). 
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7.10 Appendix X - Candidate benchmark model for 

European lobster in 3a 

Separate page numbering: 1 – 50 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Candidate benchmark model for European lobster in 3a

Max Cardinale (SLU)
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1 Draft conclusions and recommendations
• The benchmark assessment of European lobster in ICES division 3a was conducted in June-October

2024 using the Stock Synthesis (SS) model (Methot & Wetzel 2013)

• Benchmark was conducted comparing 7 different model configurations, which were evaluated through
diagnostic

• The Working Group on Stock Assessment of Lobster in 3a proposed Run2 as the final model configuration
to be used for stock assessment and management. Run2 has the same diagnostic score than Run3 and
Run6 but a better convergence and therefore was chosen as the final run

• Forecast settings: R from the Beverton & Holt stock-recruitment curve, biology and selectivity as the
average of the last 5 years, Ftarget is FMSY. BMSY is about 41% of unfished SSB

1



2 Base Case Model Development
The previous advice concluded that the stock was in overfishing and overfished; however SSB shows a positive
trend in the last five years but below the target reference point (BMSY ). Fishing pressure was estimated to
be above F/FMSY .

• The benchmark model is a one-area yearly model where the population is comprised of 25+ age-classes
with two sexes (males and females are considered as separated). The model is a length-based model
where the numbers at length in the fisheries and survey data are converted into ages using the von
Bertalanffy growth function. The model started in 1875 and it includes 8 fleets: 1 commercial fisheries,
1 recreational fisheries and 6 surveys. LFDs are available for 2 of the fleets.

• This document presents the candidate benchmark model run. This model was initially set up based on
the discussions held during the data preparation meeting, which was held in June 2024. This new set of
models includes revised survey indices after standardisation.

2.1 Data revisions
• All modern surveys were standardised

• Revision of lenght composition data

2.2 Model setting
• Maximum age in the population set to 25 years (population plus group)

• Growth parameters separated for females and males using the von Bertallanfy function

• Fixing of CV young and old individuals at 0.15 and 0.10 respectively

• Fixing age varying, time unvarying M for females and males separately

• Estimating selectivity for the commercial fleet and VC_2017 survey

• Early recruitment era start in 1875

• Extra standard deviation was assumed for several surveys

2.3 Benchmark trial runs
Model Directory

• Reference run

• Run1 : As Reference run but assuming low catches

• Run2 : As Reference run but assuming high catches

• Run3 : As Reference run, low steepness

• Run4 : As Reference run, high steepness

• Run5 : As Reference run, time varying selectivity of the commercial fleet since 2018

• Run6 : As Reference run, high catches, low steepness

2.4 Work flow
• Run first the file Ensemble_grid_Lobster3a.R, which creates input files for the files (Lobster3a_basecase

model.Rmd) and the Diags_Compare_refruns_lobster3a.Rmd. The latter visualize the comparison
between the different model alternatives, the first instead focus on the basecase model as selected by
diagnostic (Run2 in this case).
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Load R packages
library(r4ss)
library(ss3diags)
library(ggplot2)
library(ggpubr)
library(FLCore)
library(ggplotFL)
library(FLSRTMB)
library(FLRef)
library(ss3om)
library(png)
library(parallel)
library(doParallel)
cl <- makeCluster(10, type = "PSOCK")
registerDoParallel(cl)

Some system specific setups (Linux vs Windows)
if (Sys.info()["sysname"] == "Windows") {

ss.exe <- "~/Max/Stock_synthesis/ss3_3.22.1/ss3.exe"
main.dir <- "~/Max/Commitees/National stocks/Lobster 3a"
MC.CORES <- 3
print("mc.cores set to 1, NO PARALLELISATION on Windows :( ")

} else {

SS_EXE <- "~/Max/Executives_SS/ss_linux"
main.dir <- "~/Max/WKBENCH 2023/Central Baltic herring/Ensemble"

}
[1] "mc.cores set to 1, NO PARALLELISATION on Windows :( "

Load reference run

# 2024 reference case
load("rdata_runs/Lobster3a_Run2.rdata", verbose = F)
ref = ss3rep

# load retrospective runs
load("rdata_retros/RetroModels_Run2.rdata", verbose = F)

# load steepness profile
load("Reference_run/profile/profile_h.ref.rdata", verbose = F)

2.5 Fishery Data
• Catch data were available for commercial and recreational fleets.

• Alternative time series of recreational catches were tested
mod = ref
df.catch = mod$catch
df.catch$Season = factor(df.catch$Seas)

pc1 = ggplot(df.catch, aes(Yr, Obs, fill = Fleet_Name)) + theme_bw() +
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geom_bar(position = "stack", stat = "identity") + ylab("Catch") +
xlab("Year") + scale_x_continuous(expand = c(0.01, 0)) +
scale_y_continuous(expand = c(0.01, 0)) + scale_fill_manual(values = sscol(length(unique(df.catch$Fleet))))

pc1

0

100

200

300

1880 1920 1960 2000
Year

C
at

ch

Fleet_Name

Commercial_official

Recreational_high

Figure 1: Time series of annual total catches for European lobster in 3a, illustrated as disaggregated by
Season (top) and Fleets (bottom) through 2023

• Sex-structured length data (LFDs) were available for commercial catches and VCD_2017. The final
cleaned and revised available input data time series are shown in Figure 2.

•

SSplotData(ref, subplots = 2)

2.6 Survey
• Six survey indices were include in the model. All modern surveys were standardised.

• The survey LFD data were available only for VCD_2017 survey.
knitr::include_graphics("index9_standcpueall.png")
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Figure 2: Illustration of time series data for catches, LFDs and the survey indeces that were adopted as input
for the Stock Synthesis model during the benchmark session for the 2024 reference model.5



Figure 3: Survey indices

2.7 Model specifications
• The reference model for European lobster in 3a is an annual, sex-structured length-based Stock Synthesis

model. The underlying age-structured dynamics is set up to comprise ages 0-25, where age 25 was treated
as a plus group. The population was modeled as sex-structured with sex-specific parameterisations for
somatic growth and M − at − age. Stock fecundity was assumed to be proportional to female spawning
stock biomass.

• For the reference model, the sex specific growth is fixed for both sexes using Von Bertalanffy model
(Figure 6). LatAmin and LatAmax were specified as 0.5 and 25 years, respectively. The CVs for
LatAmin were set to 0.15 and for LatAmax to 0.1.

sspar(mfrow = c(1, 1), plot.cex = 0.7)
SSplotBiology(mod, subplots = 1, main = F)

• Female maturity was assumed to have the form of a logistic ogive with a length at 50% maturity (Lm50)
being attained 7.8 cm and a slope of -0.97 1/cm (Figure 7). Lm50 corresponds approximately to a
female of age-5.

sspar(mfrow = c(1, 1), plot.cex = 0.7)
SSplotBiology(mod, subplots = 6, main = F)

• Sex-specific natural mortality at age (Ma) were inputed for age 0, 1, 4, 5, 10 and 20 and were based on
tagging carried out in the Kåvra marine reserve

sspar(mfrow = c(1, 1), plot.cex = 0.7)
SSplotBiology(ref, subplots = 21, main = F)

• Nominal spawning and settling time were set to January. The expected mean recruitment was assumed
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Figure 4: Growth functions for Female and Males.
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Figure 6: Assumed age-specific natural mortality vectors for females and males.
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to follows a Beverton and Holt stock recruitment relationship. For the base-case a steepness of h = 0.8
was assumed. Recruitment deviations were estimated for 2010-2017 as main recruitment deviations
and for the preceding years 1875-2009 as early recruitment deviations. Recruitment deviations were
assumed to have a penalty of 0.5 on the standard deviation (sigmaR).

• All fleets assumed a double-normal (dome-shaped) selectivity (option 24).

• A time-varying selectivity was enabled for the commercial fleet (Figure 9).

• Fishing mortality was modeled using a fleet-specific hybrid F method (Option 4), which is consistent
with best practice. Option five was selected for the fishing mortality (F) report basis; this option
corresponded to the simple unweighted average of the F of the age classes chosen to represent the Fbar
(age 8–13).
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2.8 Model Diagnostics
Prepare outputs of retrospective runs (see Supplement)
retro.idx = r4ss::SSsummarize(retroModels, verbose = F)
retro.len = ss3diags::SSretroComps(retroModels)

2.8.1 Survey indeces

The reference-case model fitted all indices moderately well, with runs tests indicating mixed evidence for a
systematic residual pattern (Figure 10).
sspar(mfrow = c(3, 2), plot.cex = 0.7)
for (i in 1:5) {

SSplotIndices(ref, subplots = 2, fleets = i + 8)
r = SSplotRunstest(ref, add = T, verbose = F, indexselect = i)

}
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Figure 7: Fit, residual diagnostics and hindcast cross-validations for Survey Index
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• Figure 7 check conflict between indices and mean length. As the value are under 30%, no major conflicts
were found

sspar(mfrow = c(1, 2), plot.cex = 0.8)
SSplotJABBAres(ss3rep, subplots = "cpue", add = T, col = sscol(3)[c(1,

3, 2)])
Plotting JABBA residual plot

RMSE stats by Index:
indices RMSE.perc nobs

1 Safari 37.0 10
2 SREAS 9.7 74
3 VCD_2017 30.1 7
4 VCD_1938 15.5 70
5 Halland_com 35.6 24
6 Lobserve 10.3 3
7 Combined 19.9 188

SSplotJABBAres(ss3rep, subplots = "len", add = T, col = sscol(3)[c(1,
3, 2)])

Plotting JABBA residual plot

RMSE stats by Index:
indices RMSE.perc nobs

1 Commercial_official 3.8 11
2 VCD_2017 1.3 7
3 Combined 3.1 18

2.8.2 Size composition

• The estimated selectivity curves are shown in Figure 11, with time-varying selectivity patterns for
illustrated in Figure 12.

• The fits to the size composition data and conditional age-length-key appeared overall adequate and
only showed evidence for non-random residual patterns in few instances. Sex ratio at length by the
current reference case is also satysfying.

sspar(mfrow = c(1, 1), plot.cex = 0.8)
SSplotSelex(ref, subplots = 1)

SSplotComps(ref, subplots = 21)

SSplotComps(ss3rep, subplots = 24)

sspar(mfrow = c(3, 3), plot.cex = 0.5)
for (i in 1:2) {

r = SSplotRunstest(ref, subplots = "len", add = T, indexselect = i,
verbose = F)

}

SSplotSexRatio(ss3rep, kind = "LEN")
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Figure 10: Summary of observed and expected composition data aggregated across years
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Figure 13: Observed and predicted sex ratio by length

17



2017 N=51
effN=47.3

0.0
0.2
0.4
0.6
0.8
1.0

Length (cm)

F
ra

ct
io

n 
fe

m
al

e

2018 N=70
effN=54.9

0.0
0.2
0.4
0.6
0.8
1.0

2019 N=46
effN=43.8

0.0
0.2
0.4
0.6
0.8
1.0

2020 N=52
effN=37.2

0.0
0.2
0.4
0.6
0.8
1.0

2021 N=1032
effN=315.8

0.0
0.2
0.4
0.6
0.8
1.0

2022 N=963
effN=170.1

7 8 9 10 12

0.0
0.2
0.4
0.6
0.8
1.0

2023 N=680
effN=128.6

7 8 9 10 12

Figure 14: Observed and predicted sex ratio by length
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2.8.3 Restropective Analysis with Forecasting

• The retrospective analysis showed a slightly retrospective pattern on SSB from Mohn’s Rho of -0.17,
while the F bias was -0.16. Forecast bias were the same as retrosective bias. All retrospective peels fell
within the 95% confidence intervals of the full model

sspar(mfrow = c(2, 2), plot.cex = 0.65)
r = SSplotRetro(retro.idx, add = T, legend = F, forecast = F,

verbose = F)
r = SSplotRetro(retro.idx, add = T, forecastrho = T, legend = F,

verbose = F, xlim = c(2005, 2023))
r = SSplotRetro(retro.idx, subplots = "F", add = T, legend = F,

forecast = F, verbose = F)
r = SSplotRetro(retro.idx, subplots = "F", add = T, forecastrho = T,

legend = F, verbose = F, xlim = c(2005, 2023))
mtext(c("Retro", "Forecast"), 3, outer = T, line = -0.5, at = c(0.3,

0.8), cex = 0.8)
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Figure 15: Retrospective analysis and retrospective forecasts for the 2024 base-case model
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2.8.4 Hindcast Cross-Validations

Hindcast cross-validations indicated that the model has limited prediction skill for all indices. By contrast,
both the indeces indicated prediction skill for mean lengths (Figure 19).
sspar(mfrow = c(1, 2), plot.cex = 0.5)
SSplotHCxval(retro.len, subplots = "len", add = T, verbose = FALSE)

Index Season MASE MAE.PR MAE.base MASE.adj n.eval
1 Commercial_official 1 26.215262 0.13653419 0.005208195 1.3653419 2
2 VCD_2017 1 1.220097 0.01580474 0.012953671 0.1580474 5

Hindcast with Cross-Validation of CPUE observations
sspar(mfrow = c(2, 2), plot.cex = 0.9)
SSplotHCxval(retroSummary, xmin = 2006, add = T, legendcex = 0.6,

Season = 1)
Plotting Hindcast Cross-Validation (one-step-ahead)

Computing MASE with all 5 of 5 prediction residuals for Index Safari
Warning in min(x): no non-missing arguments to min; returning Inf
Warning in max(x): no non-missing arguments to max; returning -Inf

No observations in evaluation years to compute prediction residuals for Index SREAS

Computing MASE with all 5 of 5 prediction residuals for Index VCD_2017

No observations in evaluation years to compute prediction residuals for Index VCD_1938

Computing MASE with all 5 of 5 prediction residuals for Index Halland_com

Computing MASE with only 2 of 5 prediction residuals for Index Lobserve

Warning: Unequal spacing of naive predictions residuals may influence the interpretation of MASE

MASE stats by Index:
Index Season MASE MAE.PR MAE.base MASE.adj n.eval

1 Safari 1 3.053345 0.7099632 0.2325198 3.053345 5
2 SREAS 1 NA NA NA NA 0
3 VCD_2017 1 1.548711 0.3069549 0.1982003 1.548711 5
4 VCD_1938 1 NA NA NA NA 0
5 Halland_com 1 4.094495 0.6574687 0.1605738 4.094495 5
6 Lobserve 1 12.876485 2.0627023 0.1601914 12.876485 2
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2.8.5 Profiling of steepness

The reference case was further evaluated through profiling it over a range of steepness values h = 0.45 − 0.95.

Figure 22 shows that a lower range of h = 0.45 − 0.65 is supported by the total negative log-likelihood.

The stock status estimates appear insensitive to alternative assumption about the steepness h values under
the value assumed for the reference case (h = 0.80) (Figure 22)

# summarize output
profilesummary <- SSsummarize(profilemodels, verbose = F)
results <- SSplotProfile(profilesummary, add_cutoff = TRUE, verbose = F,

profile.string = "Ricker_beta", profile.label = "Stock-recruit steepness (h)")

h = c(seq(0.45, 0.6, 0.05), seq(0.7, 0.95, 0.05))

mvns = Map(function(x, y) {
SSdeltaMVLN(x, add = T, run = paste0("h=", y), Fref = "MSY",

catch.type = "Exp", years = 1875:2023, verbose = F, plot = F)
}, x = profilemodels, y = h)

Warning in mapply(FUN = f, ..., SIMPLIFY = FALSE): longer argument not a
multiple of length of shorter

sspar(mfrow = c(3, 2), plot.cex = 0.7)
SSplotEnsemble(mvns, uncertainty = T, add = T, legendcex = 0.65,

legendloc = "topright", verbose = F)
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Figure 19: Comparison of stock trajectories with alternative stepness values (h = 0.45-0.95)
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3 Assessment outcome
3.1 Reference Points

• Reference points were estimated within the Stock Synthesis model, where the biomass reference points
are considered as SSB for females. Following the precautionary approach, target reference points of
Btgt = SSB40 (biomass equal to 40 percent of unfished biomass SBB0) and Ftgt = FSB40 (fishing
mortality level at SSB40) were proposed to serve a preliminary as proxies for BMSY and FMSY . In the
light of uncertainty about the underlying stock recruitment relationship, this choice of precautionary
MSY proxies is likely to reduce the asymmetric risk of overfishing, while still attaining more than 95%
of the theoretical MSY at FMSY and ensuring that about more 40% more SBB is left in the water
to ensure both future recruitment and catch opportunities. However, as the ratio between SSBMSY

and SBB0 is similar to SSB40, it was decided to use SSBMSY as biomass reference point and FMSY

as target fishing mortality Ftgt. Moreover, the group proposed trigger (Btrigger) and limit (Blim)
biomass reference points. Accordingly, Btrigger was set to SSBMSY and Blim to 50% of SSBMSY

(Blim = 0.50Btgt).

sspar(mfrow = c(1, 2), plot.cex = 0.7)
SSplot_eqcurves(ref, Fref = "MSY", msyline = 0.95)
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Figure 20: Equilibrium yield curves relative to fishing mortality and spawning stock biomass (SSB). The
vertical lines indicate the location of the precautionary target reference points FSB35 and SSB35 relative to
the theoretical FMSY and BMSY. The horizontal red dashed line denotes 95% of the theoretical maximum
surplus production relative to MSY.

Fmsy Bmsy MSY B0 R0
1 0.0602354 558.536 177.379 1350.06 66587.8

3.2 Stock Status
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mvnbase = FLRef::ssmvln(ref, Fref = "MSY", years = 1875:2023,
verbose = T)

starter.sso with Bratio: SSB/SSBMSY and F: _abs_F

stk = ss2FLStockR(mvnbase)
# Add Btrigger + Blim
stk@refpts = rbind(stk@refpts, FLPar(Btrigger = stk@refpts[[2]] *

1, Blim = stk@refpts[[2]] * 0.5))
# with uncertainty
stki = ss2FLStockR(mvnbase, output = "iters")
stki@refpts = stk@refpts

plotAdvice(stki)
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Figure 21: Estimated stock status trajectories with associated reference points for the 2024 base-case scenario
of European lobster in 3a
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3.3 Comparison with previous model (optional)

load("Reference_2023/Lobster_3a_Reference_2023.RData", verbose = T)
Loading objects:

ss3rep
bm = FLRef::ssmvln(ss3rep, Fref = "MSY", verbose = F)
stk.bm = ss2FLStockR(bm)

plot(FLStocks(New2024 = stk, Reference2023 = stk.bm)) + facet_wrap(~qname,
scales = "free_y") + theme_bw()
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Figure 22: Comparison between the estimated stock status trajectories from the new reference run and the
last previous advice model update from 2023

stks = FLStocks(New2024 = stock2ratios(stk), Reference2023 = stock2ratios(stk.bm))
stks[[1]]@refpts = stks[[1]]@refpts[1:2]
stks[[2]]@refpts = stks[[2]]@refpts[1:2]
plotAdvice(stks)
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Figure 23: Comparison between the relative stock status estimates from the new reference run and the last
previous advice model update from 2023
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knitr::kable(FLRef::flr2stars(stk)$refpts, "pipe", align = "lc",
caption = "Summary of estimated reference points

for 2024 preliminary reference case model of European lobster in 3a")

Table 1: Summary of estimated reference points for 2024 preliminary
reference case model of European lobster in 3a

RefPoint Value
Ftgt 0.060
Btgt 558.537
MSY 177.379
B0 1350.060
R0 66587.800
Btrigger 558.537
Blim 279.269
Fcur 0.048
Bcur 535.253
B0.33 630.019
B0.66 833.572

Save
out = FLRef::flr2stars(stki)$timeseries
mles = FLRef::flr2stars(stk)

# replace medians with mles ( TODO: automise)
out$Rec = mles$timeseries$Rec
out$SSB = mles$timeseries$SSB
out$Bratio = mles$timeseries$Bratio
out$F = mles$timeseries$F
out$Fratio = mles$timeseries$Fratio

write.csv(out, file = "Lobster3a.stars.csv", row.names = F)
write.csv(mles$refpts, file = "Lobster3a.refpts.stars.csv", row.names = F)
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4 F-based forecasting
Fapic is used for good reason in forecasts in order to account for multi- fleet selectivity. Comparing the
partial impacts selectivity pattern requires setting the instantaneous rate of fishing mortality F at comparable
constant levels. For this purpose, it is important to consider that the definition of selectivity differs across
regions (e.g. Fbar or exploitation rate). With regards to temporal compatibility of partial fleet selectivity
effects, Fbar has the undesirable property that its scale depends on the pre-specified age range across which
Fa is averaged. For example, if Fbar is set to ages 1-4 to represent the dominant age classes under the current
selectivity regime, but the goal is to evaluate the effect of selecting fish only at age-5, a common Fbar would
result in disproportionately high Fa on ages 5+. This is because Fbar is computed for age ranges that are
hardly selected for the definition Sa = Fa/max(Fa). For this reason, it is more straight forward to use Fapical

as the standardized quantity F quantify to account for partial impacts of fleet selectivity.

In the following, step-by-step guidelines are provided to setup an Fapic, so that it correctly corresponds to
the Fbar baseline for Ftgt across multiple fleets and seasons.

4.1 Step 1: Basic setup
In this a case, a folder with the reference model run is created and the model outputs are loaded with
r4ss::SS_output

Define name of reference model folder with the fitted ss3 model. Here you need to choose the model of the
grid that is selected as best case
model = "Run2"

Load reference model

ss3rep = SS_output(model)

Next a folder forecast is created
dir.create(paste0("forecast.", model), showWarnings = F)

A new helper function SSnewrun was added to ss3diags to easily create subfolders for the forecast scenarios.
First a Ftgt reference folder is created for initial cross-checks

Specify subfolder path
ftgtdir = file.path(paste0("forecast.", model), "Ftgt")

Create new F forecast model folder. Note that the data and control file and ss.exe names need to be specified
if these diverge from the defaults data.ss, control.ss and ss3.exe
dat = "Lobster_dat.dat"
ctl = "Lobster_ctl.ss"
par = "ss3.par"
ss.exe = "ss3.exe"

SSnewrun(model = model, dat = dat, ctl = ctl, par.file = "ss3.par",
newdir = ftgtdir, ss.exe = "ss3.exe")

Now the forecast file can be read be read with r4ss
fc <- SS_readforecast(file.path(ftgtdir, "forecast.ss"), verbose = F)

4.2 Step 2: Initial F exploitation calculations for Fapic forecast
Extract the $exploitation output from the report file
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Fexp = ss3rep$exploitation

Importantly, the annual_F are scaled to the F-basis (here Fbar), whereas fleet specific F values are always
given as Fapic

Next compute the combined Fapic generically across fleets
Fexp$Fapic = apply(as.matrix(ss3rep$exploitation[, -c(1:6)]),

1, sum, na.rm = T)

and aggregate across seasons, by taking the mean and not the sum.
Fapic = aggregate(Fapic ~ Yr, Fexp, mean)

Next compute the corresponding annual Fbar values from the annual_F
Fbar = aggregate(annual_F ~ Yr, Fexp, mean)

To work out exact ratio between Fapic and Fbar so that it is consistent with the benchmark calculations with
ss3, it is necessary to extract the reference years for selectivity from the forecast.ss file.

The information required for the average selectivity conditions can be found in the forecast.ss file under
$Bmark_years. The third and fourth position define the time horizon for the average selectivity across fleet,
a value of -999 (here) indicates that the whole time series is use, but more commonly averages are taken,
e.g. over the last 3 years, which can be specified as -2 0 or 2019 2021. The following code attempts to compute
this generically.
endyr = ss3rep$endyr
if (fc$Bmark_years[3] < -90) {

nfc = length(min(ss3rep$exploitation$Yr + 1):endyr) # excluded init year
} else {

# if specified (e.g. -2, 0)
nfc = fc$Bmark_years[4] - fc$Bmark_years[3] + 1

}

# Benchmark reference years
bmyrs = (endyr - nfc + 1):endyr

Fratio = mean(Fapic$Fapic[Fapic$Yr %in% max(bmyrs)]/Fbar$annual_F[Fbar$Yr %in%
max(bmyrs)])

Fratio
[1] 3.05232

Fratio defines the ratio of Fapic to Fbar for the reference period

Get the Ftgt reference point, here defined as FB40 . Therefore, the annF_Btgt is extracted.
Fref = c("annF_Btgt", "annF_MSY", "annF_SPR")[1]
Ftgt = ss3rep$derived_quants$Value[ss3rep$derived_quants$Label ==

Fref]
Ftgt.apic = Ftgt * Fratio
Ftgt # Fbar

[1] 0.0617631
Ftgt.apic

[1] 0.1885208

4.3 Setting up the manual F forecast input structure
First, do some basic house keeping for the model structure

32



nseas = length(unique(ss3rep$exploitation$Seas)) # number of seasons
fleets = unique(ss3rep$fatage$Fleet) # fleets
nfleets = length(fleets) # number of fleet

Next, the mean Fapic by fleet and season is calculated
# subset to benchmark years for selectivity
fexp = ss3rep$exploitation[ss3rep$exploitation$Yr %in% bmyrs,

]
fexp = cbind(fexp[, 1:2], fexp[, -c(1:5)])[, -3] #><> single fleet trick

# flip
fexp = reshape2::melt(fexp, id.vars = c("Yr", "Seas"), variable.name = "Fleet",

value.name = "Fapic")
head(fexp)

Yr Seas Fleet Fapic
1 1875 1 Commercial_official 0.0641473
2 1876 1 Commercial_official 0.0700632
3 1877 1 Commercial_official 0.0651366
4 1878 1 Commercial_official 0.0589406
5 1879 1 Commercial_official 0.0792504
6 1880 1 Commercial_official 0.0616395

The forecast file requires Fleet IDs not names. In the next step these are extracted and fleet names are
converted in to Fleet IDs
fleet = data.frame(Fleet = ss3rep$FleetNames, ID = ss3rep$fleet_ID)
fexp$Fleet = fleet[match(fexp$Fleet, fleet$Fleet), 2]

Then, the relative proportions of Fapic by fleet and season can be computed
Fap = aggregate(Fapic ~ Seas + Fleet, fexp, mean)
Fap$prop = Fap$Fapic/sum(Fap$Fapic) * nseas
Fap

Seas Fleet Fapic prop
1 1 1 0.10310839 0.7010579
2 1 3 0.04396704 0.2989421

In the next step, status quo Fsq for forecasting over the intermediate year(s) is defined. This can be relatively
easily changed to intermediate catch years. Here, the Fsq of the average of the last 3 years is used as average,
and the intermediate years are set to 2, account for 1 data lag year and an additional management lag year.
# F status q
nfsq = 3
nint = 2

Compute the Fsq as Fapic vector by season and fleet

fsq = ss3rep$exploitation[ss3rep$exploitation$Yr %in% ((endyr -
nfsq + 1):endyr), ]

fsq = cbind(fsq[, 1:2], fsq[, -c(1:5)])[, -3] #><> single fleet trick
fsq = reshape2::melt(fsq, id.vars = c("Yr", "Seas"), variable.name = "Fleet",

value.name = "Fapic")
Fsq = aggregate(Fapic ~ Seas + Fleet, fsq, mean)

Now, the forecast horizon can be defined in the loaded starter.ss object fc. Note that the forecast years
muct match the same as in the forecast file of the reference run
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fc$Nforecastyrs = 10
nfyrs = fc$Nforecastyrs
fyrs = endyr + c(1:nfyrs)

The F-vector that is passed on the forecast file comprises the season/fleet structure replicates for ninit for
Fsq and the forecast years under Ftgt that is scaled to Fapic by the Fratio and partioned by season and
fleets.
fvec = c(rep(Fsq$Fapic, nint), rep(Ftgt * Fratio * Fap$prop,

nfyrs - nint))

Given the fleet, season, intermediate year and forecast years structures, the forecast table for the forecast.ss
file can finally be constructed.
fc$ForeCatch = data.frame(Year = rep(fyrs, each = nseas * nfleets),

Seas = 1:nseas, Fleet = rep(fleets, each = nseas), `Catch or F` = fvec,
Basis = 99)

head(fc$ForeCatch, 9)
Year Seas Fleet Catch.or.F Basis

1 2024 1 1 0.05331410 99
2 2024 1 3 0.08805547 99
3 2025 1 1 0.05331410 99
4 2025 1 3 0.08805547 99
5 2026 1 1 0.13216396 99
6 2026 1 3 0.05635679 99
7 2027 1 1 0.13216396 99
8 2027 1 3 0.05635679 99
9 2028 1 1 0.13216396 99

Note that the Basis 99 specifies that Fs are inputted (2 would be Catch). Finally, the forecast options need
to be adjusted for manual input
fc$eof = TRUE
fc$InputBasis = -1

and then the modified starter.ss file can be saved

4.4 Running Ftgt forecasts with checks
In principle, the Ftgt can serve as a reference and the model does not have to be run if the goal is set up a
number forecasts relative to Ftgt.

However, for illustration, the Ftgt forecast is run to check that the Fapic will produce Fbar estimates that
are consistent with Ftgt.

To run

# Edit 'starter.ss'
starter.file <- readLines(file.path(ftgtdir, "starter.ss", sep = ""))
linen <- NULL
linen <- grep("# 0=use init values in control file; 1=use ss.par",

starter.file)
starter.file[linen] <- paste0("0 # 0=use init values in control file; 1=use ss.par")
# tells it to use the estimate parameters
write(starter.file, paste(file.path(ftgtdir, "starter.ss", sep = "")))
r4ss::run(ftgtdir, skipfinished = T, show_in_console = F, exe = "ss3.exe")

After the run is finished, the output can be loaded again.
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ftgtrep = SS_output(ftgtdir)
save(ftgtrep, file = "rdata_forecast/ftgtref_Run2.rdata")

load("rdata_forecast/ftgtref_Run2.rdata")

For testing, SSdeltaMVLN is used to computed the trajectories with CIs, but this time the option addprj=T
needs to be added to also include the forecast years
ftgt.test = SSdeltaMVLN(ftgtrep, Fref = "MSY", run = "Ftgt",

addprj = T, plot = F, verbose = F)

sspar(mfrow = c(3, 2), plot.cex = 0.8)
SSplotEnsemble(ftgt.test, add = T, verbose = F, legendloc = "topleft")

It can be readily seen that the Fapic based Ftgt forecast corresponds indeed to the Ftgt estimate on Fbar scale.
library(FLRef)
mvn = FLRef::ssmvln(ftgtrep, Fref = "MSY", addprj = T, verbose = F)

stkf = ss2FLStockR(mvn)
rps = stkf@refpts
stkf@refpts = rbind(rps, FLPar(Bpa = rps["Btgt"] * 1, Blim = rps["Btgt"] *

0.5))

plotAdvice(stkf) + geom_vline(xintercept = 2022.5, linetype = 2)

sspar(mfrow = c(1, 1), plot.cex = 0.8)
SSplotEnsemble(ftgt.test, add = T, subplots = "harvest", verbose = F,

legendloc = "topleft", ylabs = expression(F/F[BMSY]))
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Figure 24: Stock trajectories with 95% CIs for basecase run and a Ftgt forecast
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Figure 25: Stock trajectories for basecase run and a Ftgt forecast, relative to reference points

37



Year

F
F

B
M

S
Y

Ftgt

1900 1950 2000

0.
0

0.
5

1.
0

1.
5

Figure 26: Stock trajectories with 95% CIs for basecase run and a Ftgt forecast

4.5 Looping through forecast scenarios
Set up ratios relative to Fsq in this case
Ffrac = c(0.01, seq(0.6, 1.1, 0.1))

Specify forecast folders
fcdirs = file.path(paste0("forecast.", model), paste0("Fsq",

Ffrac))

Loop through the process of modifying the forecast.ss file iteratively. The Ffrac is applied to apportioned
Ftgt vector.

Create the forecast batch list
foreBatch <- list()

for (i in 1:length(Ffrac)) {
dir.tacN <- paste0(main.dir, "/forecast.Run2/", "Fsq", Ffrac[i],

"/")

## Create the forecast batch list
foreBatch <- c(foreBatch, as.list(dir.tacN))

}

library(parallel)
library(doParallel)
cl <- makeCluster(20, type = "PSOCK")
registerDoParallel(cl)
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for (i in 1:length(Ffrac)) {
# create model folder
SSnewrun(model = ftgtdir, dat = dat, ctl = ctl, par.file = "ss3.par",

newdir = fcdirs[i], ss.exe = "ss3.exe")
# Edit 'starter.ss'
starter.file <- readLines(file.path(fcdirs[i], "starter.ss",

sep = ""))
linen <- NULL
linen <- grep("# 0=use init values in control file; 1=use ss.par",

starter.file)
starter.file[linen] <- paste0("1 # 0=use init values in control file; 1=use ss.par")
# tells it to use the estimate parameters
write(starter.file, paste(file.path(fcdirs[i], "starter.ss",

sep = "")))
# Read Forecast file
fc <- SS_readforecast(file.path(fcdirs[i], "forecast.ss"))
# Apply Ffrac Create F forecast vector (generic) Change
# to Fsq
fvec = c(rep(Fsq$Fapic, nint), rep(Fsq$Fapic * Ffrac[i],

nfyrs - nint))
# Create F forecast table in forecast.ss
fc$ForeCatch = data.frame(Year = rep(fyrs, each = nseas *

nfleets), Seas = 1:nseas, Fleet = rep(fleets, each = nseas),
`Catch or F` = fvec, Basis = 99)

SS_writeforecast(fc, file = file.path(fcdirs[i], "forecast.ss"),
overwrite = T)

}

foreach(i = 1:length(Ffrac), .packages = "r4ss") %dopar% {
cat("core:", i + 1, "\n")
r4ss::run(foreBatch[[i]], skipfinished = F, show_in_console = FALSE,

exe = ss.exe)
# r4ss::run(fcdirs[i], extras = '-maxfn 0 -phase 50',
# skipfinished = F, show_in_console = TRUE, exe=ss.exe)

}

Load all runs in one go with SSgetoutput
fcs = SSgetoutput(dirvec = c(fcdirs, ftgtdir))
save(fcs, file = "rdata_forecast/ftgtref_Run2.rdata")

Create list with outputs from SSdeltaMVLN

sspar(mfrow = c(3, 3), plot.cex = 0.8)

fmvns = Map(function(x, y) {
out = SSdeltaMVLN(x, Fref = "MSY", verbose = F, run = y,

addprj = T, plot = T)
mtext(y, outer = F, cex = 0.8)
return(out)

}, x = fcs, y = as.list(c(paste0("Fsq", Ffrac), "Ftgt")))

Plot forecasts with SSplotEnsemble
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Figure 27: Kobe plot checks for the final forecast year
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sspar(mfrow = c(3, 2), plot.cex = 0.8)
SSplotEnsemble(fmvns, add = T, verbose = F, legendloc = "topleft")
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Figure 28: Stock trajectories with 95% CIs for basecase run and forecast scanarios relative Fsq and for Ftgt
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Convert to FLR format

fstks = FLStocks(Map(function(x, y) {
out = FLRef::ssmvln(x, Fref = "MSY", verbose = F, run = y,

addprj = T)
out = ss2FLStockR(out)
out@refpts = stkf@refpts[-4] # Remove B0
return(out)

}, x = fcs, y = as.list(c(paste0("Fsq", Ffrac), "Ftgt"))))
names(fstks) = c(paste0("Fsq", Ffrac), "Ftgt")
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plotAdvice(window(fstks, start = 2013)) + geom_vline(xintercept = c(2022,
2024), linetype = 28)
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Figure 29: Trajectories for the basecase run and forecast scanarios relative Fsq and for Ftgt
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out = cbind(FLRef::fwd2stars(fstks, eval.yrs = 2026), FLRef::fwd2stars(fstks,
eval.yrs = 2026, rel = T)[, 3:4])

out[, 2:3] = round(out[, 2:3], 1)
out[, 4:6] = round(out[, 4:6], 3)
knitr::kable(out, "pipe", align = "lccccc", caption = "Summary of short-term forecast

scenario results for 2026")

Table 2: Summary of short-term forecast scenario results for 2026

scenario C2026 B2026 F2026 B2026/Btgt F2026/Ftgt
Fsq0.01 1.2 570.1 0.000 0.989 0.008
Fsq0.6 71.4 570.1 0.028 0.989 0.469
Fsq0.7 83.1 570.1 0.033 0.989 0.546
Fsq0.8 94.8 570.1 0.037 0.989 0.623
Fsq0.9 106.4 570.1 0.042 0.989 0.700
Fsq1 117.9 570.1 0.047 0.989 0.776
Fsq1.1 129.4 570.1 0.051 0.989 0.853
Ftgt 178.1 662.8 0.061 1.150 1.023

Save forecast table to STAR format
write.csv(out, file = "Lobster3a.fwd.stars.csv", row.names = F)
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5 Supplement: R code to run diagnostics and summary

# ><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>
# > Stock Synthesis reference model summary and diagnostic
# for Lobsters 3a > @author Henning Winker (GFCM), modified
# by Max Cardinale (SLU) > henning.winker@fao.org

# ><>><>><>><>><>><> Load packages
library("r4ss")
library("ss3diags")

# First set working directory to the R file location with
# ss3 subfolders

# Define run name of folder
run = "Run2"

# Load the model run
ss3rep = SS_output(run)

# Plot the model run
r4ss::SS_plots(ss3rep)

# Save the r4ss object as rdata
dir.create("rdata")
save(ss3rep, file = file.path("rdata", paste0("Lobster3a_", run,

".rdata")))

# approximate uncertainty and produce Kobe Plot
sspar(mfrow = c(1, 1))
mvn = SSdeltaMVLN(ss3rep, Fref = "MSY", run = "ref", catch.type = "Exp")

# Plot trajectories with CIs
sspar(mfrow = c(3, 2))
SSplotEnsemble(list(mvn), add = T)

# ><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>
# DO RETRO
# ><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>
start.retro <- 0 # end year of reference year
end.retro <- 5 # number of years for retrospective e.g.,
dirname.base = run
model.run <- file.path(dirname.base)
model.run

### Step 3: DAT and CONTROL files
DAT = "Lobster_dat.dat"
CTL = "Lobster_ctl.ss"
dir.retro = file.path(dirname.base, "Retrospective")
dir.create(path = dir.retro, showWarnings = F)

# Copy files
file.copy(file.path(model.run, "starter.ss_new"), file.path(dir.retro,

"starter.ss"))
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file.copy(file.path(model.run, "control.ss_new"), file.path(dir.retro,
CTL))

file.copy(file.path(model.run, DAT), file.path(dir.retro, DAT))
file.copy(file.path(model.run, "forecast.ss"), file.path(dir.retro,

"forecast.ss"))
file.copy(file.path(model.run, "ss3.exe"), file.path(dir.retro,

"ss3.exe"))

# Automatically ignored for models without wtatage.ss
file.copy(file.path(model.run, "wtatage.ss"), file.path(dir.retro,

"wtatage.ss"))
starter <- readLines(paste0(dir.retro, "/starter.ss"))

# [8] '2 # run display detail (0,1,2)'
linen <- grep("# run display detail", starter)
starter[linen] <- paste0(1, " # run display detail (0,1,2)")

# write modified starter.ss
write(starter, file.path(dir.retro, "starter.ss"))

### Step 6: Execute retrospective runs r4ss::retro(dir =
### dir.retro, oldsubdir = '', newsubdir = '', years =
### start.retro:-end.retro)
r4ss::retro(dir = dir.retro, oldsubdir = "", newsubdir = "",

years = start.retro:-end.retro, verbose = T)

retro <- r4ss::SSgetoutput(dirvec = file.path(dir.retro, paste0("retro",
start.retro:-end.retro)))

save(retro, file = paste0("retro_", run, ".rdata"))

# Reload
load(file = paste0("retro_", run, ".rdata"))
retro.idx = r4ss::SSsummarize(retro)
retro.len = ss3diags::SSretroComps(retro)

# ><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>
# Compile results summary
# ><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>

# Make output PDF
pdf(paste0("Lobster3a_", run, ".pdf"))
sspar(mfrow = c(2, 2), plot.cex = 0.7)
SSplotBiology(ss3rep, mainTitle = F, subplots = c(1))
SSplotBiology(ss3rep, mainTitle = F, subplots = c(21))
SSplotBiology(ss3rep, mainTitle = F, subplots = c(6))
SSplotBiology(ss3rep, mainTitle = F, subplots = c(9))

sspar(mfrow = c(2, 2), plot.cex = 0.7)
SSplotBiology(ss3rep, mainTitle = F, subplots = c(4))

# Recruitment
sspar(mfrow = c(2, 2), plot.cex = 0.7)
SSplotRecdevs(ss3rep, subplots = 1)
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SSplotRecdevs(ss3rep, subplots = 2)
SSplotSpawnrecruit(ss3rep, subplots = 1)
SSplotSpawnrecruit(ss3rep, subplots = 3)

par(mfrow = c(1, 1))
SSplotDynamicB0(ss3rep)

sspar(mfrow = c(1, 3), plot.cex = 0.7)
SSplotIndices(ss3rep, subplots = 2)

sspar(mfrow = c(1, 1), plot.cex = 0.7)
SSplotIndices(ss3rep, subplots = 9)

sspar(mfrow = c(2, 3), plot.cex = 0.9)
SSplotHCxval(retro.idx, xmin = 2006, add = T, legendcex = 0.6,

Season = 1)
SSplotHCxval(retro.len, add = T, subplots = "len", legendloc = "topleft",

indexUncertainty = TRUE, legendcex = 0.6)

par(mfrow = c(1, 1))
SSplotSelex(ss3rep, subplots = 1)

SSplotComps(ss3rep, subplots = 21)

SSplotComps(ss3rep, subplots = 1)

SSplotSexRatio(ss3rep, kind = "LEN")

# Bubble
SSplotComps(ss3rep, subplots = 24)

# ALK
SSplotComps(ss3rep, kind = "cond", subplots = 3)

# Runs Fleets
sspar(mfrow = c(3, 3), plot.cex = 0.5)
SSplotRunstest(ss3rep, subplots = "len", add = T)

# HC Fleets
sspar(mfrow = c(3, 2), plot.cex = 0.5)
for (i in 1:2) {

SSplotHCxval(retro.len, subplots = "len", add = T, legendloc = "topleft",
indexselect = i)

}

# Retro
sspar(mfrow = c(2, 2), plot.cex = 0.65)
SSplotRetro(retro.idx, add = T, legend = F, forecast = F)
SSplotRetro(retro.idx, add = T, forecastrho = T, legend = F)
SSplotRetro(retro.idx, subplots = "F", add = T, legend = F, forecast = F)
SSplotRetro(retro.idx, subplots = "F", add = T, forecastrho = T,

legend = F)
mtext(c("Retro", "Forecast"), 3, outer = T, line = -0.5, at = c(0.3,
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0.8), cex = 0.8)

par(mfrow = c(1, 1))
SSplotYield(ss3rep, subplots = 2)

sspar(mfrow = c(1, 1))
mvn = SSdeltaMVLN(ss3rep, Fref = "MSY", catch.type = "Exp", run = "ref")

sspar(mfrow = c(3, 2))
SSplotEnsemble(list(mvn), add = T)

dev.off()

#><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>
### PROFILING STEEPNESS
#><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>

# Create subdirectory for profile runs
dir.create(file.path(getwd(),run, "profile"))

# specify directory
dir_prof <- file.path(getwd(),run, "profile")

# Copy/Paste ss3 files for running profiles
copy_SS_inputs(

dir.old = file.path(getwd(),run),
dir.new = dir_prof,
copy_exe = TRUE,
create.dir = TRUE,
overwrite = TRUE,
copy_par = TRUE,
verbose = TRUE

)

# Manipulate starter file
starter <- SS_readstarter(file.path(dir_prof, "starter.ss"))

# change control file name in the starter file
starter[["ctlfile"]] <- "control_modified.ss"

# make sure the prior likelihood is calculated
# for non-estimated quantities
starter[["prior_like"]] <- 1

# write modified starter file
SS_writestarter(starter, dir = dir_prof, overwrite = TRUE)

# define steepness range
h.vec <- seq(0.45, 0.95, .05)

# Specify dat and control files
DAT = "Lobster_dat.dat"
CTL = "Lobster_ctl.ss"
Nprofile <- length(h.vec)
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# run profile command
ncores <- parallelly::availableCores(omit = 1)
future::plan(future::multisession, workers = ncores)
profile <- r4ss::profile(

dir = dir_prof,
oldctlfile = paste(CTL),
newctlfile = "control_modified.ss",
string = "Ricker_beta", # subset of parameter label
exe = "ss3.exe",
profilevec = h.vec, skipfinished=T,

)

future::plan(future::sequential)

# compile model runs (exclude 6 and 7 because the Hessian did not invert)
profilemodels <- SSgetoutput(dirvec = dir_prof, keyvec = c(1:7,8:Nprofile))

# Save as rdata
save(profilemodels,file=paste0(dir_prof,"/profile_h.ref.rdata"))

# summarize output
profilesummary <- SSsummarize(profilemodels)

# Make log-likelihood profile plot
results <- SSplotProfile(profilesummary,

profile.string = "Ricker_beta",
profile.label = "Stock-recruit steepness (h)"

)

# check results
results
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Diagnostics and Sensitivity of Stock Synthesis model for European
lobster in 3a

Max Cardinale (SLU)

30 September, 2024

0.1 Load packages

# Load
library(r4ss)
library(ss3diags)
library(mvtnorm)
library(FLCore)
library(ggplotFL)
library(kobe)
require(plyr)
require(dplyr)
require(reshape2)
library(grid)
library(png)
library(parallel)
library(doParallel)
cl <- makeCluster(10, type = "PSOCK")
registerDoParallel(cl)

1 Lobster 3a benchmark
All models are annual, two sex, two fleets and with several surveys

The BMSY proxy is used as reference point with a corresponding FMSY

• Reference_run Reference run, average catches, steepness 0.80
• Run1 Low catches
• Run2 High catches
• Run3 Reference run, low steepness (0.65)
• Run4 Reference run, high steepness (0.90)
• Run5 Reference run, time varying selectivity of the commercial fleet since 2018
• Run6 Reference run, high catches, low steepness

scenarios = c("Reference_run", "Run1", "Run2", "Run3", "Run4", "Run5", "Run6")

1.1 Load runs
Define folder with R data files
rdata = "rdata_runs"
runs = list.files(rdata)
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Get list of rdata files
mods = list()
for (i in 1:length(runs)) {

load(file.path(rdata, runs[i]))
mods[[i]] = ss3rep

}
mods = mods[c(1, 2, 3, 4, 5, 6, 7)]
names(mods) = scenarios

2 Selected Model Diagnostics
More computational intense model diagnostic were run for 7 selected runs:

• Reference_run Reference run, average catches
• Run1 Low catches
• Run2 High catches
• Run3 Reference run, low steepness
• Run4 Reference run, high steepness
• Run5 Reference run, time varying selectivity of the commercial fleet since 2018
• Run6 Reference run, high catches, low steepness

Select the runs used for diagnostics
dm = mods[c(1, 2, 3, 4, 5, 6, 7)]

Load retro data
rdata = "rdata_retros"
runs = list.files(rdata)
retros = list()
for (i in 1:length(runs)) {

load(file.path(rdata, runs[i]))
retros[[i]] = retroModels

}

hcs = retros[c(1, 2, 3, 4, 5, 6, 7)]
names(hcs) = names(dm)

Make list of hindcast trends form retrospective runs

hc = lapply(hcs, function(x) {
hci = r4ss::SSsummarize(x, verbose = F)
hci

})

Compile length comps from retrospective runs

hc.age = lapply(hcs, function(x) {
hcl = ss3diags::SSretroComps(x)
hcl

})
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2.1 Goodness of Fits
2.1.1 Indices

sspar(mfrow = c(2, 4), plot.cex = 0.9)
SSplotJABBAres(dm[[1]], add = T, verbose = F)

indices RMSE.perc nobs
1 Safari 36.3 10
2 SREAS 9.6 74
3 VCD_2017 29.7 7
4 VCD_1938 15.4 70
5 Halland_com 35.4 24
6 Lobserve 10.4 3
7 Combined 19.7 188

legend("topleft", "Reference run", cex = 1.3)
SSplotJABBAres(dm[[2]], add = T, verbose = F)

indices RMSE.perc nobs
1 Safari 35.5 10
2 SREAS 9.5 74
3 VCD_2017 29.3 7
4 VCD_1938 15.4 70
5 Halland_com 35.2 24
6 Lobserve 10.5 3
7 Combined 19.6 188

legend("topleft", "Run1", cex = 1.3)
SSplotJABBAres(dm[[3]], add = T, verbose = F)

indices RMSE.perc nobs
1 Safari 37.0 10
2 SREAS 9.7 74
3 VCD_2017 30.1 7
4 VCD_1938 15.5 70
5 Halland_com 35.6 24
6 Lobserve 10.3 3
7 Combined 19.9 188

legend("topleft", "Run2", cex = 1.3)
SSplotJABBAres(dm[[4]], add = T, verbose = F)

indices RMSE.perc nobs
1 Safari 38.4 10
2 SREAS 9.5 74
3 VCD_2017 31.0 7
4 VCD_1938 15.2 70
5 Halland_com 35.1 24
6 Lobserve 10.0 3
7 Combined 19.9 188

legend("topleft", "Run3", cex = 1.3)
SSplotJABBAres(dm[[5]], add = T, verbose = F)

indices RMSE.perc nobs
1 Safari 35.4 10
2 SREAS 9.7 74
3 VCD_2017 29.3 7
4 VCD_1938 15.6 70
5 Halland_com 35.9 24
6 Lobserve 10.5 3
7 Combined 19.8 188
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legend("topleft", "Run4", cex = 1.3)
SSplotJABBAres(dm[[6]], add = T, verbose = F)

indices RMSE.perc nobs
1 Safari 32.1 10
2 SREAS 9.6 74
3 VCD_2017 29.3 7
4 VCD_1938 15.6 70
5 Halland_com 34.4 24
6 Lobserve 11.5 3
7 Combined 19.1 188

legend("topleft", "Run5", cex = 1.3)
SSplotJABBAres(dm[[7]], add = T, verbose = F)

indices RMSE.perc nobs
1 Safari 39.2 10
2 SREAS 9.6 74
3 VCD_2017 31.4 7
4 VCD_1938 15.2 70
5 Halland_com 35.6 24
6 Lobserve 9.9 3
7 Combined 20.1 188

legend("topleft", "Run6", cex = 1.3)

sspar(mfrow = c(3, 5), plot.cex = 0.9)
SSplotRunstest(dm[[1]], add = T, verbose = F)

Index runs.p test sigma3.lo sigma3.hi type
1 Safari 0.004 Failed -0.6428083 0.6428083 cpue
2 SREAS 0.322 Passed -0.2814719 0.2814719 cpue
3 VCD_2017 0.024 Failed -0.5992328 0.5992328 cpue
4 VCD_1938 0.016 Failed -0.3889467 0.3889467 cpue
5 Halland_com 0.006 Failed -0.4669317 0.4669317 cpue
6 Lobserve NA Excluded NA NA cpue

legend("topleft", "Reference run", cex = 1.2)
SSplotRunstest(dm[[2]], add = T, verbose = F)

Index runs.p test sigma3.lo sigma3.hi type
1 Safari 0.004 Failed -0.6393968 0.6393968 cpue
2 SREAS 0.322 Passed -0.2804605 0.2804605 cpue
3 VCD_2017 0.024 Failed -0.5957325 0.5957325 cpue
4 VCD_1938 0.017 Failed -0.3892941 0.3892941 cpue
5 Halland_com 0.006 Failed -0.5227946 0.5227946 cpue
6 Lobserve NA Excluded NA NA cpue

legend("topleft", "Run1", cex = 1.2)
SSplotRunstest(dm[[3]], add = T, verbose = F)

Index runs.p test sigma3.lo sigma3.hi type
1 Safari 0.004 Failed -0.6459705 0.6459705 cpue
2 SREAS 0.322 Passed -0.2824468 0.2824468 cpue
3 VCD_2017 0.024 Failed -0.6024173 0.6024173 cpue
4 VCD_1938 0.016 Failed -0.3887542 0.3887542 cpue
5 Halland_com 0.006 Failed -0.4647152 0.4647152 cpue
6 Lobserve NA Excluded NA NA cpue

legend("topleft", "Run2", cex = 1.3)

sspar(mfrow = c(4, 5), plot.cex = 0.9)
SSplotRunstest(dm[[4]], add = T, verbose = F)

Index runs.p test sigma3.lo sigma3.hi type
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Figure 1: Index residual plots for the surveys index with trends for seven scenarios
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Figure 2: Index residual runs tests for the survey indeces for Reference run, Run1 and Run2
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1 Safari 0.004 Failed -0.6564131 0.6564131 cpue
2 SREAS 0.322 Passed -0.2797275 0.2797275 cpue
3 VCD_2017 0.024 Failed -0.6086843 0.6086843 cpue
4 VCD_1938 0.048 Failed -0.3861595 0.3861595 cpue
5 Halland_com 0.000 Failed -0.4654041 0.4654041 cpue
6 Lobserve NA Excluded NA NA cpue

legend("topleft", "Run3", cex = 1.2)
SSplotRunstest(dm[[5]], add = T, verbose = F)

Index runs.p test sigma3.lo sigma3.hi type
1 Safari 0.004 Failed -0.6375889 0.6375889 cpue
2 SREAS 0.339 Passed -0.2824150 0.2824150 cpue
3 VCD_2017 0.024 Failed -0.5954087 0.5954087 cpue
4 VCD_1938 0.017 Failed -0.3903560 0.3903560 cpue
5 Halland_com 0.000 Failed -0.5214147 0.5214147 cpue
6 Lobserve NA Excluded NA NA cpue

legend("topleft", "Run4", cex = 1.2)
SSplotRunstest(dm[[6]], add = T, verbose = F)

Index runs.p test sigma3.lo sigma3.hi type
1 Safari 0.004 Failed -0.5663857 0.5663857 cpue
2 SREAS 0.322 Passed -0.2808420 0.2808420 cpue
3 VCD_2017 0.024 Failed -0.5804599 0.5804599 cpue
4 VCD_1938 0.017 Failed -0.3886723 0.3886723 cpue
5 Halland_com 0.007 Failed -0.4908392 0.4908392 cpue
6 Lobserve NA Excluded NA NA cpue

legend("topleft", "Run5", cex = 1.2)
SSplotRunstest(dm[[7]], add = T, verbose = F)

Index runs.p test sigma3.lo sigma3.hi type
1 Safari 0.004 Failed -0.6598543 0.6598543 cpue
2 SREAS 0.322 Passed -0.2807736 0.2807736 cpue
3 VCD_2017 0.024 Failed -0.6117915 0.6117915 cpue
4 VCD_1938 0.046 Failed -0.3859203 0.3859203 cpue
5 Halland_com 0.000 Failed -0.4631637 0.4631637 cpue
6 Lobserve NA Excluded NA NA cpue

legend("topleft", "Run6", cex = 1.2)
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Figure 3: Index residual runs tests for the survey indeces for Run3 to Run6
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2.1.2 Size Composition Data

sspar(mfrow = c(2, 4), plot.cex = 0.9)
SSplotJABBAres(dm[[1]], add = T, subplots = "len", verbose = F)

indices RMSE.perc nobs
1 Commercial_official 3.8 11
2 VCD_2017 1.3 7
3 Combined 3.1 18

legend("topleft", "Reference run", cex = 1.3)
SSplotJABBAres(dm[[2]], add = T, subplots = "len", verbose = F)

indices RMSE.perc nobs
1 Commercial_official 3.8 11
2 VCD_2017 1.3 7
3 Combined 3.1 18

legend("topleft", "Run1", cex = 1.3)
SSplotJABBAres(dm[[3]], add = T, subplots = "len", verbose = F)

indices RMSE.perc nobs
1 Commercial_official 3.8 11
2 VCD_2017 1.3 7
3 Combined 3.1 18

legend("topleft", "Run2", cex = 1.3)
SSplotJABBAres(dm[[4]], add = T, subplots = "len", verbose = F)

indices RMSE.perc nobs
1 Commercial_official 3.7 11
2 VCD_2017 1.2 7
3 Combined 3.0 18

legend("topleft", "Run3", cex = 1.3)
SSplotJABBAres(dm[[5]], add = T, subplots = "len", verbose = F)

indices RMSE.perc nobs
1 Commercial_official 3.8 11
2 VCD_2017 1.3 7
3 Combined 3.1 18

legend("topleft", "Run4", cex = 1.3)
SSplotJABBAres(dm[[6]], add = T, subplots = "len", verbose = F)

indices RMSE.perc nobs
1 Commercial_official 2.8 11
2 VCD_2017 1.3 7
3 Combined 2.3 18

legend("topleft", "Run5", cex = 1.3)
SSplotJABBAres(dm[[7]], add = T, subplots = "len", verbose = F)

indices RMSE.perc nobs
1 Commercial_official 3.8 11
2 VCD_2017 1.2 7
3 Combined 3.0 18

legend("topleft", "Run6", cex = 1.3)
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Figure 4: Index residual plots for the mean length with trends for seven scenarios
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2.1.3 Reference run

i = 1
sspar(mfrow = c(2, 2), plot.cex = 0.65)
SSplotRunstest(dm[[i]], add = T, subplots = "len", verbose = F)

Index runs.p test sigma3.lo sigma3.hi type
1 Commercial_official 0.002 Failed -0.06183628 0.06183628 len
2 VCD_2017 0.358 Passed -0.03094218 0.03094218 len
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Figure 5: Residual runs tests on mean length for the Reference run
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2.1.4 Run1

# Retro
i = 2
sspar(mfrow = c(2, 2), plot.cex = 0.65)
SSplotRunstest(dm[[i]], add = T, subplots = "len", verbose = F)

Index runs.p test sigma3.lo sigma3.hi type
1 Commercial_official 0.002 Failed -0.06202354 0.06202354 len
2 VCD_2017 0.358 Passed -0.03096474 0.03096474 len
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Figure 6: Residual runs tests on mean length for the Run1
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2.1.5 Run2

i = 3
sspar(mfrow = c(2, 2), plot.cex = 0.65)
SSplotRunstest(dm[[i]], add = T, subplots = "len", verbose = F)

Index runs.p test sigma3.lo sigma3.hi type
1 Commercial_official 0.002 Failed -0.06166386 0.06166386 len
2 VCD_2017 0.358 Passed -0.03092499 0.03092499 len
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Figure 7: Residual runs tests on mean length for the Run2
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2.1.6 Run3

i = 4
sspar(mfrow = c(2, 2), plot.cex = 0.65)
SSplotRunstest(dm[[i]], add = T, subplots = "len", verbose = F)

Index runs.p test sigma3.lo sigma3.hi type
1 Commercial_official 0.002 Failed -0.06143299 0.06143299 len
2 VCD_2017 0.358 Passed -0.03092336 0.03092336 len
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Figure 8: Residual runs tests on mean length for the Run3

2.1.7 Run4

i = 5
sspar(mfrow = c(2, 2), plot.cex = 0.65)
SSplotRunstest(dm[[i]], add = T, subplots = "len", verbose = F)

Index runs.p test sigma3.lo sigma3.hi type
1 Commercial_official 0.002 Failed -0.06201207 0.06201207 len
2 VCD_2017 0.358 Passed -0.03093980 0.03093980 len
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Figure 9: Residual runs tests on mean length for the Run4

2.1.8 Run5

i = 5
sspar(mfrow = c(2, 2), plot.cex = 0.65)
SSplotRunstest(dm[[i]], add = T, subplots = "len", verbose = F)

Index runs.p test sigma3.lo sigma3.hi type
1 Commercial_official 0.002 Failed -0.06201207 0.06201207 len
2 VCD_2017 0.358 Passed -0.03093980 0.03093980 len
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Figure 10: Residual runs tests on mean length for the Run5

2.1.9 Run6

i = 6
sspar(mfrow = c(2, 2), plot.cex = 0.65)
SSplotRunstest(dm[[i]], add = T, subplots = "len", verbose = F)

Index runs.p test sigma3.lo sigma3.hi type
1 Commercial_official 0.002 Failed -0.03481926 0.03481926 len
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2 VCD_2017 0.358 Passed -0.03214353 0.03214353 len
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Figure 11: Residual runs tests on mean length for the Run6
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2.2 Retrospective Analysis
2.2.1 Reference run

# Retro
i = 1
sspar(mfrow = c(2, 2), plot.cex = 0.65)
SSplotRetro(hc[[i]], add = T, legend = F, forecast = F, verbose = F)

type peel Rho ForecastRho
1 SSB 2022 -0.02281115 -0.03535847
2 SSB 2021 -0.06052096 -0.07498143
3 SSB 2020 -0.16568139 -0.14036269
4 SSB 2019 -0.22876252 -0.22121913
5 SSB 2018 -0.29681483 -0.30968865
6 SSB Combined -0.15491817 -0.15632207

SSplotRetro(hc[[i]], add = T, forecastrho = T, legend = F, verbose = F)
type peel Rho ForecastRho

1 SSB 2022 -0.02281115 -0.03535847
2 SSB 2021 -0.06052096 -0.07498143
3 SSB 2020 -0.16568139 -0.14036269
4 SSB 2019 -0.22876252 -0.22121913
5 SSB 2018 -0.29681483 -0.30968865
6 SSB Combined -0.15491817 -0.15632207

SSplotRetro(hc[[i]], subplots = "F", add = T, legend = F, forecast = F, verbose = F)
type peel Rho ForecastRho

1 F 2022 0.05163841 0.04705691
2 F 2021 0.10593070 0.13328807
3 F 2020 0.08863853 0.08737569
4 F 2019 0.20531882 0.14106748
5 F 2018 0.38952101 0.28029045
6 F Combined 0.16820949 0.13781572

SSplotRetro(hc[[i]], subplots = "F", add = T, forecastrho = T, legend = F, verbose = F)
type peel Rho ForecastRho

1 F 2022 0.05163841 0.04705691
2 F 2021 0.10593070 0.13328807
3 F 2020 0.08863853 0.08737569
4 F 2019 0.20531882 0.14106748
5 F 2018 0.38952101 0.28029045
6 F Combined 0.16820949 0.13781572

mtext(c("Retro", "Forecast"), 3, outer = T, line = -0.5, at = c(0.3, 0.8), cex = 0.8)
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Figure 12: Retrospective analysis and retrospective forecasts for the Reference run
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2.2.2 Run1

# Retro
i = 2
sspar(mfrow = c(2, 2), plot.cex = 0.65)
SSplotRetro(hc[[i]], add = T, legend = F, forecast = F, verbose = F)

type peel Rho ForecastRho
1 SSB 2022 -0.01544425 -0.02713530
2 SSB 2021 -0.04609378 -0.05954398
3 SSB 2020 -0.15242782 -0.12707108
4 SSB 2019 -0.21327484 -0.20641126
5 SSB 2018 -0.28393494 -0.29689119
6 SSB Combined -0.14223512 -0.14341056

SSplotRetro(hc[[i]], add = T, forecastrho = T, legend = F, verbose = F)
type peel Rho ForecastRho

1 SSB 2022 -0.01544425 -0.02713530
2 SSB 2021 -0.04609378 -0.05954398
3 SSB 2020 -0.15242782 -0.12707108
4 SSB 2019 -0.21327484 -0.20641126
5 SSB 2018 -0.28393494 -0.29689119
6 SSB Combined -0.14223512 -0.14341056

SSplotRetro(hc[[i]], subplots = "F", add = T, legend = F, forecast = F, verbose = F)
type peel Rho ForecastRho

1 F 2022 0.04300870 0.03765159
2 F 2021 0.08828711 0.11384705
3 F 2020 0.06917258 0.06085709
4 F 2019 0.18674502 0.11565549
5 F 2018 0.37641248 0.26326568
6 F Combined 0.15272518 0.11825538

SSplotRetro(hc[[i]], subplots = "F", add = T, forecastrho = T, legend = F, verbose = F)
type peel Rho ForecastRho

1 F 2022 0.04300870 0.03765159
2 F 2021 0.08828711 0.11384705
3 F 2020 0.06917258 0.06085709
4 F 2019 0.18674502 0.11565549
5 F 2018 0.37641248 0.26326568
6 F Combined 0.15272518 0.11825538

mtext(c("Retro", "Forecast"), 3, outer = T, line = -0.5, at = c(0.3, 0.8), cex = 0.8)
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Figure 13: Retrospective analysis and retrospective forecasts for the Run1
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2.2.3 Run2

# Retro
i = 3
sspar(mfrow = c(2, 2), plot.cex = 0.65)
SSplotRetro(hc[[i]], add = T, legend = F, forecast = F)

Plotting Retrospective pattern

Mohn's Rho stats, including one step ahead forecasts:
type peel Rho ForecastRho

1 SSB 2022 -0.02628519 -0.03965041
2 SSB 2021 -0.06772356 -0.08312696
3 SSB 2020 -0.16545752 -0.13969912
4 SSB 2019 -0.23085416 -0.22257962
5 SSB 2018 -0.30509461 -0.31794733
6 SSB Combined -0.15908301 -0.16060069

SSplotRetro(hc[[i]], add = T, forecastrho = T, legend = F)
Plotting Retrospective pattern

Mohn's Rho stats, including one step ahead forecasts:
type peel Rho ForecastRho

1 SSB 2022 -0.02628519 -0.03965041
2 SSB 2021 -0.06772356 -0.08312696
3 SSB 2020 -0.16545752 -0.13969912
4 SSB 2019 -0.23085416 -0.22257962
5 SSB 2018 -0.30509461 -0.31794733
6 SSB Combined -0.15908301 -0.16060069

SSplotRetro(hc[[i]], subplots = "F", add = T, legend = F, forecast = F)
Plotting Retrospective pattern

Mohn's Rho stats, including one step ahead forecasts:
type peel Rho ForecastRho

1 F 2022 0.05591402 0.05208445
2 F 2021 0.11483160 0.14370420
3 F 2020 0.08888969 0.09877999
4 F 2019 0.20326943 0.14477405
5 F 2018 0.39511122 0.28950523
6 F Combined 0.17160319 0.14576958

SSplotRetro(hc[[i]], subplots = "F", add = T, forecastrho = T, legend = F)
Plotting Retrospective pattern

Mohn's Rho stats, including one step ahead forecasts:
type peel Rho ForecastRho

1 F 2022 0.05591402 0.05208445
2 F 2021 0.11483160 0.14370420
3 F 2020 0.08888969 0.09877999
4 F 2019 0.20326943 0.14477405
5 F 2018 0.39511122 0.28950523
6 F Combined 0.17160319 0.14576958

mtext(c("Retro", "Forecast"), 3, outer = T, line = -0.5, at = c(0.3, 0.8), cex = 0.8)
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Figure 14: Retrospective analysis and retrospective forecasts for the Run2
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2.2.4 Run3

# Retro
i = 4
sspar(mfrow = c(2, 2), plot.cex = 0.65)
SSplotRetro(hc[[i]], add = T, legend = F, forecast = F)

Plotting Retrospective pattern

Mohn's Rho stats, including one step ahead forecasts:
type peel Rho ForecastRho

1 SSB 2022 -0.02336802 -0.03728832
2 SSB 2021 -0.05124991 -0.06756569
3 SSB 2020 -0.15461875 -0.13211628
4 SSB 2019 -0.21747248 -0.21078068
5 SSB 2018 -0.28853658 -0.30201638
6 SSB Combined -0.14704915 -0.14995347

SSplotRetro(hc[[i]], add = T, forecastrho = T, legend = F)
Plotting Retrospective pattern

Mohn's Rho stats, including one step ahead forecasts:
type peel Rho ForecastRho

1 SSB 2022 -0.02336802 -0.03728832
2 SSB 2021 -0.05124991 -0.06756569
3 SSB 2020 -0.15461875 -0.13211628
4 SSB 2019 -0.21747248 -0.21078068
5 SSB 2018 -0.28853658 -0.30201638
6 SSB Combined -0.14704915 -0.14995347

SSplotRetro(hc[[i]], subplots = "F", add = T, legend = F, forecast = F)
Plotting Retrospective pattern

Mohn's Rho stats, including one step ahead forecasts:
type peel Rho ForecastRho

1 F 2022 0.05482692 0.05265425
2 F 2021 0.09880397 0.13012273
3 F 2020 0.08585618 0.05989588
4 F 2019 0.19339174 0.14738959
5 F 2018 0.37848233 0.28703588
6 F Combined 0.16227223 0.13541967

SSplotRetro(hc[[i]], subplots = "F", add = T, forecastrho = T, legend = F)
Plotting Retrospective pattern

Mohn's Rho stats, including one step ahead forecasts:
type peel Rho ForecastRho

1 F 2022 0.05482692 0.05265425
2 F 2021 0.09880397 0.13012273
3 F 2020 0.08585618 0.05989588
4 F 2019 0.19339174 0.14738959
5 F 2018 0.37848233 0.28703588
6 F Combined 0.16227223 0.13541967

mtext(c("Retro", "Forecast"), 3, outer = T, line = -0.5, at = c(0.3, 0.8), cex = 0.8)
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Figure 15: Retrospective analysis and retrospective forecasts for the Run3
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2.2.5 Run4

# Retro
i = 5
sspar(mfrow = c(2, 2), plot.cex = 0.65)
SSplotRetro(hc[[i]], add = T, legend = F, forecast = F)

Plotting Retrospective pattern

Mohn's Rho stats, including one step ahead forecasts:
type peel Rho ForecastRho

1 SSB 2022 -0.02138338 -0.03323513
2 SSB 2021 -0.06510977 -0.07843734
3 SSB 2020 -0.16466361 -0.13779495
4 SSB 2019 -0.22862118 -0.22050911
5 SSB 2018 -0.30066172 -0.31290174
6 SSB Combined -0.15608793 -0.15657566

SSplotRetro(hc[[i]], add = T, forecastrho = T, legend = F)
Plotting Retrospective pattern

Mohn's Rho stats, including one step ahead forecasts:
type peel Rho ForecastRho

1 SSB 2022 -0.02138338 -0.03323513
2 SSB 2021 -0.06510977 -0.07843734
3 SSB 2020 -0.16466361 -0.13779495
4 SSB 2019 -0.22862118 -0.22050911
5 SSB 2018 -0.30066172 -0.31290174
6 SSB Combined -0.15608793 -0.15657566

SSplotRetro(hc[[i]], subplots = "F", add = T, legend = F, forecast = F)
Plotting Retrospective pattern

Mohn's Rho stats, including one step ahead forecasts:
type peel Rho ForecastRho

1 F 2022 0.04897344 0.04355844
2 F 2021 0.10905910 0.13458557
3 F 2020 0.08030891 0.10147729
4 F 2019 0.20182024 0.12810912
5 F 2018 0.39440398 0.27575651
6 F Combined 0.16691314 0.13669738

SSplotRetro(hc[[i]], subplots = "F", add = T, forecastrho = T, legend = F)
Plotting Retrospective pattern

Mohn's Rho stats, including one step ahead forecasts:
type peel Rho ForecastRho

1 F 2022 0.04897344 0.04355844
2 F 2021 0.10905910 0.13458557
3 F 2020 0.08030891 0.10147729
4 F 2019 0.20182024 0.12810912
5 F 2018 0.39440398 0.27575651
6 F Combined 0.16691314 0.13669738

mtext(c("Retro", "Forecast"), 3, outer = T, line = -0.5, at = c(0.3, 0.8), cex = 0.8)
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Figure 16: Retrospective analysis and retrospective forecasts for the Run4
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2.2.6 Run5

# Retro
i = 6
sspar(mfrow = c(2, 2), plot.cex = 0.65)
SSplotRetro(hc[[i]], add = T, legend = F, forecast = F)

Plotting Retrospective pattern

Mohn's Rho stats, including one step ahead forecasts:
type peel Rho ForecastRho

1 SSB 2022 -0.01687914 -0.02973726
2 SSB 2021 -0.04184190 -0.05662891
3 SSB 2020 -0.14966469 -0.11386450
4 SSB 2019 -0.21978482 -0.20629303
5 SSB 2018 -0.28539216 -0.29484714
6 SSB Combined -0.14271254 -0.14027417

SSplotRetro(hc[[i]], add = T, forecastrho = T, legend = F)
Plotting Retrospective pattern

Mohn's Rho stats, including one step ahead forecasts:
type peel Rho ForecastRho

1 SSB 2022 -0.01687914 -0.02973726
2 SSB 2021 -0.04184190 -0.05662891
3 SSB 2020 -0.14966469 -0.11386450
4 SSB 2019 -0.21978482 -0.20629303
5 SSB 2018 -0.28539216 -0.29484714
6 SSB Combined -0.14271254 -0.14027417

SSplotRetro(hc[[i]], subplots = "F", add = T, legend = F, forecast = F)
Plotting Retrospective pattern

Mohn's Rho stats, including one step ahead forecasts:
type peel Rho ForecastRho

1 F 2022 0.08632909 0.05168774
2 F 2021 0.08527544 0.18244999
3 F 2020 0.08901621 0.15045737
4 F 2019 0.17395533 0.20013039
5 F 2018 0.35660502 0.22375773
6 F Combined 0.15823622 0.16169664

SSplotRetro(hc[[i]], subplots = "F", add = T, forecastrho = T, legend = F)
Plotting Retrospective pattern

Mohn's Rho stats, including one step ahead forecasts:
type peel Rho ForecastRho

1 F 2022 0.08632909 0.05168774
2 F 2021 0.08527544 0.18244999
3 F 2020 0.08901621 0.15045737
4 F 2019 0.17395533 0.20013039
5 F 2018 0.35660502 0.22375773
6 F Combined 0.15823622 0.16169664

mtext(c("Retro", "Forecast"), 3, outer = T, line = -0.5, at = c(0.3, 0.8), cex = 0.8)
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Figure 17: Retrospective analysis and retrospective forecasts for the Run5
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2.2.7 Run6

# Retro
i = 7
sspar(mfrow = c(2, 2), plot.cex = 0.65)
SSplotRetro(hc[[i]], add = T, legend = F, forecast = F)

Plotting Retrospective pattern

Mohn's Rho stats, including one step ahead forecasts:
type peel Rho ForecastRho

1 SSB 2022 -0.02651623 -0.04128651
2 SSB 2021 -0.05909101 -0.07636971
3 SSB 2020 -0.16401458 -0.14166527
4 SSB 2019 -0.22934625 -0.22219496
5 SSB 2018 -0.30465535 -0.31810931
6 SSB Combined -0.15672468 -0.15992515

SSplotRetro(hc[[i]], add = T, forecastrho = T, legend = F)
Plotting Retrospective pattern

Mohn's Rho stats, including one step ahead forecasts:
type peel Rho ForecastRho

1 SSB 2022 -0.02651623 -0.04128651
2 SSB 2021 -0.05909101 -0.07636971
3 SSB 2020 -0.16401458 -0.14166527
4 SSB 2019 -0.22934625 -0.22219496
5 SSB 2018 -0.30465535 -0.31810931
6 SSB Combined -0.15672468 -0.15992515

SSplotRetro(hc[[i]], subplots = "F", add = T, legend = F, forecast = F)
Plotting Retrospective pattern

Mohn's Rho stats, including one step ahead forecasts:
type peel Rho ForecastRho

1 F 2022 0.05872083 0.05734880
2 F 2021 0.10819250 0.14119902
3 F 2020 0.09880181 0.07808045
4 F 2019 0.20634251 0.16579837
5 F 2018 0.39895918 0.31024886
6 F Combined 0.17420337 0.15053510

SSplotRetro(hc[[i]], subplots = "F", add = T, forecastrho = T, legend = F)
Plotting Retrospective pattern

Mohn's Rho stats, including one step ahead forecasts:
type peel Rho ForecastRho

1 F 2022 0.05872083 0.05734880
2 F 2021 0.10819250 0.14119902
3 F 2020 0.09880181 0.07808045
4 F 2019 0.20634251 0.16579837
5 F 2018 0.39895918 0.31024886
6 F Combined 0.17420337 0.15053510

mtext(c("Retro", "Forecast"), 3, outer = T, line = -0.5, at = c(0.3, 0.8), cex = 0.8)

29



Year

S
pa

w
ni

ng
 b

io
m

as
s 

(t
)

Mohn's rho = −0.16

1900 1950 2000 2023

0
50

0
10

00
15

00
20

00

Year

S
pa

w
ni

ng
 b

io
m

as
s 

(t
)

Mohn's rho = −0.16(−0.16)

1900 1950 2000 2023

0
50

0
10

00
15

00
20

00

Year

F
is

hi
ng

 m
or

ta
lit

y 
F

Mohn's rho = 0.17

1900 1950 2000 20230.
00

0.
02

0.
04

0.
06

0.
08

Year

F
is

hi
ng

 m
or

ta
lit

y 
F

Mohn's rho = 0.17(0.15)

1900 1950 2000 20230.
00

0.
02

0.
04

0.
06

0.
08

Retro Forecast

Figure 18: Retrospective analysis and retrospective forecasts for the Run6
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2.3 Hindcasting Cross-Validation
2.3.1 Indices

sspar(mfrow = c(3, 4), plot.cex = 0.8)
SSplotHCxval(hc[[1]], add = T, verbose = FALSE)

Warning in min(x): no non-missing arguments to min; returning Inf
Warning in max(x): no non-missing arguments to max; returning -Inf
Warning in min(x): no non-missing arguments to min; returning Inf
Warning in max(x): no non-missing arguments to max; returning -Inf

Index Season MASE MAE.PR MAE.base MASE.adj n.eval
1 Safari 1 3.006373 0.6990414 0.2325198 3.006373 5
2 SREAS 1 NA NA NA NA 0
3 VCD_2017 1 1.504788 0.2982494 0.1982003 1.504788 5
4 VCD_1938 1 NA NA NA NA 0
5 Halland_com 1 3.950732 0.6343841 0.1605738 3.950732 5
6 Lobserve 1 12.775070 2.0464565 0.1601914 12.775070 2

legend("topleft", "Reference run", cex = 0.5)
SSplotHCxval(hc[[2]], add = T, verbose = FALSE)

Warning in min(x): no non-missing arguments to min; returning Inf
Warning in min(x): no non-missing arguments to max; returning -Inf
Warning in min(x): no non-missing arguments to min; returning Inf
Warning in max(x): no non-missing arguments to max; returning -Inf

Index Season MASE MAE.PR MAE.base MASE.adj n.eval
1 Safari 1 2.904353 0.6753196 0.2325198 2.904353 5
2 SREAS 1 NA NA NA NA 0
3 VCD_2017 1 1.452641 0.2879138 0.1982003 1.452641 5
4 VCD_1938 1 NA NA NA NA 0
5 Halland_com 1 3.709036 0.5955741 0.1605738 3.709036 5
6 Lobserve 1 12.834912 2.0560426 0.1601914 12.834912 2

legend("topleft", "Run1", cex = 0.5)
SSplotHCxval(hc[[3]], add = T, verbose = FALSE)

Warning in min(x): no non-missing arguments to min; returning Inf
Warning in min(x): no non-missing arguments to max; returning -Inf
Warning in min(x): no non-missing arguments to min; returning Inf
Warning in max(x): no non-missing arguments to max; returning -Inf

Index Season MASE MAE.PR MAE.base MASE.adj n.eval
1 Safari 1 3.053345 0.7099632 0.2325198 3.053345 5
2 SREAS 1 NA NA NA NA 0
3 VCD_2017 1 1.548711 0.3069549 0.1982003 1.548711 5
4 VCD_1938 1 NA NA NA NA 0
5 Halland_com 1 4.094495 0.6574687 0.1605738 4.094495 5
6 Lobserve 1 12.876485 2.0627023 0.1601914 12.876485 2

legend("topleft", "Run2", cex = 0.5)

sspar(mfrow = c(4, 4), plot.cex = 0.8)
SSplotHCxval(hc[[4]], add = T, verbose = FALSE)

Warning in min(x): no non-missing arguments to min; returning Inf
Warning in max(x): no non-missing arguments to max; returning -Inf
Warning in min(x): no non-missing arguments to min; returning Inf
Warning in max(x): no non-missing arguments to max; returning -Inf

Index Season MASE MAE.PR MAE.base MASE.adj n.eval
1 Safari 1 3.155996 0.7338316 0.2325198 3.155996 5
2 SREAS 1 NA NA NA NA 0
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Figure 19: Hindcast cross-validations for the survey indices of the Reference run, Run1 and Run2
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3 VCD_2017 1 1.673909 0.3317692 0.1982003 1.673909 5
4 VCD_1938 1 NA NA NA NA 0
5 Halland_com 1 4.599185 0.7385087 0.1605738 4.599185 5
6 Lobserve 1 12.673945 2.0302572 0.1601914 12.673945 2

legend("topleft", "Run3", cex = 0.5)
SSplotHCxval(hc[[5]], add = T, verbose = FALSE)

Warning in min(x): no non-missing arguments to min; returning Inf
Warning in min(x): no non-missing arguments to max; returning -Inf
Warning in min(x): no non-missing arguments to min; returning Inf
Warning in max(x): no non-missing arguments to max; returning -Inf

Index Season MASE MAE.PR MAE.base MASE.adj n.eval
1 Safari 1 2.863866 0.6659057 0.2325198 2.863866 5
2 SREAS 1 NA NA NA NA 0
3 VCD_2017 1 1.431015 0.2836276 0.1982003 1.431015 5
4 VCD_1938 1 NA NA NA NA 0
5 Halland_com 1 3.535462 0.5677027 0.1605738 3.535462 5
6 Lobserve 1 13.079162 2.0951694 0.1601914 13.079162 2

legend("topleft", "Run4", cex = 0.5)
SSplotHCxval(hc[[6]], add = T, verbose = FALSE)

Warning in min(x): no non-missing arguments to min; returning Inf
Warning in min(x): no non-missing arguments to max; returning -Inf
Warning in min(x): no non-missing arguments to min; returning Inf
Warning in max(x): no non-missing arguments to max; returning -Inf

Index Season MASE MAE.PR MAE.base MASE.adj n.eval
1 Safari 1 2.311978 0.5375806 0.2325198 2.311978 5
2 SREAS 1 NA NA NA NA 0
3 VCD_2017 1 1.470159 0.2913860 0.1982003 1.470159 5
4 VCD_1938 1 NA NA NA NA 0
5 Halland_com 1 3.214379 0.5161451 0.1605738 3.214379 5
6 Lobserve 1 14.430317 2.3116128 0.1601914 14.430317 2

legend("topleft", "Run5", cex = 0.5)
SSplotHCxval(hc[[7]], add = T, verbose = FALSE)

Warning in min(x): no non-missing arguments to min; returning Inf
Warning in min(x): no non-missing arguments to max; returning -Inf
Warning in min(x): no non-missing arguments to min; returning Inf
Warning in max(x): no non-missing arguments to max; returning -Inf

Index Season MASE MAE.PR MAE.base MASE.adj n.eval
1 Safari 1 3.236804 0.7526211 0.2325198 3.236804 5
2 SREAS 1 NA NA NA NA 0
3 VCD_2017 1 1.721025 0.3411077 0.1982003 1.721025 5
4 VCD_1938 1 NA NA NA NA 0
5 Halland_com 1 4.789749 0.7691083 0.1605738 4.789749 5
6 Lobserve 1 12.699938 2.0344210 0.1601914 12.699938 2

legend("topleft", "Run6", cex = 0.5)
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Figure 20: Hindcast cross-validations for the survey indices of Run3 to Run6
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3 Sensitivities
Get the labels for the Bratio and Fratio
mvn = SSdeltaMVLN(mods[[3]], Fref = "Btgt", mc = 2, plot = F)

starter.sso with Bratio: SSB/SSBMSY and F: _abs_F

mvn$labels
expression(SSB/SSB[MSY], "F/F"[SB ~ 40], "SSB", "F", "Recruits",

"Catch")

Create uncertainty with delta-MVLN approximation
kbs = NULL
# Compare indices
for (i in 1:length(scenarios)) {

kbs = rbind(kbs, SSdeltaMVLN(mods[[i]], run = scenarios[i], Fref = "Btgt", plot = F,
verbose = F, years = 1875:2023)$kb)

}

sspar(mfrow = c(3, 2), plot.cex = 0.7)
SSplotEnsemble(kbs, uncertainty = F, add = T, ylabs = mvn$labels, legendcex = 0.65,

legendloc = "topright", verbose = F)

sspar(mfrow = c(3, 2), plot.cex = 0.7)
SSplotEnsemble(kbs, uncertainty = T, add = T, ylabs = mvn$labels, legendcex = 0.65,

legendloc = "topright", verbose = F)

get_plot = "Compare.png"

# By run
Par = list(mfrow = c(1, 1), mar = c(5, 5, 1, 1), mgp = c(3, 1, 0), tck = -0.02, cex = 0.8)
png(file = get_plot, width = 6.5, height = 5.5, res = 200, units = "in")
par(Par)
kbp = kobe:::kobePhaseMar2(transform(kbs[kbs$year == 2023, ], run = paste(run))[,

c("stock", "harvest", "run")], xlab = expression(B/B[tgt]), ylab = expression(F/F[tgt]),
ylim = 5, xlim = 3, col = rainbow(9)[3:9], quadcol = c("red", "green", "yellow",

"orange"))
Coordinate system already present. Adding new coordinate system, which will
replace the existing one.
Coordinate system already present. Adding new coordinate system, which will
replace the existing one.

dev.off()
pdf

2

# Beautify
DIMs = c(6, 5.5)

# setup plot
par(mar = rep(0, 4), omi = c(0, 0, 0, 0)) # no margins

# layout the plots into a matrix w/ 12 columns, by row
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Figure 21: Comparison of stock trajectories
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Figure 22: Comparison of stock trajectories with 95% CIs
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layout(matrix(1:1, ncol = 1, byrow = TRUE))

# example image
img <- readPNG(paste0(get_plot))

# do the plotting
plot(NA, xlim = 0:1, ylim = 0:1, xaxt = "n", yaxt = "n", bty = "n")

rasterImage(img, 0, 0, 1, 1)
legend("topright", scenarios, pch = 22, pt.bg = rainbow(9)[3:9], box.lty = 0, cex = 1.2)

Index

N
A

Reference_run
Run1
Run2
Run3
Run4
Run5
Run6

Figure 23: Kobe plot showing the comparison of stock status posteriors for 2023 with marginal posterior
distributions
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Figure 24: Ensamble time trend plot
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Figure 25: Ensamble kobe plot

Reference <- SS_output("~/Max/Commitees/National stocks/Lobster 3a/Reference_run",
covar = T)

sigmaR <- SS_output("~/Max/Commitees/National stocks/Lobster 3a/sigmaR0.6", covar = T)
Run2 <- SS_output("~/Max/Commitees/National stocks/Lobster 3a/Run2", covar = T)
Run7 <- SS_output("~/Max/Commitees/National stocks/Lobster 3a/Run7", covar = T)
Run8 <- SS_output("~/Max/Commitees/National stocks/Lobster 3a/Run8", covar = T)
Run9 <- SS_output("~/Max/Commitees/National stocks/Lobster 3a/Run9", covar = T)
Run10 <- SS_output("~/Max/Commitees/National stocks/Lobster 3a/Run10", covar = T)

#### Set the plotting directory
plotdir <- ("~/Max/Commitees/National stocks/Lobster 3a/Figures/")

mymodels <- list(Reference, sigmaR, Run2, Run7, Run8, Run9)
modelnames <- c("Reference", "sigmaR06", "High catches", "Recdev", "TVsel", "M_estimate",

"ExtraQ_estimated")

# Create a summary of all models
mysummary <- SSsummarize(mymodels)

# Plot the models
SSplotComparisons(mysummary, legendlabels = modelnames, legendloc = "topleft", legendncol = 1,

endyr = 2023, print = TRUE, plotdir = plotdir, densitynames = "none", uncertainty = TRUE)
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Figure 26: Comparison of alternative models
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